micheljperez
commited on
Commit
•
f9ed28d
1
Parent(s):
e4e6df7
Initial Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +23 -23
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +1 -1
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 251.13 +/- 67.59
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x12eecd940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x12eecd9d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x12eecda60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x12eecdaf0>", "_build": "<function ActorCriticPolicy._build at 0x12eecdb80>", "forward": "<function ActorCriticPolicy.forward at 0x12eecdc10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x12eecdca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x12eecdd30>", "_predict": "<function ActorCriticPolicy._predict at 0x12eecddc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x12eecde50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x12eecdee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x12eecdf70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x12eed50c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 10000384, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696889022912856000, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAED74FP+a7FXJMO5gBBDo4qTg98r7FugAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -3.8399999999993994e-05, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGJ0Mm4RVZOMAWyUTegDjAF0lEdApCewt+TePHV9lChoBkdAYpUQ4CIUJ2gHTegDaAhHQKQoHknTiKl1fZQoaAZHQGcjCzcAR05oB03oA2gIR0CkKLy88La3dX2UKGgGR0Bi8nD+BH09aAdN6ANoCEdApCksXtShrXV9lChoBkdAYJbhnanJk2gHTegDaAhHQKQpyAskIHF1fZQoaAZHQGUFnARChOBoB03oA2gIR0CkKjE7wKBvdX2UKGgGR0Bi0a6nR9gGaAdN6ANoCEdApCrDAk9lmXV9lChoBkdAZpwA3kxREWgHTegDaAhHQKQrL6tT1kF1fZQoaAZHQGclWIGhVVBoB03oA2gIR0CkK8WIwdsBdX2UKGgGR0BF9O3lS0jUaAdLsmgIR0CkK9b/GVAzdX2UKGgGR0BlgWKZUkv9aAdN6ANoCEdApCxDPjXFtXV9lChoBkdAY33YXfqHGmgHTegDaAhHQKQs5BuXNTt1fZQoaAZHQGR4lM7EHdJoB03oA2gIR0CkLVL7GecydX2UKGgGR0Bj3mFJxvNvaAdN6ANoCEdApC3uEdvKl3V9lChoBkdAYxCInjQzDWgHTegDaAhHQKQuVawD/2l1fZQoaAZHQGQ3A8jiXIFoB03oA2gIR0CkLuaakRBedX2UKGgGR0BlswQnQY1paAdN6ANoCEdApC9U4cWCVnV9lChoBkdAYnLzVc2R72gHTegDaAhHQKQv9tKqXF91fZQoaAZHQGROZHNHH3loB03oA2gIR0CkMGed9UjtdX2UKGgGR0BNRav7m+0xaAdLkGgIR0CkMHaoddVvdX2UKGgGR0BkhBR4yGi6aAdN6ANoCEdApDEaIacZtXV9lChoBkdAaDIGt6ol2WgHTegDaAhHQKQxiKxcE/11fZQoaAZHQGIKvluFYdRoB03oA2gIR0CkMigpSaVldX2UKGgGR0Bl/D7Gecx1aAdN6ANoCEdApDKWdd