mickekring commited on
Commit
3365a26
·
verified ·
1 Parent(s): 124f02b

Add small/MelSpectrogram.mlmodelc

Browse files
small/MelSpectrogram.mlmodelc/analytics/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8048ca455921999b24a5b7b1b98858205f010bb8c3574bb3a7288ed818e6db77
3
+ size 243
small/MelSpectrogram.mlmodelc/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef65062c46252b0603a12b38355630453504364cfcd098984cd4b0b5b04f6fa1
3
+ size 330
small/MelSpectrogram.mlmodelc/metadata.json ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "metadataOutputVersion" : "3.0",
4
+ "storagePrecision" : "Float16",
5
+ "outputSchema" : [
6
+ {
7
+ "hasShapeFlexibility" : "0",
8
+ "isOptional" : "0",
9
+ "dataType" : "Float16",
10
+ "formattedType" : "MultiArray (Float16 1 × 80 × 1 × 3000)",
11
+ "shortDescription" : "",
12
+ "shape" : "[1, 80, 1, 3000]",
13
+ "name" : "melspectrogram_features",
14
+ "type" : "MultiArray"
15
+ }
16
+ ],
17
+ "modelParameters" : [
18
+
19
+ ],
20
+ "specificationVersion" : 7,
21
+ "mlProgramOperationTypeHistogram" : {
22
+ "Ios16.reshape" : 2,
23
+ "Ios16.mul" : 2,
24
+ "SliceByIndex" : 1,
25
+ "Ios16.sub" : 1,
26
+ "Ios16.log" : 1,
27
+ "Ios16.square" : 2,
28
+ "Ios16.add" : 3,
29
+ "Squeeze" : 2,
30
+ "Ios16.matmul" : 1,
31
+ "Ios16.conv" : 2,
32
+ "Ios16.maximum" : 1,
33
+ "ExpandDims" : 4,
34
+ "Ios16.reduceMax" : 1,
35
+ "Identity" : 1,
36
+ "Pad" : 1
37
+ },
38
+ "computePrecision" : "Mixed (Float16, Int32)",
39
+ "isUpdatable" : "0",
40
+ "stateSchema" : [
41
+
42
+ ],
43
+ "availability" : {
44
+ "macOS" : "13.0",
45
+ "tvOS" : "16.0",
46
+ "visionOS" : "1.0",
47
+ "watchOS" : "9.0",
48
+ "iOS" : "16.0",
49
+ "macCatalyst" : "16.0"
50
+ },
51
+ "modelType" : {
52
+ "name" : "MLModelType_mlProgram"
53
+ },
54
+ "userDefinedMetadata" : {
55
+ "com.github.apple.coremltools.source_dialect" : "TorchScript",
56
+ "com.github.apple.coremltools.version" : "8.3.0",
57
+ "com.github.apple.coremltools.source" : "torch==2.6.0"
58
+ },
59
+ "inputSchema" : [
60
+ {
61
+ "hasShapeFlexibility" : "0",
62
+ "isOptional" : "0",
63
+ "dataType" : "Float16",
64
+ "formattedType" : "MultiArray (Float16 480000)",
65
+ "shortDescription" : "",
66
+ "shape" : "[480000]",
67
+ "name" : "audio",
68
+ "type" : "MultiArray"
69
+ }
70
+ ],
71
+ "generatedClassName" : "MelSpectrogram",
72
+ "method" : "predict"
73
+ }
74
+ ]
small/MelSpectrogram.mlmodelc/model.mil ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ program(1.0)
2
+ [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3405.2.1"}, {"coremlc-version", "3404.23.1"}, {"coremltools-component-torch", "2.6.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.3.0"}})]
3
+ {
4
+ func main<ios16>(tensor<fp16, [480000]> audio) {
5
+ tensor<int32, [3]> var_10 = const()[name = tensor<string, []>("op_10"), val = tensor<int32, [3]>([1, 1, 480000])];
6
+ tensor<fp16, [1, 1, 480000]> input_1_cast_fp16 = reshape(shape = var_10, x = audio)[name = tensor<string, []>("input_1_cast_fp16")];
7
