micheljperez commited on
Commit
ea61f88
1 Parent(s): ec05304

Uploading nouvelle version PPO Lunar Lander trained agent

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 283.33 +/- 19.78
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 230.89 +/- 91.05
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f958973c950>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f958973c9e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f958973ca70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f958973cb00>", "_build": "<function ActorCriticPolicy._build at 0x7f958973cb90>", "forward": "<function ActorCriticPolicy.forward at 0x7f958973cc20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f958973ccb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f958973cd40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f958973cdd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f958973ce60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f958973cef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f958977ec60>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652473529.7181273, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOYmlz2ihKM+PupZvbqmqr7EoT09q6bvOwAAAAAAAAAAQL2KPehrsj3OtWO+5XegvnTZA7xq54C9AAAAAAAAAABNcEi9eE6CPT8SjD1MPq++vAPdPWJmWz0AAAAAAAAAAMAtNL7quX4/WhP/vfLs8b7S8+u+o9xVPQAAAAAAAAAATeesvWfZBj9ecoI+Zor2vvQ/tzwSl0c+AAAAAAAAAAAz8ya7wwF/uqJAgb0Fuxi+DG1hPDtxir8AAAAAAACAP5qNn7t2BzS8Fso6vuZLYT0X/QE9nuIyvQAAgD8AAIA/bRwGPhHZbD+WSZE+MHYKv0jjPj6fNAI+AAAAAAAAAAAmqpg96MuaPwlKPT5lt/++W7irPat3iT0AAAAAAAAAAAAqL70BBpw9rzocPq/Gx75Sbik+pTWTOwAAAAAAAAAAZrI0PI/qQLr2UoC5d8QRtMXdLrvizJM4AACAPwAAgD8aNVy9eziDum+ZgLkaCnu05dEKO+PolTgAAIA/AACAPzOPiD2Ewkk+0yG4Phu0C79tYwQ/2jr4PQAAAAAAAAAAMzf3u8N5drqy0boyUKKEsLxJ+LnON7mzAACAPwAAgD8zA4g6rjmMuizrEbnq+hK01hCKOph3KTgAAIA/AACAP01Gv732xFm8Psm9PB4YEjxZHb298An5PAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITx4Wao2IckCUhpRSlIwBbJRNCgGMAXSUR0CmmZVG0/nodX2UKGgGaAloD0MI9kNssHARcUCUhpRSlGgVS89oFkdAppmw8r7O3XV9lChoBmgJaA9DCDHPSloxHnFAlIaUUpRoFUvLaBZHQKaZ+kGiYb91fZQoaAZoCWgPQwjt8UI6fKFxQJSGlFKUaBVL3mgWR0CmmkI5HVgAdX2UKGgGaAloD0MIR4/f27QBcUCUhpRSlGgVS+toFkdApprxqbjLjnV9lChoBmgJaA9DCLiumBGej3JAlIaUUpRoFUvBaBZHQKabJNoJzDJ1fZQoaAZoCWgPQwgrw7gbxNxwQJSGlFKUaBVL5WgWR0CmmzuVopQUdX2UKGgGaAloD0MI7e9sjx4WcECUhpRSlGgVS8toFkdApptj/GVAzHV9lChoBmgJaA9DCNJxNbKram9AlIaUUpRoFUvVaBZHQKab0Mn7YTV1fZQoaAZoCWgPQwhBu0OKwaJzQJSGlFKUaBVL9GgWR0CmnH+iJwbVdX2UKGgGaAloD0MIdc3km20Vc0CUhpRSlGgVS+hoFkdAppyK7I1cdHV9lChoBmgJaA9DCFrz4y+t/m5AlIaUUpRoFUvyaBZHQKacnCVKPGR1fZQoaAZoCWgPQwiokCv1rL9yQJSGlFKUaBVNAwFoFkdAppzEKE3843V9lChoBmgJaA9DCORO6WC9K3FAlIaUUpRoFUvcaBZHQKac7n5BTn91fZQoaAZoCWgPQwg1Cd6QRhlxQJSGlFKUaBVL8GgWR0CmnQv6j323dX2UKGgGaAloD0MIkLxzKIMlckCUhpRSlGgVS+RoFkdApp0gptrKvHV9lChoBmgJaA9DCAZM4Nadd3FAlIaUUpRoFUvIaBZHQKadKgjhUBJ1fZQoaAZoCWgPQwiWICOgAkFzQJSGlFKUaBVL+2gWR0CmnWm3WnTBdX2UKGgGaAloD0MISBtHrIUmc0CUhpRSlGgVTQkBaBZHQKadydZJTVF1fZQoaAZoCWgPQwj6YBkbekZzQJSGlFKUaBVL52gWR0Cmnevci4axdX2UKGgGaAloD0MIL2r3q4CvcUCUhpRSlGgVS81oFkdApp4xt78ejnV9lChoBmgJaA9DCPCjGvZ7pnNAlIaUUpRoFUvYaBZHQKaeiIGhVVB1fZQoaAZoCWgPQwitiJros+1xQJSGlFKUaBVL1GgWR0Cmno4oy9EkdX2UKGgGaAloD0MI0etP4rOCckCUhpRSlGgVS+