3Sr3V9lChoBkdAYnpQdCE6DGgHTegDaAhHQKQzOAqd6LR1fZQoaAZHQGYzisGPgeloB03oA2gIR0CkM6SoXKr8dX2UKGgGR0BlLTw6QvHtaAdN6ANoCEdApDRAAhje9HV9lChoBkdAUhFnf2saKmgHS5ZoCEdApDRPLJSzgXV9lChoBkdAZx58UEgW8GgHTegDaAhHQKQ0uf6Ggzx1fZQoaAZHQGD19wvQF9toB03oA2gIR0CkNVjsMRYjdX2UKGgGR0BkJM1wYLssaAdN6ANoCEdApDXCmKqGUXV9lChoBkdAZSIw+MZP22gHTegDaAhHQKQ2XRaX8fp1fZQoaAZHQGYqQMpgCwNoB03oA2gIR0CkNseNT987dX2UKGgGR0BlEN/e+Eh8aAdN6ANoCEdApDdlhuwX7HV9lChoBkdAZQ6pI+W4VmgHTegDaAhHQKQ30HVPN3Z1fZQoaAZHQGZgXXZoPCloB03oA2gIR0CkOGa4UeuFdX2UKGgGR0BkhWoDPnjiaAdN6ANoCEdApDjSm65G0HV9lChoBkdAZCG4gieNDWgHTegDaAhHQKQ5d8zhxYJ1fZQoaAZHQGGKilJpWWBoB03oA2gIR0CkOeM/pt78dX2UKGgGR0BnFyFEiMYNaAdN6ANoCEdApDqFATqSo3V9lChoBkdAYb9HhjvuxGgHTegDaAhHQKQ68wYcebN1fZQoaAZHQGL/z5oGpuNoB03oA2gIR0CkO5RD9fkWdX2UKGgGR0BixzsByS3caAdN6ANoCEdApDwAQvpQlHV9lChoBkdAYgGKKHfuTmgHTegDaAhHQKQ8nsVtXPt1fZQoaAZHQGJZXPRiPQxoB03oA2gIR0CkPQ36AOJ+dX2UKGgGR0BixDXDm8ujaAdN6ANoCEdApD2wQYk3THV9lChoBkdAZMPnIyTINmgHTegDaAhHQKQ+HeTFERd1fZQoaAZHQGRQMHSnccloB03oA2gIR0CkPovsiSq3dX2UKGgGR0BjXtWGRFI/aAdN6ANoCEdApD8s72criHV9lChoBkdAZA6fW+XZ5GgHTegDaAhHQKQ/nYe1a4d1fZQoaAZHQGLU7EHdGiJoB03oA2gIR0CkQD+Z5Rj0dX2UKGgGR0BkQAyuZCv6aAdN6ANoCEdApECtSQ5my3V9lChoBkdAYRIbrkbPyGgHTegDaAhHQKRBUAeaKDV1fZQoaAZHQGRJ82aUiY9oB03oA2gIR0CkQb9j5KvndX2UKGgGR0Bodxc5bQkYaAdN6ANoCEdApEJes7uDz3V9lChoBkdAaGmvgWJrL2gHTegDaAhHQKRCyXeFcpt1fZQoaAZHQGRKElNUOutoB03oA2gIR0CkQ2ek56t1dX2UKGgGR0Bjt7O9nK4haAdN6ANoCEdApEPQ84gieXV9lChoBkdAZV2TBZZB9mgHTegDaAhHQKREaifQKKJ1fZQoaAZHQGYxguZkTYdoB03oA2gIR0CkRNOGTLW7dX2UKGgGR0BmDla0QbuMaAdN6ANoCEdApEVwjSofjnV9lChoBkdAZYJD1GsmwGgHTegDaAhHQKRF2DYh+v11fZQoaAZHQGRJTS9du51oB03oA2gIR0CkRmy6tknUdX2UKGgGR0BkzxJbt7a7aAdN6ANoCEdApEbeEIw/PnV9lChoBkdAVPFtVJcxCmgHS8BoCEdApEby1RceKnV9lChoBkdAZhMO3DvVmWgHTegDaAhHQKRHmQQtjCp1fZQoaAZHQGbZ6Jyhi9ZoB03oA2gIR0CkSAaDPGADdX2UKGgGR0Bk/zINmUW3aAdN6ANoCEdApEin1SOzY3V9lChoBkdAY+dMpw0fo2gHTegDaAhHQKRJFa4+bEx1fZQoaAZHQGHDLvCuU2VoB03oA2gIR0CkSbrGza9LdX2UKGgGR0BFfqe9SMtLaAdLnWgIR0CkScr6+FlDdX2UKGgGR0Bi9pEnb7CSaAdN6ANoCEdApEo5y+6AfHV9lChoBkdAY+yCxu89OmgHTegDaAhHQKRK2VE/jbV1fZQoaAZHQGJn2itaIN5oB03oA2gIR0CkS0itRvWIdX2UKGgGR0Bib4mmce8xaAdN6ANoCEdApEvp9kSVW3V9lChoBkdAZMnoRIz3y2gHTegDaAhHQKRMVd1MdtF1fZQoaAZHQGXsscyWRihoB03oA2gIR0CkTPbyhBZ7dX2UKGgGR0BmrkA1ejVQaAdN6ANoCEdApE1mctoSMHV9lChoBkdAZnmovSMLnmgHTegDaAhHQKROBJe3QUp1fZQoaAZHQGSqlfJFLFpoB03oA2gIR0CkTnM6BAfMdX2UKGgGR0Bi/wNAkcCHaAdN6ANoCEdApE8QCfYjB3V9lChoBkdAZQzZ5iVjZ2gHTegDaAhHQKRPfsmfGuN1fZQoaAZHQGPX5Huqm