+ tensor<int32, [6]> input_3_pad_0 = const()[name = tensor<string, []>("input_3_pad_0"), val = tensor<int32, [6]>([0, 0, 0, 0, 200, 200])];
8
+ tensor<string, []> input_3_mode_0 = const()[name = tensor<string, []>("input_3_mode_0"), val = tensor<string, []>("reflect")];
9
+ tensor<fp16, []> const_1_to_fp16 = const()[name = tensor<string, []>("const_1_to_fp16"), val = tensor<fp16, []>(0x0p+0)];
10
+ tensor<fp16, [1, 1, 480400]> input_3_cast_fp16 = pad(constant_val = const_1_to_fp16, mode = input_3_mode_0, pad = input_3_pad_0, x = input_1_cast_fp16)[name = tensor<string, []>("input_3_cast_fp16")];
11
+ tensor<int32, [1]> var_22 = const()[name = tensor<string, []>("op_22"), val = tensor<int32, [1]>([480400])];
12
+ tensor<fp16, [480400]> input_cast_fp16 = reshape(shape = var_22, x = input_3_cast_fp16)[name = tensor<string, []>("input_cast_fp16")];
13
+ tensor<int32, [1]> expand_dims_0_axes_0 = const()[name = tensor<string, []>("expand_dims_0_axes_0"), val = tensor<int32, [1]>([0])];
14
+ tensor<fp16, [1, 480400]> expand_dims_0_cast_fp16 = expand_dims(axes = expand_dims_0_axes_0, x = input_cast_fp16)[name = tensor<string, []>("expand_dims_0_cast_fp16")];
15
+ tensor<int32, [1]> expand_dims_3 = const()[name = tensor<string, []>("expand_dims_3"), val = tensor<int32, [1]>([160])];
16
+ tensor<int32, [1]> expand_dims_4_axes_0 = const()[name = tensor<string, []>("expand_dims_4_axes_0"), val = tensor<int32, [1]>([1])];
17
+ tensor<fp16, [1, 1, 480400]> expand_dims_4_cast_fp16 = expand_dims(axes = expand_dims_4_axes_0, x = expand_dims_0_cast_fp16)[name = tensor<string, []>("expand_dims_4_cast_fp16")];
18
+ tensor<string, []> conv_0_pad_type_0 = const()[name = tensor<string, []>("conv_0_pad_type_0"), val = tensor<string, []>("valid")];
19
+ tensor<int32, [2]> conv_0_pad_0 = const()[name = tensor<string, []>("conv_0_pad_0"), val = tensor<int32, [2]>([0, 0])];
20
+ tensor<int32, [1]> conv_0_dilations_0 = const()[name = tensor<string, []>("conv_0_dilations_0"), val = tensor<int32, [1]>([1])];
21
+ tensor<int32, []> conv_0_groups_0 = const()[name = tensor<string, []>("conv_0_groups_0"), val = tensor<int32, []>(1)];
22
+ tensor<fp16, [201, 1, 400]> expand_dims_1_to_fp16 = const()[name = tensor<string, []>("expand_dims_1_to_fp16"), val = tensor<fp16, [201, 1, 400]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
23
+ tensor<fp16, [1, 201, 3001]> conv_0_cast_fp16 = conv(dilations = conv_0_dilations_0, groups = conv_0_groups_0, pad = conv_0_pad_0, pad_type = conv_0_pad_type_0, strides = expand_dims_3, weight = expand_dims_1_to_fp16, x = expand_dims_4_cast_fp16)[name = tensor<string, []>("conv_0_cast_fp16")];
24
+ tensor<string, []> conv_1_pad_type_0 = const()[name = tensor<string, []>("conv_1_pad_type_0"), val = tensor<string, []>("valid")];
25
+ tensor<int32, [2]> conv_1_pad_0 = const()[name = tensor<string, []>("conv_1_pad_0"), val = tensor<int32, [2]>([0, 0])];
26
+ tensor<int32, [1]> conv_1_dilations_0 = const()[name = tensor<string, []>("conv_1_dilations_0"), val = tensor<int32, [1]>([1])];
27