toFkdApp8MKmbb13V9lChoBmgJaA9DCB3mywvwA3NAlIaUUpRoFUvraBZHQKafdiKBNEh1fZQoaAZoCWgPQwhYrrfNVIVxQJSGlFKUaBVLvGgWR0Cmn764Ds+ndX2UKGgGaAloD0MIoP8evLZLckCUhpRSlGgVS8xoFkdApp/W/BWPtHV9lChoBmgJaA9DCIhlM4ckZXJAlIaUUpRoFUvkaBZHQKanlWBjFyd1fZQoaAZoCWgPQwj61LFKKW1zQJSGlFKUaBVL1WgWR0Cmp9v5HmRvdX2UKGgGaAloD0MI/KpcqPwIckCUhpRSlGgVS/doFkdApqf7BoEjgXV9lChoBmgJaA9DCGjKTj8oQHJAlIaUUpRoFUv8aBZHQKaoA2CNCJJ1fZQoaAZoCWgPQwis4/ih0vVvQJSGlFKUaBVL2GgWR0CmqA225QP7dX2UKGgGaAloD0MI2ZlC57XCbUCUhpRSlGgVS8toFkdApqh2bLEDQ3V9lChoBmgJaA9DCFjk1w8xqHFAlIaUUpRoFUv5aBZHQKaofZZB9kV1fZQoaAZoCWgPQwhdcAZ//1BzQJSGlFKUaBVL7GgWR0CmqJj4593KdX2UKGgGaAloD0MIJT/iV6zIckCUhpRSlGgVS+hoFkdApqkDkQwsXnV9lChoBmgJaA9DCC6Oyk3Up3JAlIaUUpRoFUvcaBZHQKapHgAIY3x1fZQoaAZoCWgPQwhrR3GOujhuQJSGlFKUaBVL1GgWR0CmqVZOrQw9dX2UKGgGaAloD0MIRNsxdddacECUhpRSlGgVS99oFkdApqmCcurZJ3V9lChoBmgJaA9DCPiNrz3z83BAlIaUUpRoFUvVaBZHQKap2z9jwx51fZQoaAZoCWgPQwhCJhk5yx9yQJSGlFKUaBVL4WgWR0CmqnuogmqpdX2UKGgGaAloD0MITUpBt1e5cECUhpRSlGgVS81oFkdApqquG/N7jXV9lChoBmgJaA9DCLsLlBTY9G1AlIaUUpRoFUvaaBZHQKaqvzI3irF1fZQoaAZoCWgPQwj0GrtEtd1yQJSGlFKUaBVLzGgWR0CmqvGeMAFQdX2UKGgGaAloD0MIB1xXzAgJcUCUhpRSlGgVS/JoFkdApqsHe+Eh7nV9lChoBmgJaA9DCA1yF2HKx3NAlIaUUpRoFUvZaBZHQKarQ4KhL5B1fZQoaAZoCWgPQwip2m6Cb01xQJSGlFKUaBVL3mgWR0Cmq1DsD4gzdX2UKGgGaAloD0MIP8bctcTackCUhpRSlGgVS+toFkdApquSKaXrt3V9lChoBmgJaA9DCEsGgCrurG9AlIaUUpRoFUvbaBZHQKar6euFHrh1fZQoaAZoCWgPQwi4dw360udyQJSGlFKUaBVL+mgWR0CmrEj6nBLxdX2UKGgGaAloD0MIfZQRF0Bpc0CUhpRSlGgVS/xoFkdApqxZsMy8BnV9lChoBmgJaA9DCCeJJeXuEHFAlIaUUpRoFUvmaBZHQKaskJVsDW91fZQoaAZoCWgPQwj5MHvZtttwQJSGlFKUaBVL42gWR0CmrKIT4+KTdX2UKGgGaAloD0MICMcse9LrcUCUhpRSlGgVS99oFkdApqzMXtShrXV9lChoBmgJaA9DCIOI1LSLWm5AlIaUUpRoFUvWaBZHQKas2Ts6aLJ1fZQoaAZoCWgPQwgaNV8l3wxxQJSGlFKUaBVL12gWR0CmrTIBikO7dX2UKGgGaAloD0MIwF/MlqyJU0CUhpRSlGgVS5RoFkdApq3VHe7+UHV9lChoBmgJaA9DCC+kw0NYmHJAlIaUUpRoFUvfaBZHQKauH9oexOd1fZQoaAZoCWgPQwhMUwQ4veRyQJSGlFKUaBVLz2gWR0CmriRf4REndX2UKGgGaAloD0MIUiy3tNr2ckCUhpRSlGgVS9NoFkdApq5Ph86V+3V9lChoBmgJaA9DCJfhP92A+nJAlIaUUpRoFU0BAWgWR0Cmrn98Rcu8dX2UKGgGaAloD0MINwAbEOGzcECUhpRSlGgVS+FoFkdApq7J08vEj3V9lChoBmgJaA9DCHOAYI5eDXJAlIaUUpRoFUviaBZHQKau2/ATIvJ1fZQoaAZoCWgPQwgVqwZhbjdSQJSGlFKUaBVLjGgWR0Cmrv7T2FnJdX2UKGgGaAloD0MIIEJcObugcUCUhpRSlGgVS9JoFkdApq838sMAm3V9lChoBmgJaA9DCNGUnX7QX3BAlIaUUpRoFUvPaBZHQKavjS9/SYx1fZQoaAZoCWgPQwi4Agr1dCxzQJSGlFKUaBVLzWgWR0Cmr7zP0I1MdX2UKGgGaAloD0MIqbwd4XS2cUCUhpRSlGgVS+RoFkdApq/TMcIZ63V9lChoBmgJaA9DCNsxdVc2tHJAlIaUUpRoFUvXaBZHQKav+DFqBVd1fZQoaAZoCWgPQwg8vr1rkONzQJSGlFKUaBVL2GgWR0CmsDb/Ot4idX2UKGgGaAloD0MIIJbNHFIvc0CUhpRSlGgVTXEBaBZHQKawdvE0iyJ1fZQoaAZoCWgPQwguA85SMhdxQJSGlFKUaBVL/GgWR0CmsSX0Gu9wdX2UKGgGaAloD0MIRpc3h2uhUUCUhpRSlGgVS5hoFkdAprEz79AHFHV9lChoBmgJaA9DCL8MxoiEUHFAlIaUUpRoFUvUaBZHQKaxc4//vOR1fZQoaAZoCWgPQwjFWKZf4stxQJSGlFKUaBVL82gWR0Cmsa29DhLodX2UKGgGaAloD0MIkSqKVxmjcUCUhpRSlGgVS7hoFkdAprHbobGWEHV9lChoBmgJaA9DCMprJXSXI3JAlIaUUpRoFUvbaBZHQKax6SkCV8l1fZQoaAZoCWgPQwhXIlD9A9VyQJSGlFKUaBVL82gWR0CmsfE4NqgzdX2UKGgGaAloD0MIVG6iluZfckCUhpRSlGgVS/RoFkdAprIbrgOz6nV9lChoBmgJaA9DCFmjHqLRJHFAlIaUUpRoFUvfaBZHQKayQHsTnJV1fZQoaAZoCWgPQwi/R/31yr1yQJSGlFKUaBVL2WgWR0Cmso45T6zmdX2UKGgGaAloD0MI4IWt2Uq3cUCUhpRSlGgVS9RoFkdAprMEZaV2R3V9lChoBmgJaA9DCA8nMJ1WZ29AlIaUUpRoFUvmaBZHQKazGmPYFq11fZQoaAZoCWgPQwigwhGkUplxQJSGlFKUaBVL5GgWR0Cms1OEmICVdX2UKGgGaAloD0MIOpShKqakcECUhpRSlGgVS95oFkdAprNhJI1+AnV9lChoBmgJaA9DCOwTQDHyInFAlIaUUpRoFUvSaBZHQKazcJ7b+Lp1fZQoaAZoCWgPQwjEtdrDXpNzQJSGlFKUaBVL5WgWR0Cms+/Aj6eodX2UKGgGaAloD0MIEM6njtWFcUCUhpRSlGgVS9VoFkdAprRw9JSR83V9lChoBmgJaA9DCOli00ohmXJAlIaUUpRoFUvaaBZHQKa0eEK3NLV1fZQoaAZoCWgPQwiTGtoAbDVwQJSGlFKUaBVLy2gWR0CmtMIvBacJdX2UKGgGaAloD0MIx7sjYzVOcECUhpRSlGgVS9JoFkdAprUI+OfdynV9lChoBmgJaA9DCMXL07li/nFAlIaUUpRoFUvPaBZHQKa1Ee6qbSZ1fZQoaAZoCWgPQwh3TrNAu1VxQJSGlFKUaBVL7WgWR0CmtRI2fkFOdX2UKGgGaAloD0MIGof6XVjFcECUhpRSlGgVS8hoFkdAprUiBAfMfXV9lChoBmgJaA9DCCUgJuHCN3BAlIaUUpRoFUvXaBZHQKa1LQiRnvl1fZQoaAZoCWgPQwhS0sPQaplxQJSGlFKUaBVL3WgWR0CmtZBw++uedX2UKGgGaAloD0MIrmGGxhM3c0CUhpRSlGgVS91oFkdAprXcsasIV3V9lChoBmgJaA9DCBrba0FvFnFAlIaUUpRoFUvnaBZHQKa2hE0BOpN1fZQoaAZoCWgPQwiML9rjRVVxQJSGlFKUaBVL22gWR0CmtqmmtQsPdX2UKGgGaAloD0MIbTttjQh3cUCUhpRSlGgVS+toFkdApratqN6w+3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1472, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f958973c950>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f958973c9e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f958973ca70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f958973cb00>", "_build": "<function ActorCriticPolicy._build at 0x7f958973cb90>", "forward": "<function ActorCriticPolicy.forward at 0x7f958973cc20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f958973ccb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f958973cd40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f958973cdd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f958973ce60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f958973cef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f958977ec60>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652477299.0064783, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqJsbvDsUS6hhAHtFZA2y7v12c3qaSzMwAAgD8AAIA/I72APoztCz8E4JO9V6Qiv5iVtz4eaVu+AAAAAAAAAADNIcK8hyrePkJhcj10qSW/vUYtvWskWj0AAAAAAAAAAJpotzzv9r0/HzWDPc1DVr4auRc9MwrjPQAAAAAAAAAAZoKKPMMRdbp9yOy3iTLdskgoX7sihQo3AACAPwAAgD/NDrS88SS+Pz5tU74nWFg+nMfovGj6yb0AAAAAAAAAAIBEMj46qaY/r9YZP1+/B7/Ep5s+HRd/PgAAAAAAAAAAoD01vq/knD9jVA+/lZ8Rv6zgm75+DKK+AAAAAAAAAABDEfs+vHwFvi80DL33/8k7niIrvq3BE7wAAAAAAAAAADPTAbzUIJ+8ptVbvQ/oZz3XIHQ94XKmuwAAgD8AAIA/zdbxPPYkErqVjZY6dO5zttQg3bkGLrG5AAAAAAAAAACaM388j15sujDzkbOD8XKvH8DiOSuftzMAAIA/AACAP0bPDz436Es/iwDTPQ2DR79CLI8+yhEfPAAAAAAAAAAAZqBDPD1TT7sSWdq90PkGPH1GVjymfPK8AACAPwAAgD8a82G9r60rP63jb72DyFO/FnewvblyEL0AAAAAAAAAAGaunT6LFSU/DaAPPWrfI78lCwo//iV2vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIc4I2Obw6cUCUhpRSlIwBbJRLtIwBdJRHQLyyrgHeJpF1fZQoaAZoCWgPQwibq+Y54lFwQJSGlFKUaBVLp2gWR0C8sq9Pci4bdX2UKGgGaAloD0MIPrMkQI3vcECUhpRSlGgVS75oFkdAvLK6ksSTQnV9lChoBmgJaA9DCE+V7xkJ63FAlIaUUpRoFUvEaBZHQLyyzGKyfL91fZQoaAZoCWgPQwg9murJfNlxQJSGlFKUaBVLsmgWR0C8st+rIYFadX2UKGgGaAloD0MIrkZ2peWocUCUhpRSlGgVS8ZoFkdAvLL4BV+7UXV9lChoBmgJaA9DCNE7FXCP23FAlIaUUpRoFUvPaBZHQLyzJ63RXwN1fZQoaAZoCWgPQwiVEKyqV/JxQJSGlFKUaBVLwGgWR0C8s2EBsANodX2UKGgGaAloD0MIam0a22vXckCUhpRSlGgVS8loFkdAvLOaqlxffHV9lChoBmgJaA9DCCXqBZ8mYHNAlIaUUpRoFUvjaBZHQLyznavicXp1fZQoaAZoCWgPQwjfN772zBFxQJSGlFKUaBVLv2gWR0C8s6UX1rZbdX2UKGgGaAloD0MIuhXCauyYcECUhpRSlGgVS5VoFkdAvLOx7a7EpHV9lChoBmgJaA9DCFpJK75hPHFAlIaUUpRoFUuvaBZHQLyzsELYwqR1fZQoaAZoCWgPQwhjKZKvxOZxQJSGlFKUaBVL1GgWR0C8s7q/VRUFdX2UKGgGaAloD0MI4zYawNvdc0CUhpRSlGgVS8hoFkdAvLPBcY64lXV9lChoBmgJaA9DCKTC2EJQ3nFAlIaUUpRoFUu9aBZHQLyz/k6Lfk51fZQoaAZoCWgPQwiyhLUxtk5yQJSGlFKUaBVLp2gWR0C8tA5QtSQ6dX2UKGgGaAloD0MILdDukGKSckCUhpRSlGgVTSIBaBZHQLy0GVEuxr11fZQoaAZoCWgPQwigjPFhtrBzQJSGlFKUaBVLxGgWR0C8tBpTdcjadX2UKGgGaAloD0MIKAzKNJobcUCUhpRSlGgVS6loFkdAvLQtplBhQXV9lChoBmgJaA9DCBXGFoIcvHNAlIaUUpRoFUvKaBZHQLy0OWH1vl51fZQoaAZoCWgPQwiuYvGbwtZzQJSGlFKUaBVL8mgWR0C8tDv8l5WzdX2UKGgGaAloD0MInn5QFykzckCUhpRSlGgVS7VoFkdAvLRsKrq+rXV9lChoBmgJaA9DCHEd44oLxHFAlIaUUpRoFUu5aBZHQLy0pps41gp1fZQoaAZoCWgPQwjZ6JyfYltyQJSGlFKUaBVLrWgWR0C8tMmG/N7jdX2UKGgGaAloD0MI/Z/DfDk2ckCUhpRSlGgVS6RoFkdAvLTLM5fdAXV9lChoBmgJaA9DCPaZsz5ly3JAlIaUUpRoFUuuaBZHQLy04VWjoIR1fZQoaAZoCWgPQwjOjH403MBzQJSGlFKUaBVLu2gWR0C8uJzfNzKcdX2UKGgGaAloD0MIw9SWOkhwc0CUhpRSlGgVS8VoFkdAvLilytFKCnV9lChoBmgJaA9DCP7Soj5J4nNAlIaUUpRoFUvKaBZHQLy4yRtxdY51fZQoaAZoCWgPQwholgSoaZxwQJSGlFKUaBVLpmgWR0C8uMlK9PDYdX2UKGgGaAloD0MIZY9QM2SmcECUhpRSlGgVS7doFkdAvLj+2c8Tz3V9lChoBmgJaA9DCAeXjjnPQXJAlIaUUpRoFUuqaBZHQLy5CqzqrzZ1fZQoaAZoCWgPQwj1nzU/PqpxQJSGlFKUaBVLwWgWR0C8uRI5ksjFdX2UKGgGaAloD0MIk1URbnJWckCUhpRSlGgVS7xoFkdAvLkdF6RhdHV9lChoBmgJaA9DCOl/uRYtzm9AlIaUUpRoFUuxaBZHQLy5TW8AaNx1fZQoaAZoCWgPQwhbfXVVYAl0QJSGlFKUaBVL7WgWR0C8uVRNmDlHdX2UKGgGaAloD0MIQE8DBgmrc0CUhpRSlGgVS7VoFkdAvLmU12q1gHV9lChoBmgJaA9DCG6/fLIih3JAlIaUUpRoFUuqaBZHQLy5yl3Qla91fZQoaAZoCWgPQwiA07t4P5VxQJSGlFKUaBVLxWgWR0C8ueNEPUaydX2UKGgGaAloD0MIEr2MYnnjckCUhpRSlGgVS89oFkdAvLn11fVqe3V9lChoBmgJaA9DCKyt2F82yHJAlIaUUpRoFUuraBZHQLy6Ci6xxDN1fZQoaAZoCWgPQwjWVBaFXbBxQJSGlFKUaBVLz2gWR0C8uiRPfsNUdX2UKGgGaAloD0MIHyxjQ7e0cUCUhpRSlGgVS7BoFkdAvLpQJ5VwP3V9lChoBmgJaA9DCKlqgqi7lHFAlIaUUpRoFUuraBZHQLy6UtkWhyt1fZQoaAZoCWgPQwj/6nHfqoBzQJSGlFKUaBVL1GgWR0C8ulkpy6tldX2UKGgGaAloD0MICcGqevkycECUhpRSlGgVS7doFkdAvLpv1M/QjXV9lChoBmgJaA9DCFvSUQ6m53JAlIaUUpRoFUu8aBZHQLy6hhLXcxl1fZQoaAZoCWgPQwgibeNPFIpwQJSGlFKUaBVLomgWR0C8uom6f8MvdX2UKGgGaAloD0MI95Fbk24QcECUhpRSlGgVS61oFkdAvLqlgOSW7nV9lChoBmgJaA9DCA/uztptg3FAlIaUUpRoFUu1aBZHQLy6/1UEPlN1fZQoaAZoCWgPQwjhmjv6H0pwQJSGlFKUaBVLuWgWR0C8u3fCyhSMdX2UKGgGaAloD0MIhZm2f6Uec0CUhpRSlGgVS9xoFkdAvLub5aePJnV9lChoBmgJaA9DCNKOG373r3JAlIaUUpRoFUvaaBZHQLy7rsiSq2l1fZQoaAZoCWgPQwhfYFYo0rRyQJSGlFKUaBVLwGgWR0C8u7slC1JEdX2UKGgGaAloD0MIeO3ShsMNc0CUhpRSlGgVS85oFkdAvLu8P1+RYHV9lChoBmgJaA9DCBv0pbe/F3NAlIaUUpRoFUvFaBZHQLy79t2cJ+l1fZQoaAZoCWgPQwhlpx/UhZlwQJSGlFKUaBVLqGgWR0C8u/mE4//vdX2UKGgGaAloD0MI7KS+LG03ckCUhpRSlGgVS8VoFkdAvLwBLuhK2HV9lChoBmgJaA9DCAd+VMM+O3FAlIaUUpRoFUuyaBZHQLy8DTot+Th1fZQoaAZoCWgPQwjA54cRQipxQJSGlFKUaBVLzmgWR0C8vA+z2OABdX2UKGgGaAloD0MITMEaZxP2cECUhpRSlGgVS6poFkdAvLwgmF8G93V9lChoBmgJaA9DCEPnNXbJg3NAlIaUUpRoFUvKaBZHQLy8KB0IToN1fZQoaAZoCWgPQwhqvko+dvZyQJSGlFKUaBVLsWgWR0C8vIg482aVdX2UKGgGaAloD0MISwFp/wPWcECUhpRSlGgVS5xoFkdAvLzrjKgZj3V9lChoBmgJaA9DCCttcY3PdkFAlIaUUpRoFUuBaBZHQLy9J0knkT91fZQoaAZoCWgPQwhrRga5i0dzQJSGlFKUaBVLxmgWR0C8vSr0SRKZdX2UKGgGaAloD0MI+1qXGmEtc0CUhpRSlGgVS65oFkdAvL0q+RHPNXV9lChoBmgJaA9DCMRcUrWdT3FAlIaUUpRoFUuzaBZHQLy9QyksSTR1fZQoaAZoCWgPQwiVRszss31zQJSGlFKUaBVLumgWR0C8vVFzp5eJdX2UKGgGaAloD0MICisVVNSMcUCUhpRSlGgVS55oFkdAvL1aqgh8pnV9lChoBmgJaA9DCIlCy7r/gHFAlIaUUpRoFUuVaBZHQLy9amWMS9N1fZQoaAZoCWgPQwhjDRe5JxNxQJSGlFKUaBVLvmgWR0C8vZPmgam5dX2UKGgGaAloD0MIVTNrKaD1b0CUhpRSlGgVS7poFkdAvL2x27nPmnV9lChoBmgJaA9DCJerH5skgHBAlIaUUpRoFUvZaBZHQLy90amXPZ91fZQoaAZoCWgPQwj6K2SujG5xQJSGlFKUaBVL2mgWR0C8veZ1eSjhdX2UKGgGaAloD0MIPStpxTc7cECUhpRSlGgVS7ZoFkdAvL4gf2bobHV9lChoBmgJaA9DCCxn74y25kxAlIaUUpRoFUtwaBZHQLy+QEqUeMh1fZQoaAZoCWgPQwgzGvm8YthvQJSGlFKUaBVLqmgWR0C8vq1ndweedX2UKGgGaAloD0MIxAYLJ6lgckCUhpRSlGgVS9VoFkdAvL7arHU+cHV9lChoBmgJaA9DCKmhDcBG3nFAlIaUUpRoFUvCaBZHQLy+7mdRR/F1fZQoaAZoCWgPQwhRvMraJm9vQJSGlFKUaBVLtWgWR0C8vwbs0HhTdX2UKGgGaAloD0MIRKLQsq4yckCUhpRSlGgVS95oFkdAvL85i8WbgHV9lChoBmgJaA9DCC/gZYYNa3JAlIaUUpRoFUvDaBZHQLy/P9If8uV1fZQoaAZoCWgPQwiemPViaNVxQJSGlFKUaBVLz2gWR0C8vz/5HmRvdX2UKGgGaAloD0MIt2Pqrmz8ZkCUhpRSlGgVTegDaBZHQLy/jzkp7Tl1fZQoaAZoCWgPQwiZ1NAGYI1wQJSGlFKUaBVLq2gWR0C8v5GkzoECdX2UKGgGaAloD0MIYM0BgjkzckCUhpRSlGgVS6JoFkdAvL+xzySV4XV9lChoBmgJaA9DCMpt+x61kXNAlIaUUpRoFUvVaBZHQLy/u1FYuCh1fZQoaAZoCWgPQwhKXp1jAG9zQJSGlFKUaBVLr2gWR0C8v+xZIQOGdX2UKGgGaAloD0MIsDpypLOoZkCUhpRSlGgVTegDaBZHQLzAJP1tfol1fZQoaAZoCWgPQwjGounsZJFzQJSGlFKUaBVLvmgWR0C8wKIM8YAKdX2UKGgGaAloD0MIAaH18CXIcUCUhpRSlGgVS5xoFkdAvMCsC5mRNnV9lChoBmgJaA9DCNV46SbxxXJAlIaUUpRoFUu/aBZHQLzAtvkzXSV1fZQoaAZoCWgPQwhT6Sec3YNyQJSGlFKUaBVLrmgWR0C8wNF7MPjGdX2UKGgGaAloD0MIkGltGlu7ckCUhpRSlGgVS8RoFkdAvMDYoYvWYnV9lChoBmgJaA9DCLxZg/cVaHNAlIaUUpRoFUv7aBZHQLzBB08NhE11fZQoaAZoCWgPQwi/0Y4bfr1xQJSGlFKUaBVLomgWR0C8wQdsSCe3dX2UKGgGaAloD0MI8ghupGyOaECUhpRSlGgVTegDaBZHQLzBDHnlnyx1fZQoaAZoCWgPQwgAVHHjVrlzQJSGlFKUaBVL1WgWR0C8wS0Qsf7rdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3920, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c03a441f7445648da7af7db02c9f577d7d3d397a40a79313113c67d782d25ace
3
- size 143992
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1026c008ed10bb64d99e41c3d75fdbc973437fbc3fb5b9ab8f09749acee79545
3
+ size 143989
ppo-LunarLander-v2/data CHANGED
@@ -42,12 +42,12 @@
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
- "num_timesteps": 3014656,
46
- "_total_timesteps": 3000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1652473529.7181273,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
@@ -56,7 +56,7 @@
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOYmlz2ihKM+PupZvbqmqr7EoT09q6bvOwAAAAAAAAAAQL2KPehrsj3OtWO+5XegvnTZA7xq54C9AAAAAAAAAABNcEi9eE6CPT8SjD1MPq++vAPdPWJmWz0AAAAAAAAAAMAtNL7quX4/WhP/vfLs8b7S8+u+o9xVPQAAAAAAAAAATeesvWfZBj9ecoI+Zor2vvQ/tzwSl0c+AAAAAAAAAAAz8ya7wwF/uqJAgb0Fuxi+DG1hPDtxir8AAAAAAACAP5qNn7t2BzS8Fso6vuZLYT0X/QE9nuIyvQAAgD8AAIA/bRwGPhHZbD+WSZE+MHYKv0jjPj6fNAI+AAAAAAAAAAAmqpg96MuaPwlKPT5lt/++W7irPat3iT0AAAAAAAAAAAAqL70BBpw9rzocPq/Gx75Sbik+pTWTOwAAAAAAAAAAZrI0PI/qQLr2UoC5d8QRtMXdLrvizJM4AACAPwAAgD8aNVy9eziDum+ZgLkaCnu05dEKO+PolTgAAIA/AACAPzOPiD2Ewkk+0yG4Phu0C79tYwQ/2jr4PQAAAAAAAAAAMzf3u8N5drqy0boyUKKEsLxJ+LnON7mzAACAPwAAgD8zA4g6rjmMuizrEbnq+hK01hCKOph3KTgAAIA/AACAP01Gv732xFm8Psm9PB4YEjxZHb298An5PAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
@@ -66,16 +66,16 @@
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