0poB03oA2gIR0CkUB8/t6X0dX2UKGgGR0BlOAQcxTKlaAdN6ANoCEdApFCMq6OHWXV9lChoBkdAZcWQXhwVCWgHTegDaAhHQKRRMSteUpx1fZQoaAZHQGioaC17Y05oB03oA2gIR0CkUZ+AmReUdX2UKGgGR0Bmgahi9ZieaAdN6ANoCEdApFI/meUY9HV9lChoBkdAYXcqXF98Z2gHTegDaAhHQKRSqbAk9lp1fZQoaAZHQEUfuLrHEMtoB0u4aAhHQKRSvKpT/AF1fZQoaAZHQGbnB7/n4fxoB03oA2gIR0CkU1+SjgyedX2UKGgGR0BHNzMRpUPyaAdLgmgIR0CkU21d5Y5ldX2UKGgGR0Bg/+3z+WGAaAdN6ANoCEdApFPZl4C6pnV9lChoBkdAZel/kNnXd2gHTegDaAhHQKRUeSuhbnp1fZQoaAZHQGV4X4TK1XxoB03oA2gIR0CkVOWalUIcdX2UKGgGR0BmeFNFjNILaAdN6ANoCEdApFWFkjHGTHV9lChoBkdAZutAxBVuJmgHTegDaAhHQKRV7ysCDEp1fZQoaAZHQGSPqLS/j81oB03oA2gIR0CkVoLhzeXSdX2UKGgGR0Bgz/keZG8VaAdN6ANoCEdApFbp7/n4f3V9lChoBkdAY9707r9l3GgHTegDaAhHQKRXjeoDPnl1fZQoaAZHQGcJ+r+5vtNoB03oA2gIR0CkV/utW+49dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 19532, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.03, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVEQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMby9MaWJyYXJ5L0ZyYW1ld29ya3MvUHl0aG9uLmZyYW1ld29yay9WZXJzaW9ucy8zLjgvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMby9MaWJyYXJ5L0ZyYW1ld29ya3MvUHl0aG9uLmZyYW1ld29yay9WZXJzaW9ucy8zLjgvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVEQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMby9MaWJyYXJ5L0ZyYW1ld29ya3MvUHl0aG9uLmZyYW1ld29yay9WZXJzaW9ucy8zLjgvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMby9MaWJyYXJ5L0ZyYW1ld29ya3MvUHl0aG9uLmZyYW1ld29yay9WZXJzaW9ucy8zLjgvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "macOS-13.6-arm64-arm-64bit Darwin Kernel Version 22.6.0: Fri Sep 15 13:41:28 PDT 2023; root:xnu-8796.141.3.700.8~1/RELEASE_ARM64_T6000", "Python": "3.8.10", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0", "GPU Enabled": "False", "Numpy": "1.24.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x142a4c9d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x142a4ca60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x142a4caf0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x142a4cb80>", "_build": "<function ActorCriticPolicy._build at 0x142a4cc10>", "forward": "<function ActorCriticPolicy.forward at 0x142a4cca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x142a4cd30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x142a4cdc0>", "_predict": "<function ActorCriticPolicy._predict at 