+ tensor<int32, []> conv_1_groups_0 = const()[name = tensor<string, []>("conv_1_groups_0"), val = tensor<int32, []>(1)];
28
+ tensor<fp16, [201, 1, 400]> expand_dims_2_to_fp16 = const()[name = tensor<string, []>("expand_dims_2_to_fp16"), val = tensor<fp16, [201, 1, 400]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(160960)))];
29
+ tensor<fp16, [1, 201, 3001]> conv_1_cast_fp16 = conv(dilations = conv_1_dilations_0, groups = conv_1_groups_0, pad = conv_1_pad_0, pad_type = conv_1_pad_type_0, strides = expand_dims_3, weight = expand_dims_2_to_fp16, x = expand_dims_4_cast_fp16)[name = tensor<string, []>("conv_1_cast_fp16")];
30
+ tensor<int32, [1]> squeeze_0_axes_0 = const()[name = tensor<string, []>("squeeze_0_axes_0"), val = tensor<int32, [1]>([0])];
31
+ tensor<fp16, [201, 3001]> squeeze_0_cast_fp16 = squeeze(axes = squeeze_0_axes_0, x = conv_0_cast_fp16)[name = tensor<string, []>("squeeze_0_cast_fp16")];
32
+ tensor<int32, [1]> squeeze_1_axes_0 = const()[name = tensor<string, []>("squeeze_1_axes_0"), val = tensor<int32, [1]>([0])];
33
+ tensor<fp16, [201, 3001]> squeeze_1_cast_fp16 = squeeze(axes = squeeze_1_axes_0, x = conv_1_cast_fp16)[name = tensor<string, []>("squeeze_1_cast_fp16")];
34
+ tensor<fp16, [201, 3001]> square_0_cast_fp16 = square(x = squeeze_0_cast_fp16)[name = tensor<string, []>("square_0_cast_fp16")];
35
+ tensor<fp16, [201, 3001]> square_1_cast_fp16 = square(x = squeeze_1_cast_fp16)[name = tensor<string, []>("square_1_cast_fp16")];
36
+ tensor<fp16, [201, 3001]> add_1_cast_fp16 = add(x = square_0_cast_fp16, y = square_1_cast_fp16)[name = tensor<string, []>("add_1_cast_fp16")];
37
+ tensor<fp16, [201, 3001]> magnitudes_1_cast_fp16 = identity(x = add_1_cast_fp16)[name = tensor<string, []>("magnitudes_1_cast_fp16")];
38
+ tensor<int32, [2]> magnitudes_begin_0 = const()[name = tensor<string, []>("magnitudes_begin_0"), val = tensor<int32, [2]>([0, 0])];
39
+ tensor<int32, [2]> magnitudes_end_0 = const()[name = tensor<string, []>("magnitudes_end_0"), val = tensor<int32, [2]>([201, 3000])];
40
+ tensor<bool, [2]> magnitudes_end_mask_0 = const()[name = tensor<string, []>("magnitudes_end_mask_0"), val = tensor<bool, [2]>([true, false])];
41
+ tensor<fp16, [201, 3000]> magnitudes_cast_fp16 = slice_by_index(begin = magnitudes_begin_0, end = magnitudes_end_0, end_mask = magnitudes_end_mask_0, x = magnitudes_1_cast_fp16)[name = tensor<string, []>("magnitudes_cast_fp16")];
42
+ tensor<bool, []> mel_spec_1_transpose_x_0 = const()[name = tensor<string, []>("mel_spec_1_transpose_x_0"), val = tensor<bool, []>(false)];
43
+ tensor<bool, []> mel_spec_1_transpose_y_0 = const()[name = tensor<string, []>("mel_spec_1_transpose_y_0"), val = tensor<bool, []>(false)];
44
+ tensor<fp16, [80, 201]> mel_filters_to_fp16 = const()[name = tensor<string, []>("mel_filters_to_fp16"), val = tensor<fp16, [80, 201]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(321856)))];
45
+ tensor<fp16, [80, 3000]> mel_spec_1_cast_fp16 = matmul(transpose_x = mel_spec_1_transpose_x_0, transpose_y = mel_spec_1_transpose_y_0, x = mel_filters_to_fp16, y = magnitudes_cast_fp16)[name = tensor<string, []>("mel_spec_1_cast_fp16")];