- "_current_progress_remaining": -0.004885333333333408,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVIhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITx4Wao2IckCUhpRSlIwBbJRNCgGMAXSUR0CmmZVG0/nodX2UKGgGaAloD0MI9kNssHARcUCUhpRSlGgVS89oFkdAppmw8r7O3XV9lChoBmgJaA9DCDHPSloxHnFAlIaUUpRoFUvLaBZHQKaZ+kGiYb91fZQoaAZoCWgPQwjt8UI6fKFxQJSGlFKUaBVL3mgWR0CmmkI5HVgAdX2UKGgGaAloD0MIR4/f27QBcUCUhpRSlGgVS+toFkdApprxqbjLjnV9lChoBmgJaA9DCLiumBGej3JAlIaUUpRoFUvBaBZHQKabJNoJzDJ1fZQoaAZoCWgPQwgrw7gbxNxwQJSGlFKUaBVL5WgWR0CmmzuVopQUdX2UKGgGaAloD0MI7e9sjx4WcECUhpRSlGgVS8toFkdApptj/GVAzHV9lChoBmgJaA9DCNJxNbKram9AlIaUUpRoFUvVaBZHQKab0Mn7YTV1fZQoaAZoCWgPQwhBu0OKwaJzQJSGlFKUaBVL9GgWR0CmnH+iJwbVdX2UKGgGaAloD0MIdc3km20Vc0CUhpRSlGgVS+hoFkdAppyK7I1cdHV9lChoBmgJaA9DCFrz4y+t/m5AlIaUUpRoFUvyaBZHQKacnCVKPGR1fZQoaAZoCWgPQwiokCv1rL9yQJSGlFKUaBVNAwFoFkdAppzEKE3843V9lChoBmgJaA9DCORO6WC9K3FAlIaUUpRoFUvcaBZHQKac7n5BTn91fZQoaAZoCWgPQwg1Cd6QRhlxQJSGlFKUaBVL8GgWR0CmnQv6j323dX2UKGgGaAloD0MIkLxzKIMlckCUhpRSlGgVS+RoFkdApp0gptrKvHV9lChoBmgJaA9DCAZM4Nadd3FAlIaUUpRoFUvIaBZHQKadKgjhUBJ1fZQoaAZoCWgPQwiWICOgAkFzQJSGlFKUaBVL+2gWR0CmnWm3WnTBdX2UKGgGaAloD0MISBtHrIUmc0CUhpRSlGgVTQkBaBZHQKadydZJTVF1fZQoaAZoCWgPQwj6YBkbekZzQJSGlFKUaBVL52gWR0Cmnevci4axdX2UKGgGaAloD0MIL2r3q4CvcUCUhpRSlGgVS81oFkdApp4xt78ejnV9lChoBmgJaA9DCPCjGvZ7pnNAlIaUUpRoFUvYaBZHQKaeiIGhVVB1fZQoaAZoCWgPQwitiJros+1xQJSGlFKUaBVL1GgWR0Cmno4oy9EkdX2UKGgGaAloD0MI0etP4rOCckCUhpRSlGgVS+toFkdApp8MKmbb13V9lChoBmgJaA9DCB3mywvwA3NAlIaUUpRoFUvraBZHQKafdiKBNEh1fZQoaAZoCWgPQwhYrrfNVIVxQJSGlFKUaBVLvGgWR0Cmn764Ds+ndX2UKGgGaAloD0MIoP8evLZLckCUhpRSlGgVS8xoFkdApp/W/BWPtHV9lChoBmgJaA9DCIhlM4ckZXJAlIaUUpRoFUvkaBZHQKanlWBjFyd1fZQoaAZoCWgPQwj61LFKKW1zQJSGlFKUaBVL1WgWR0Cmp9v5HmRvdX2UKGgGaAloD0MI/KpcqPwIckCUhpRSlGgVS/doFkdApqf7BoEjgXV9lChoBmgJaA9DCGjKTj8oQHJAlIaUUpRoFUv8aBZHQKaoA2CNCJJ1fZQoaAZoCWgPQwis4/ih0vVvQJSGlFKUaBVL2GgWR0CmqA225QP7dX2UKGgGaAloD0MI2ZlC57XCbUCUhpRSlGgVS8toFkdApqh2bLEDQ3V9lChoBmgJaA9DCFjk1w8xqHFAlIaUUpRoFUv5aBZHQKaofZZB9kV1fZQoaAZoCWgPQwhdcAZ//1BzQJSGlFKUaBVL7GgWR0CmqJj4593KdX2UKGgGaAloD0MIJT/iV6zIckCUhpRSlGgVS+hoFkdApqkDkQwsXnV9lChoBmgJaA9DCC6Oyk3Up3JAlIaUUpRoFUvcaBZHQKapHgAIY3x1fZQoaAZoCWgPQwhrR3GOujhuQJSGlFKUaBVL1GgWR0CmqVZOrQw9dX2UKGgGaAloD0MIRNsxdddacECUhpRSlGgVS99oFkdApqmCcurZJ3V9lChoBmgJaA9DCPiNrz3z83BAlIaUUpRoFUvVaBZHQKap2z9jwx51fZQoaAZoCWgPQwhCJhk5yx9yQJSGlFKUaBVL4WgWR0CmqnuogmqpdX2UKGgGaAloD0MITUpBt1e5cECUhpRSlGgVS81oFkdApqquG/N7jXV9lChoBmgJaA9DCLsLlBTY9G1AlIaUUpRoFUvaaBZHQKaqvzI3irF1fZQoaAZoCWgPQwj0GrtEtd1yQJSGlFKUaBVLzGgWR0CmqvGeMAFQdX2UKGgGaAloD0MIB1xXzAgJcUCUhpRSlGgVS/JoFkdApqsHe+Eh7nV9lChoBmgJaA9DCA1yF2HKx3NAlIaUUpRoFUvZaBZHQKarQ4KhL5B1fZQoaAZoCWgPQwip2m6Cb01xQJSGlFKUaBVL3mgWR0Cmq1DsD4gzdX2UKGgGaAloD0MIP8bctcTackCUhpRSlGgVS+toFkdApquSKaXrt3V9lChoBmgJaA9DCEsGgCrurG9AlIaUUpRoFUvbaBZHQKar6euFHrh1fZQoaAZoCWgPQwi4dw360udyQJSGlFKUaBVL+mgWR0CmrEj6nBLxdX2UKGgGaAloD0MIfZQRF0Bpc0CUhpRSlGgVS/xoFkdApqxZsMy8BnV9lChoBmgJaA9DCCeJJeXuEHFAlIaUUpRoFUvmaBZHQKaskJVsDW91fZQoaAZoCWgPQwj5MHvZtttwQJSGlFKUaBVL42gWR0CmrKIT4+KTdX2UKGgGaAloD0MICMcse9LrcUCUhpRSlGgVS99oFkdApqzMXtShrXV9lChoBmgJaA9DCIOI1LSLWm5AlIaUUpRoFUvWaBZHQKas2Ts6aLJ1fZQoaAZoCWgPQwgaNV8l3wxxQJSGlFKUaBVL12gWR0CmrTIBikO7dX2UKGgGaAloD0