0x142a4ce50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x142a4cee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x142a4cf70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x142a56040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x142a53180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 40000512, "_total_timesteps": 40000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696946547316991000, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAJppQLu2/eU+eD3VPHvW6r7SNDY9F1cxPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -1.2799999999923983e-05, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDrg53kgfWMAWyUS+qMAXSUR0EYxKdEMkQgdX2UKGgGR0BypG4Ds+mnaAdL0GgIR0EYxKrP+GXYdX2UKGgGR0Byc7p+tr9EaAdL4WgIR0EYxLLDIaLodX2UKGgGR0BydEdtEXtTaAdLz2gIR0EYxLZtkauPdX2UKGgGR0BxJU7Sy+pPaAdL4WgIR0EYxLvAn2IwdX2UKGgGR0ByOvfQ8fV7aAdL0WgIR0EYxMDyGetkdX2UKGgGR0Bz3/uZ1FH8aAdL22gIR0EYxMTUoWpIdX2UKGgGR0Byev4Fiay9aAdL4GgIR0EYxM0SvLX+dX2UKGgGR0BwtzjNpudgaAdLwWgIR0EYxNHgIY3vdX2UKGgGR0BxJZiNKh+OaAdL3mgIR0EYxNZZNTLodX2UKGgGR0BwaDJOnEVGaAdLymgIR0EYxNpCk43ndX2UKGgGR0Bwjw1VHWjHaAdLwWgIR0EYxN2q2WpqdX2UKGgGR0ByNnXOGCZnaAdL6WgIR0EYxOclrAP/dX2UKGgGR0BzgRsSCe3AaAdLz2gIR0EYxOrYwM6SdX2UKGgGR0BwOonogV45aAdL02gIR0EYxO+COeasdX2UKGgGR0Bw06ee4Cp4aAdLyGgIR0EYxPP6DkELdX2UKGgGR0BzoOQ5myxBaAdL4WgIR0EYxPj597WvdX2UKGgGR0BxXKcnVoYfaAdL3GgIR0EYxQJ172L6dX2UKGgGR0Bx5QEIPbwjaAdL42gIR0EYxQceanaWdX2UKGgGR0BzCeIl+mWMaAdLvWgIR0EYxQsc8xKydX2UKGgGR0Btr3d43WFwaAdL2mgIR0EYxQ/9VFQVdX2UKGgGR0ByYJmh/RVqaAdL4WgIR0EYxRiF32VWdX2UKGgGR0ByI6gezUqhaAdL7WgIR0EYxRzDMeOodX2UKGgGR0BwUj5aePJaaAdL2mgIR0EYxSDaR6njdX2UKGgGR0BvsRPqLS/kaAdLxmgIR0EYxSRCs4kvdX2UKGgGR0BzHyCTUy57aAdLvWgIR0EYxSePhVENdX2UKGgGR0Ajd/CIk7fYaAdLdGgIR0EYxSmK5sj3dX2UKGgGR0Bw3MQJ5VwQaAdL3mgIR0EYxTHChew+dX2UKGgGR0ByMhxiobXIaAdLz2gIR0EYxTZUy+HrdX2UKGgGR0ByRHIZIg/1aAdLy2gIR0EYxTp6wt8NdX2UKGgGR0By0GDh99c9aAdL4GgIR0EYxT5z2WY4dX2UKGgGR0BxjOhWYF7laAdLuWgIR0EYxUGkj1PFdX2UKGgGR0BwFMLBsQ/YaAdLzmgIR0EYxUs/8/D+dX2UKGgGR0BzJ9AKOT7maAdLwWgIR0EYxU9TNMXadX2UKGgGR0Bx8mF7D2rXaAdLvWgIR0EYxVKWO+7EdX2UKGgGR0BxXToFFDv3aAdL6mgIR0EYxVc1m8NAdX2UKGgGR0BxsFVBD5TIaAdLxWgIR0EYxVtU+5e7dX2UKGgGR0Bx40pON5t4aAdLy2gIR0EYxWOe2/i6dX2UKGgGR0BugN32VVxTaAdL4mgIR0EYxWhlcQiBdX2UKGgGR0ByzGxjawljaAdL5mgIR0EYxW10FSsKdX2UKGgGR0ByRIaKk2xZaAdL52gIR0EYxXKDjzZpdX2UKGgGR0Byy++M6zVuaAdLvWgIR0EYxXtVo+OfdX2UKGgGR0BwXfuJDVpcaAdLxWgIR0EYxX9sFINFdX2UKGgGR0BxNlt/FzdUaAdL5GgIR0EYxYQ/SH/MdX2UKGgGR0Bvwcnuy/sWaAdL0WgIR0EYxYioyj59dX2UKGgGR0BwF15dGAkLaAdLzWgIR0EYxYzzYEntdX2UKGgGR0BNSaP0Zm7KaAdLomgIR0EYxZQWwqy4dX2UKGgGR0BznBQUHpr2aAdL22gIR0EYxZfd03fidX2UKGgGR0BxYu+dsi0OaAdL0GgIR0EYxZuJ9Vm0dX2UKGgGR0BwWXc+JP69aAdLzmgIR0EYxZ88lkYodX2UKGgGR0BxEkd8zAN5aAdL22gIR0EYxaMb2g3+dX2UKGgGR0BTBOyRjjJdaAdLi2gIR0EYxaWJVwPzdX2UKGgGR0BxACc6NlyzaAdL2mgIR0EYxa36ya/idX2UKGgGR0Bww4XaakRBaAdL0GgIR0EYxbKGpVCHdX2UKGgGR0Bw5Ie5nUUgaAdL1mgIR0EYxbayOzY3dX2UKGgGR0BwxnqQiiZfaAdLz2gIR0EYxbpVOoHcdX2UKGgGR0BxoYma6STyaAdL2WgIR0EYxcK2PPszdX2UKGgGR0BzRhP/JeVtaAdLx2gIR0EYxcci4Wk8dX2UKGgGR0Bv+cq4H5aeaAdL1mgIR0EYxctij1wpdX2UKGgGR0Bw1LtG/etTaAdL2mgIR0EYxdCxJul5dX2UKGgGR0Bvlus/6frbaAdL0GgIR0EYxdSGzKLbdX2UKGgGR0BxchHd43WGaAdLwGgIR0EYxd0XGjsVdX2UKGgGR0Bxj9TUAks0aAdL9GgIR0EYxeH7k4m1dX2UKGgGR0BudsUGmk30aAdL8mgIR0EYxedJzo2XdX2UKGgGR0BzrmBf8dgfaAdLzmgIR0EYxevKtxMndX2UKGgGR0ByQgYAKfFraAdL+WgIR0EYxfFWNrCWdX2UKGgGR0ByPweS0Sh8aAdLuWgIR0EYxfoAD7qIdX2UKGgGR0ByJyfmLcbjaAdL5GgIR0EYxf7ifcvedX2UKGgGR0BzVzVqesgdaAdLu2gIR0EYxgLMqaw2dX2UKGgGR0BwwQ8EFGG3aAdL42gIR0EYxgdb+kxidX2UKGgGR8AdTp+tr9EUaAdLdWgIR0EYxgmPDP4VdX2UKGgGR0Byzu86FM7EaAdL5GgIR0EYxhILL+xXdX2UKGgGR0Bx4DXcxj8UaAdL1GgIR0EYxhXgezUrdX2UKGgGR0BwFEJXyRSxaAdLzGgIR0EYxhl1mz0IdX2UKGgGR0Bx+9LPD50saAdL0GgIR0EYxh0L48EFdX2UKGgGR0BxdvkYGdI5aAdL2mgIR0EYxiDPqHGkdX2UKGgGR0BxUVpyp71JaAdLzWgIR0EYxikRPsRhdX2UKGgGR0Bu2qcPOIIoaAdLzWgIR0EYxi2SPhhqdX2UKGgGR0BvNE0WM0gsaAdLymgIR0EYxjFOzhP1dX2UKGgGR0BwHTYdyT6jaAdL32gIR0EYxjU5uVHGdX2UKGgGR0BtWwAp8WsSaAdL1WgIR0EYxjjdWMjvdX2UKGgGR0ByM8hV2icoaAdLtmgIR0EYxkD+biIddX2UKGgGR0ByP+B4D9wWaAdL/2gIR0EYxkXsENe/dX2UKGgGR0BwNTY5DJEIaAdLzmgIR0EYxknqPn0TdX2UKGgGR0BzjYuez2OAaAdL/mgIR0EYxk664tpVdX2UKGgGR0By755JK8L8aAdL3GgIR0EYxljqfvnbdX2UKGgGR0BxloG3WnTBaAdLvWgIR0EYxl0EHY6GdX2UKGgGR0ByCrjbSJCTaAdL5mgIR0EYxmISyhSMdX2UKGgGR0BwaegxrSE2aAdLymgIR0EYxmaJvxYrdX2UKGgGR0BwEvwazeGgaAdLvGgIR0EYxmporz5HdX2UKGgGR0BSwditq59WaAdLiWgIR0EYxm1UvPC3dX2UKGgGR0BvG7BbfP5YaAdLyWgIR0EYxnXy1E3LdX2UKGgGR0BwBOaDwpfAaAdLwmgIR0EYxnn5Nfw7dX2UKGgGR0BwK3iGWUr1aAdL22gIR0EYxn7Ip+c6dX2UKGgGR0ByF0/jbSJCaAdNTwFoCEdBGMaFSKWLP3V9lChoBkdAcjtcDr7fpGgHS9FoCEdBGMaNYD1XeXV9lChoBkdAcUutFrl/6WgHS+xoCEdBGMaRrP9k0HV9lChoBkdAcZc3YcvM82gHS9poCEdBGMaVfFERa3V9lChoBkdAcXc8iwB5o2gHS9xoCEdBGMaZXfO2RnV9lChoBkdAclAdq+JxemgHS7JoCEdBGMacf6SDAnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 