46
+ tensor<fp16, []> var_41_to_fp16 = const()[name = tensor<string, []>("op_41_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
47
+ tensor<fp16, [80, 3000]> mel_spec_cast_fp16 = add(x = mel_spec_1_cast_fp16, y = var_41_to_fp16)[name = tensor<string, []>("mel_spec_cast_fp16")];
48
+ tensor<fp16, []> log_0_epsilon_0_to_fp16 = const()[name = tensor<string, []>("log_0_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x0p+0)];
49
+ tensor<fp16, [80, 3000]> log_0_cast_fp16 = log(epsilon = log_0_epsilon_0_to_fp16, x = mel_spec_cast_fp16)[name = tensor<string, []>("log_0_cast_fp16")];
50
+ tensor<fp16, []> mul_0_y_0_to_fp16 = const()[name = tensor<string, []>("mul_0_y_0_to_fp16"), val = tensor<fp16, []>(0x1.bccp-2)];
51
+ tensor<fp16, [80, 3000]> mul_0_cast_fp16 = mul(x = log_0_cast_fp16, y = mul_0_y_0_to_fp16)[name = tensor<string, []>("mul_0_cast_fp16")];
52
+ tensor<bool, []> var_44_keep_dims_0 = const()[name = tensor<string, []>("op_44_keep_dims_0"), val = tensor<bool, []>(false)];
53
+ tensor<fp16, []> var_44_cast_fp16 = reduce_max(keep_dims = var_44_keep_dims_0, x = mul_0_cast_fp16)[name = tensor<string, []>("op_44_cast_fp16")];
54
+ tensor<fp16, []> var_46_to_fp16 = const()[name = tensor<string, []>("op_46_to_fp16"), val = tensor<fp16, []>(0x1p+3)];
55
+ tensor<fp16, []> var_47_cast_fp16 = sub(x = var_44_cast_fp16, y = var_46_to_fp16)[name = tensor<string, []>("op_47_cast_fp16")];
56
+ tensor<fp16, [80, 3000]> log_spec_3_cast_fp16 = maximum(x = mul_0_cast_fp16, y = var_47_cast_fp16)[name = tensor<string, []>("log_spec_3_cast_fp16")];
57
+ tensor<fp16, []> var_50_to_fp16 = const()[name = tensor<string, []>("op_50_to_fp16"), val = tensor<fp16, []>(0x1p+2)];
58
+ tensor<fp16, [80, 3000]> var_51_cast_fp16 = add(x = log_spec_3_cast_fp16, y = var_50_to_fp16)[name = tensor<string, []>("op_51_cast_fp16")];
59
+ tensor<fp16, []> _inversed_log_spec_y_0_to_fp16 = const()[name = tensor<string, []>("_inversed_log_spec_y_0_to_fp16"), val = tensor<fp16, []>(0x1p-2)];
60
+ tensor<fp16, [80, 3000]> _inversed_log_spec_cast_fp16 = mul(x = var_51_cast_fp16, y = _inversed_log_spec_y_0_to_fp16)[name = tensor<string, []>("_inversed_log_spec_cast_fp16")];
61
+ tensor<int32, [1]> var_55_axes_0 = const()[name = tensor<string, []>("op_55_axes_0"), val = tensor<int32, [1]>([0])];
62
+ tensor<fp16, [1, 80, 3000]> var_55_cast_fp16 = expand_dims(axes = var_55_axes_0, x = _inversed_log_spec_cast_fp16)[name = tensor<string, []>("op_55_cast_fp16")];
63
+ tensor<int32, [1]> var_62_axes_0 = const()[name = tensor<string, []>("op_62_axes_0"), val = tensor<int32, [1]>([2])];
64
+ tensor<fp16, [1, 80, 1, 3000]> melspectrogram_features = expand_dims(axes = var_62_axes_0, x = var_55_cast_fp16)[name = tensor<string, []>("op_62_cast_fp16")];
65
+ } -> (melspectrogram_features);
66
+ }
small/MelSpectrogram.mlmodelc/weights/weight.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:801024dbc7a89c677be1f8b285de3409e35f7d1786c9c8d9d0d6842ac57a1c83
3
+ size 354080