LLM2CLIP-Llama-3.2-1B-Instruct-CC-Finetuned / modeling_bidirectional_llama_encoder.py
Gengzigang
save
52e9e56
raw
history blame
8.17 kB
import torch
import importlib.metadata
from packaging import version
from transformers import LlamaModel, LlamaForCausalLM, LlamaPreTrainedModel, LlamaConfig
from transformers.models.llama.modeling_llama import (
LlamaDecoderLayer,
LlamaAttention,
LlamaFlashAttention2,
LlamaSdpaAttention,
LlamaMLP,
LlamaRMSNorm,
LlamaRotaryEmbedding,
)
from torch import nn
from transformers.utils import logging
from transformers.utils.import_utils import _is_package_available
from transformers.cache_utils import Cache, StaticCache
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from peft import PeftModel
logger = logging.get_logger(__name__)
def is_transformers_attn_greater_or_equal_4_43_1():
if not _is_package_available("transformers"):
return False
return version.parse(importlib.metadata.version("transformers")) >= version.parse(
"4.43.1"
)
class ModifiedLlamaAttention(LlamaAttention):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.is_causal = False
class ModifiedLlamaFlashAttention2(LlamaFlashAttention2):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.is_causal = False
class ModifiedLlamaSdpaAttention(LlamaSdpaAttention):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.is_causal = False
LLAMA_ATTENTION_CLASSES = {
"eager": ModifiedLlamaAttention,
"flash_attention_2": ModifiedLlamaFlashAttention2,
"sdpa": ModifiedLlamaSdpaAttention,
}
class ModifiedLlamaDecoderLayer(LlamaDecoderLayer):
def __init__(self, config: LlamaConfig, layer_idx: int):
nn.Module.__init__(self)
self.hidden_size = config.hidden_size
self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](
config=config, layer_idx=layer_idx
)
self.mlp = LlamaMLP(config)
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = LlamaRMSNorm(
config.hidden_size, eps=config.rms_norm_eps
)
class LlamaBiModel(LlamaModel):
_no_split_modules = ["ModifiedLlamaDecoderLayer"]
def __init__(self, config: LlamaConfig):
if not is_transformers_attn_greater_or_equal_4_43_1():
raise ValueError(
"The current implementation of LlamaEncoderModel follows modeling_llama.py of transformers version >= 4.43.1"
)
LlamaPreTrainedModel.__init__(self, config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(
config.vocab_size, config.hidden_size, self.padding_idx
)
self.layers = nn.ModuleList(
[
ModifiedLlamaDecoderLayer(config, layer_idx)
for layer_idx in range(config.num_hidden_layers)
]
)
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = LlamaRotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def _update_causal_mask(
self,
attention_mask,
input_tensor,
cache_position,
past_key_values: Cache,
output_attentions: bool,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = (
past_key_values.get_seq_length() if past_key_values is not None else 0
)
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
# if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
# if AttentionMaskConverter._ignore_causal_mask_sdpa(
# attention_mask,
# inputs_embeds=input_tensor,
# past_key_values_length=past_seen_tokens,
# is_training=self.training,
# ):
# return None
dtype, device = input_tensor.dtype, input_tensor.device
min_dtype = torch.finfo(dtype).min
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_length()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
causal_mask = torch.zeros(
(sequence_length, target_length), dtype=dtype, device=device
) # in original implementation - torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
# Commenting out next 2 lines to disable causal masking
# if sequence_length != 1:
# causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(
target_length, device=device
) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(
input_tensor.shape[0], 1, -1, -1
)
if attention_mask is not None:
causal_mask = (
causal_mask.clone()
) # copy to contiguous memory for in-place edit
if attention_mask.dim() == 2:
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[
:, None, None, :
].eq(0.0)
causal_mask[..., :mask_length] = causal_mask[
..., :mask_length
].masked_fill(padding_mask, min_dtype)
elif attention_mask.dim() == 4:
# backwards compatibility: we allow passing a 4D attention mask shorter than the input length with
# cache. In that case, the 4D attention mask attends to the newest tokens only.
if attention_mask.shape[-2] < cache_position[0] + sequence_length:
offset = cache_position[0]
else:
offset = 0
mask_shape = attention_mask.shape
mask_slice = (attention_mask.eq(0.0)).to(dtype=dtype) * min_dtype
causal_mask[
: mask_shape[0],
: mask_shape[1],
offset : mask_shape[2] + offset,
: mask_shape[3],
] = mask_slice
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
causal_mask = AttentionMaskConverter._unmask_unattended(
causal_mask, min_dtype
)
return causal_mask
class LlamaBiForMNTP(LlamaForCausalLM):
def __init__(self, config):
LlamaPreTrainedModel.__init__(self, config)
self.model = LlamaBiModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
# getter for PEFT model
def get_model_for_peft(self):
return self.model
# setter for PEFT model
def set_model_for_peft(self, model: PeftModel):
self.model = model
# save the PEFT model
def save_peft_model(self, path):
self.model.save_pretrained(path)