156252, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVEQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMby9MaWJyYXJ5L0ZyYW1ld29ya3MvUHl0aG9uLmZyYW1ld29yay9WZXJzaW9ucy8zLjgvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMby9MaWJyYXJ5L0ZyYW1ld29ya3MvUHl0aG9uLmZyYW1ld29yay9WZXJzaW9ucy8zLjgvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVEQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMby9MaWJyYXJ5L0ZyYW1ld29ya3MvUHl0aG9uLmZyYW1ld29yay9WZXJzaW9ucy8zLjgvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMby9MaWJyYXJ5L0ZyYW1ld29ya3MvUHl0aG9uLmZyYW1ld29yay9WZXJzaW9ucy8zLjgvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "macOS-13.6-arm64-arm-64bit Darwin Kernel Version 22.6.0: Fri Sep 15 13:41:28 PDT 2023; root:xnu-8796.141.3.700.8~1/RELEASE_ARM64_T6000", "Python": "3.8.10", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0", "GPU Enabled": "False", "Numpy": "1.24.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:754becb4b40d7dacce145defada53ca598ae08290ed91c1119147dd6e1c137d0
|
3 |
+
size 147021
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,34 +4,34 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -41,17 +41,17 @@
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
@@ -77,13 +77,13 @@
|
|
77 |
"_np_random": null
|
78 |
},
|
79 |
"n_envs": 1,
|
80 |
-
"n_steps":
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
83 |
-
"ent_coef": 0.
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
-
"batch_size":
|
87 |
"n_epochs": 4,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x142a4c9d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x142a4ca60>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x142a4caf0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x142a4cb80>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x142a4cc10>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x142a4cca0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x142a4cd30>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x142a4cdc0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x142a4ce50>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x142a4cee0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x142a4cf70>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x142a56040>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x142a53180>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 40000512,
|
25 |
+