MIwF/MlqyJU0CUhpRSlGgVS5RoFkdApq3VHe7+UHV9lChoBmgJaA9DCC+kw0NYmHJAlIaUUpRoFUvfaBZHQKauH9oexOd1fZQoaAZoCWgPQwhMUwQ4veRyQJSGlFKUaBVLz2gWR0CmriRf4REndX2UKGgGaAloD0MIUiy3tNr2ckCUhpRSlGgVS9NoFkdApq5Ph86V+3V9lChoBmgJaA9DCJfhP92A+nJAlIaUUpRoFU0BAWgWR0Cmrn98Rcu8dX2UKGgGaAloD0MINwAbEOGzcECUhpRSlGgVS+FoFkdApq7J08vEj3V9lChoBmgJaA9DCHOAYI5eDXJAlIaUUpRoFUviaBZHQKau2/ATIvJ1fZQoaAZoCWgPQwgVqwZhbjdSQJSGlFKUaBVLjGgWR0Cmrv7T2FnJdX2UKGgGaAloD0MIIEJcObugcUCUhpRSlGgVS9JoFkdApq838sMAm3V9lChoBmgJaA9DCNGUnX7QX3BAlIaUUpRoFUvPaBZHQKavjS9/SYx1fZQoaAZoCWgPQwi4Agr1dCxzQJSGlFKUaBVLzWgWR0Cmr7zP0I1MdX2UKGgGaAloD0MIqbwd4XS2cUCUhpRSlGgVS+RoFkdApq/TMcIZ63V9lChoBmgJaA9DCNsxdVc2tHJAlIaUUpRoFUvXaBZHQKav+DFqBVd1fZQoaAZoCWgPQwg8vr1rkONzQJSGlFKUaBVL2GgWR0CmsDb/Ot4idX2UKGgGaAloD0MIIJbNHFIvc0CUhpRSlGgVTXEBaBZHQKawdvE0iyJ1fZQoaAZoCWgPQwguA85SMhdxQJSGlFKUaBVL/GgWR0CmsSX0Gu9wdX2UKGgGaAloD0MIRpc3h2uhUUCUhpRSlGgVS5hoFkdAprEz79AHFHV9lChoBmgJaA9DCL8MxoiEUHFAlIaUUpRoFUvUaBZHQKaxc4//vOR1fZQoaAZoCWgPQwjFWKZf4stxQJSGlFKUaBVL82gWR0Cmsa29DhLodX2UKGgGaAloD0MIkSqKVxmjcUCUhpRSlGgVS7hoFkdAprHbobGWEHV9lChoBmgJaA9DCMprJXSXI3JAlIaUUpRoFUvbaBZHQKax6SkCV8l1fZQoaAZoCWgPQwhXIlD9A9VyQJSGlFKUaBVL82gWR0CmsfE4NqgzdX2UKGgGaAloD0MIVG6iluZfckCUhpRSlGgVS/RoFkdAprIbrgOz6nV9lChoBmgJaA9DCFmjHqLRJHFAlIaUUpRoFUvfaBZHQKayQHsTnJV1fZQoaAZoCWgPQwi/R/31yr1yQJSGlFKUaBVL2WgWR0Cmso45T6zmdX2UKGgGaAloD0MI4IWt2Uq3cUCUhpRSlGgVS9RoFkdAprMEZaV2R3V9lChoBmgJaA9DCA8nMJ1WZ29AlIaUUpRoFUvmaBZHQKazGmPYFq11fZQoaAZoCWgPQwigwhGkUplxQJSGlFKUaBVL5GgWR0Cms1OEmICVdX2UKGgGaAloD0MIOpShKqakcECUhpRSlGgVS95oFkdAprNhJI1+AnV9lChoBmgJaA9DCOwTQDHyInFAlIaUUpRoFUvSaBZHQKazcJ7b+Lp1fZQoaAZoCWgPQwjEtdrDXpNzQJSGlFKUaBVL5WgWR0Cms+/Aj6eodX2UKGgGaAloD0MIEM6njtWFcUCUhpRSlGgVS9VoFkdAprRw9JSR83V9lChoBmgJaA9DCOli00ohmXJAlIaUUpRoFUvaaBZHQKa0eEK3NLV1fZQoaAZoCWgPQwiTGtoAbDVwQJSGlFKUaBVLy2gWR0CmtMIvBacJdX2UKGgGaAloD0MIx7sjYzVOcECUhpRSlGgVS9JoFkdAprUI+OfdynV9lChoBmgJaA9DCMXL07li/nFAlIaUUpRoFUvPaBZHQKa1Ee6qbSZ1fZQoaAZoCWgPQwh3TrNAu1VxQJSGlFKUaBVL7WgWR0CmtRI2fkFOdX2UKGgGaAloD0MIGof6XVjFcECUhpRSlGgVS8hoFkdAprUiBAfMfXV9lChoBmgJaA9DCCUgJuHCN3BAlIaUUpRoFUvXaBZHQKa1LQiRnvl1fZQoaAZoCWgPQwhS0sPQaplxQJSGlFKUaBVL3WgWR0CmtZBw++uedX2UKGgGaAloD0MIrmGGxhM3c0CUhpRSlGgVS91oFkdAprXcsasIV3V9lChoBmgJaA9DCBrba0FvFnFAlIaUUpRoFUvnaBZHQKa2hE0BOpN1fZQoaAZoCWgPQwiML9rjRVVxQJSGlFKUaBVL22gWR0CmtqmmtQsPdX2UKGgGaAloD0MIbTttjQh3cUCUhpRSlGgVS+toFkdApratqN6w+3VlLg=="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 1472,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
 
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
+ "num_timesteps": 5013504,
46
+ "_total_timesteps": 5000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
+ "start_time": 1652477299.0064783,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
 
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqJsbvDsUS6hhAHtFZA2y7v12c3qaSzMwAAgD8AAIA/I72APoztCz8E4JO9V6Qiv5iVtz4eaVu+AAAAAAAAAADNIcK8hyrePkJhcj10qSW/vUYtvWskWj0AAAAAAAAAAJpotzzv9r0/HzWDPc1DVr4auRc9MwrjPQAAAAAAAAAAZoKKPMMRdbp9yOy3iTLdskgoX7sihQo3AACAPwAAgD/NDrS88SS+Pz5tU74nWFg+nMfovGj6yb0AAAAAAAAAAIBEMj46qaY/r9YZP1+/B7/Ep5s+HRd/PgAAAAAAAAAAoD01vq/knD9jVA+/lZ8Rv6zgm75+DKK+AAAAAAAAAABDEfs+vHwFvi80DL33/8k7niIrvq3BE7wAAAAAAAAAADPTAbzUIJ+8ptVbvQ/oZz3XIHQ94XKmuwAAgD8AAIA/zdbxPPYkErqVjZY6dO5zttQg3bkGLrG5AAAAAAAAAACaM388j15sujDzkbOD8XKvH8DiOSuftzMAAIA/AACAP0bPDz436Es/iwDTPQ2DR79CLI8+yhEfPAAAAAAAAAAAZqBDPD1TT7sSWdq90PkGPH1GVjymfPK8AACAPwAAgD8a82G9r60rP63jb72DyFO/FnewvblyEL0AAAAAAAAAAGaunT6LFSU/DaAPPWrfI78lCwo//iV2vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
 