"_total_timesteps": 40000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1696946547316991000,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAJppQLu2/eU+eD3VPHvW6r7SNDY9F1cxPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -1.2799999999923983e-05,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDrg53kgfWMAWyUS+qMAXSUR0EYxKdEMkQgdX2UKGgGR0BypG4Ds+mnaAdL0GgIR0EYxKrP+GXYdX2UKGgGR0Byc7p+tr9EaAdL4WgIR0EYxLLDIaLodX2UKGgGR0BydEdtEXtTaAdLz2gIR0EYxLZtkauPdX2UKGgGR0BxJU7Sy+pPaAdL4WgIR0EYxLvAn2IwdX2UKGgGR0ByOvfQ8fV7aAdL0WgIR0EYxMDyGetkdX2UKGgGR0Bz3/uZ1FH8aAdL22gIR0EYxMTUoWpIdX2UKGgGR0Byev4Fiay9aAdL4GgIR0EYxM0SvLX+dX2UKGgGR0BwtzjNpudgaAdLwWgIR0EYxNHgIY3vdX2UKGgGR0BxJZiNKh+OaAdL3mgIR0EYxNZZNTLodX2UKGgGR0BwaDJOnEVGaAdLymgIR0EYxNpCk43ndX2UKGgGR0Bwjw1VHWjHaAdLwWgIR0EYxN2q2WpqdX2UKGgGR0ByNnXOGCZnaAdL6WgIR0EYxOclrAP/dX2UKGgGR0BzgRsSCe3AaAdLz2gIR0EYxOrYwM6SdX2UKGgGR0BwOonogV45aAdL02gIR0EYxO+COeasdX2UKGgGR0Bw06ee4Cp4aAdLyGgIR0EYxPP6DkELdX2UKGgGR0BzoOQ5myxBaAdL4WgIR0EYxPj597WvdX2UKGgGR0BxXKcnVoYfaAdL3GgIR0EYxQJ172L6dX2UKGgGR0Bx5QEIPbwjaAdL42gIR0EYxQceanaWdX2UKGgGR0BzCeIl+mWMaAdLvWgIR0EYxQsc8xKydX2UKGgGR0Btr3d43WFwaAdL2mgIR0EYxQ/9VFQVdX2UKGgGR0ByYJmh/RVqaAdL4WgIR0EYxRiF32VWdX2UKGgGR0ByI6gezUqhaAdL7WgIR0EYxRzDMeOodX2UKGgGR0BwUj5aePJaaAdL2mgIR0EYxSDaR6njdX2UKGgGR0BvsRPqLS/kaAdLxmgIR0EYxSRCs4kvdX2UKGgGR0BzHyCTUy57aAdLvWgIR0EYxSePhVENdX2UKGgGR0Ajd/CIk7fYaAdLdGgIR0EYxSmK5sj3dX2UKGgGR0Bw3MQJ5VwQaAdL3mgIR0EYxTHChew+dX2UKGgGR0ByMhxiobXIaAdLz2gIR0EYxTZUy+HrdX2UKGgGR0ByRHIZIg/1aAdLy2gIR0EYxTp6wt8NdX2UKGgGR0By0GDh99c9aAdL4GgIR0EYxT5z2WY4dX2UKGgGR0BxjOhWYF7laAdLuWgIR0EYxUGkj1PFdX2UKGgGR0BwFMLBsQ/YaAdLzmgIR0EYxUs/8/D+dX2UKGgGR0BzJ9AKOT7maAdLwWgIR0EYxU9TNMXadX2UKGgGR0Bx8mF7D2rXaAdLvWgIR0EYxVKWO+7EdX2UKGgGR0BxXToFFDv3aAdL6mgIR0EYxVc1m8NAdX2UKGgGR0BxsFVBD5TIaAdLxWgIR0EYxVtU+5e7dX2UKGgGR0Bx40pON5t4aAdLy2gIR0EYxWOe2/i6dX2UKGgGR0BugN32VVxTaAdL4mgIR0EYxWhlcQiBdX2UKGgGR0ByzGxjawljaAdL5mgIR0EYxW10FSsKdX2UKGgGR0ByRIaKk2xZaAdL52gIR0EYxXKDjzZpdX2UKGgGR0Byy++M6zVuaAdLvWgIR0EYxXtVo+OfdX2UKGgGR0BwXfuJDVpcaAdLxWgIR0EYxX9sFINFdX2UKGgGR0BxNlt/FzdUaAdL5GgIR0EYxYQ/SH/MdX2UKGgGR0Bvwcnuy/sWaAdL0WgIR0EYxYioyj59dX2UKGgGR0BwF15dGAkLaAdLzWgIR0EYxYzzYEntdX2UKGgGR0BNSaP0Zm7KaAdLomgIR0EYxZQWwqy4dX2UKGgGR0BznBQUHpr2aAdL22gIR0EYxZfd03fidX2UKGgGR0BxYu+dsi0OaAdL0GgIR0EYxZuJ9Vm0dX2UKGgGR0BwWXc+JP69aAdLzmgIR0EYxZ88lkYodX2UKGgGR0BxEkd8zAN5aAdL22gIR0EYxaMb2g3+dX2UKGgGR0BTBOyRjjJdaAdLi2gIR0EYxaWJVwPzdX2UKGgGR0BxACc6NlyzaAdL2mgIR0EYxa36ya/idX2UKGgGR0Bww4XaakRBaAdL0GgIR0EYxbKGpVCHdX2UKGgGR0Bw5Ie5nUUgaAdL1mgIR0EYxbayOzY3dX2UKGgGR0BwxnqQiiZfaAdLz2gIR0EYxbpVOoHcdX2UKGgGR0BxoYma6STyaAdL2WgIR0EYxcK2PPszdX2UKGgGR0BzRhP/JeVtaAdLx2gIR0EYxcci4Wk8dX2UKGgGR0Bv+cq4H5aeaAdL1mgIR0EYxctij1wpdX2UKGgGR0Bw1LtG/etTaAdL2mgIR0EYxdCxJul5dX2UKGgGR0Bvlus/6frbaAdL0GgIR0EYxdSGzKLbdX2UKGgGR0BxchHd43WGaAdLwGgIR0EYxd0XGjsVdX2UKGgGR0Bxj9TUAks0aAdL9GgIR0EYxeH7k4m1dX2UKGgGR0BudsUGmk30aAdL8mgIR0EYxedJzo2XdX2UKGgGR0BzrmBf8dgfaAdLzmgIR0EYxevKtxMndX2UKGgGR0ByQgYAKfFraAdL+WgIR0EYxfFWNrCWdX2UKGgGR0ByPweS0Sh8aAdLuWgIR0EYxfoAD7qIdX2UKGgGR0ByJyfmLcbjaAdL5GgIR0EYxf7ifcvedX2UKGgGR0BzVzVqesgdaAdLu2gIR0EYxgLMqaw2dX2UKGgGR0BwwQ8EFGG3aAdL42gIR0EYxgdb+kxidX2UKGgGR8AdTp+tr9EUaAdLdWgIR0EYxgmPDP4VdX2UKGgGR0Byzu86FM7EaAdL5GgIR0EYxhILL+xXdX2UKGgGR0Bx4DXcxj8UaAdL1GgIR0EYxhXgezUrdX2UKGgGR0BwFEJXyRSxaAdLzGgIR0EYxhl1mz0IdX2UKGgGR0Bx+9LPD50saAdL0GgIR0EYxh0L48EFdX2UKGgGR0BxdvkYGdI5aAdL2mgIR0EYxiDPqHGkdX2UKGgGR0BxUVpyp71JaAdLzWgIR0EYxikRPsRhdX2UKGgGR0Bu2qcPOIIoaAdLzWgIR0EYxi2SPhhqdX2UKGgGR0BvNE0WM0gsaAdLymgIR0EYxjFOzhP1dX2UKGgGR0BwHTYdyT6jaAdL32gIR0EYxjU5uVHGdX2UKGgGR0BtWwAp8WsSaAdL1WgIR0EYxjjdWMjvdX2UKGgGR0ByM8hV2icoaAdLtmgIR0EYxkD+biIddX2UKGgGR0ByP+B4D9wWaAdL/2gIR0EYxkXsENe/dX2UKGgGR0BwNTY5DJEIaAdLzmgIR0EYxknqPn0TdX2UKGgGR0BzjYuez2OAaAdL/mgIR0EYxk664tpVdX2UKGgGR0By755JK8L8aAdL3GgIR0EYxljqfvnbdX2UKGgGR0BxloG3WnTBaAdLvWgIR0EYxl0EHY6GdX2UKGgGR0ByCrjbSJCTaAdL5mgIR0EYxmISyhSMdX2UKGgGR0BwaegxrSE2aAdLymgIR0EYxmaJvxYrdX2UKGgGR0BwEvwazeGgaAdLvGgIR0EYxmporz5HdX2UKGgGR0BSwditq59WaAdLiWgIR0EYxm1UvPC3dX2UKGgGR0BvG7BbfP5YaAdLyWgIR0EYxnXy1E3LdX2UKGgGR0BwBOaDwpfAaAdLwmgIR0EYxnn5Nfw7dX2UKGgGR0BwK3iGWUr1aAdL22gIR0EYxn7Ip+c6dX2UKGgGR0ByF0/jbSJCaAdNTwFoCEdBGMaFSKWLP3V9lChoBkdAcjtcDr7fpGgHS9FoCEdBGMaNYD1XeXV9lChoBkdAcUutFrl/6WgHS+xoCEdBGMaRrP9k0HV9lChoBkdAcZc3YcvM82gHS9poCEdBGMaVfFERa3V9lChoBkdAcXc8iwB5o2gHS9xoCEdBGMaZXfO2RnV9lChoBkdAclAdq+JxemgHS7JoCEdBGMacf6SDAnVlLg=="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 156252,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
77 |
"_np_random": null
|
78 |
},
|
79 |
"n_envs": 1,
|
80 |
+
"n_steps": 1024,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
"n_epochs": 4,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13de32cc221399ac6858076352cbfbefd28b2523019cf46eb01e5621713bd4aa
|
3 |
+
size 88042
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43634
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ff2efae242e027b349daed0e2a7b527a65d890b0ebf7ce055abcee2d771c001
|
3 |
size 43634
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 251.13315419999998, "std_reward": 67.58951082405764, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-15T02:48:04.806306"}
|