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.0027007999999999477,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVIRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIc4I2Obw6cUCUhpRSlIwBbJRLtIwBdJRHQLyyrgHeJpF1fZQoaAZoCWgPQwibq+Y54lFwQJSGlFKUaBVLp2gWR0C8sq9Pci4bdX2UKGgGaAloD0MIPrMkQI3vcECUhpRSlGgVS75oFkdAvLK6ksSTQnV9lChoBmgJaA9DCE+V7xkJ63FAlIaUUpRoFUvEaBZHQLyyzGKyfL91fZQoaAZoCWgPQwg9murJfNlxQJSGlFKUaBVLsmgWR0C8st+rIYFadX2UKGgGaAloD0MIrkZ2peWocUCUhpRSlGgVS8ZoFkdAvLL4BV+7UXV9lChoBmgJaA9DCNE7FXCP23FAlIaUUpRoFUvPaBZHQLyzJ63RXwN1fZQoaAZoCWgPQwiVEKyqV/JxQJSGlFKUaBVLwGgWR0C8s2EBsANodX2UKGgGaAloD0MIam0a22vXckCUhpRSlGgVS8loFkdAvLOaqlxffHV9lChoBmgJaA9DCCXqBZ8mYHNAlIaUUpRoFUvjaBZHQLyznavicXp1fZQoaAZoCWgPQwjfN772zBFxQJSGlFKUaBVLv2gWR0C8s6UX1rZbdX2UKGgGaAloD0MIuhXCauyYcECUhpRSlGgVS5VoFkdAvLOx7a7EpHV9lChoBmgJaA9DCFpJK75hPHFAlIaUUpRoFUuvaBZHQLyzsELYwqR1fZQoaAZoCWgPQwhjKZKvxOZxQJSGlFKUaBVL1GgWR0C8s7q/VRUFdX2UKGgGaAloD0MI4zYawNvdc0CUhpRSlGgVS8hoFkdAvLPBcY64lXV9lChoBmgJaA9DCKTC2EJQ3nFAlIaUUpRoFUu9aBZHQLyz/k6Lfk51fZQoaAZoCWgPQwiyhLUxtk5yQJSGlFKUaBVLp2gWR0C8tA5QtSQ6dX2UKGgGaAloD0MILdDukGKSckCUhpRSlGgVTSIBaBZHQLy0GVEuxr11fZQoaAZoCWgPQwigjPFhtrBzQJSGlFKUaBVLxGgWR0C8tBpTdcjadX2UKGgGaAloD0MIKAzKNJobcUCUhpRSlGgVS6loFkdAvLQtplBhQXV9lChoBmgJaA9DCBXGFoIcvHNAlIaUUpRoFUvKaBZHQLy0OWH1vl51fZQoaAZoCWgPQwiuYvGbwtZzQJSGlFKUaBVL8mgWR0C8tDv8l5WzdX2UKGgGaAloD0MInn5QFykzckCUhpRSlGgVS7VoFkdAvLRsKrq+rXV9lChoBmgJaA9DCHEd44oLxHFAlIaUUpRoFUu5aBZHQLy0pps41gp1fZQoaAZoCWgPQwjZ6JyfYltyQJSGlFKUaBVLrWgWR0C8tMmG/N7jdX2UKGgGaAloD0MI/Z/DfDk2ckCUhpRSlGgVS6RoFkdAvLTLM5fdAXV9lChoBmgJaA9DCPaZsz5ly3JAlIaUUpRoFUuuaBZHQLy04VWjoIR1fZQoaAZoCWgPQwjOjH403MBzQJSGlFKUaBVLu2gWR0C8uJzfNzKcdX2UKGgGaAloD0MIw9SWOkhwc0CUhpRSlGgVS8VoFkdAvLilytFKCnV9lChoBmgJaA9DCP7Soj5J4nNAlIaUUpRoFUvKaBZHQLy4yRtxdY51fZQoaAZoCWgPQwholgSoaZxwQJSGlFKUaBVLpmgWR0C8uMlK9PDYdX2UKGgGaAloD0MIZY9QM2SmcECUhpRSlGgVS7doFkdAvLj+2c8Tz3V9lChoBmgJaA9DCAeXjjnPQXJAlIaUUpRoFUuqaBZHQLy5CqzqrzZ1fZQoaAZoCWgPQwj1nzU/PqpxQJSGlFKUaBVLwWgWR0C8uRI5ksjFdX2UKGgGaAloD0MIk1URbnJWckCUhpRSlGgVS7xoFkdAvLkdF6RhdHV9lChoBmgJaA9DCOl/uRYtzm9AlIaUUpRoFUuxaBZHQLy5TW8AaNx1fZQoaAZoCWgPQwhbfXVVYAl0QJSGlFKUaBVL7WgWR0C8uVRNmDlHdX2UKGgGaAloD0MIQE8DBgmrc0CUhpRSlGgVS7VoFkdAvLmU12q1gHV9lChoBmgJaA9DCG6/fLIih3JAlIaUUpRoFUuqaBZHQLy5yl3Qla91fZQoaAZoCWgPQwiA07t4P5VxQJSGlFKUaBVLxWgWR0C8ueNEPUaydX2UKGgGaAloD0MIEr2MYnnjckCUhpRSlGgVS89oFkdAvLn11fVqe3V9lChoBmgJaA9DCKyt2F82yHJAlIaUUpRoFUuraBZHQLy6Ci6xxDN1fZQoaAZoCWgPQwjWVBaFXbBxQJSGlFKUaBVLz2gWR0C8uiRPfsNUdX2UKGgGaAloD0MIHyxjQ7e0cUCUhpRSlGgVS7BoFkdAvLpQJ5VwP3V9lChoBmgJaA9DCKlqgqi7lHFAlIaUUpRoFUuraBZHQLy6UtkWhyt1fZQoaAZoCWgPQwj/6nHfqoBzQJSGlFKUaBVL1GgWR0C8ulkpy6tldX2UKGgGaAloD0MICcGqevkycECUhpRSlGgVS7doFkdAvLpv1M/QjXV9lChoBmgJaA9DCFvSUQ6m53JAlIaUUpRoFUu8aBZHQLy6hhLXcxl1fZQoaAZoCWgPQwgibeNPFIpwQJSGlFKUaBVLomgWR0C8uom6f8MvdX2UKGgGaAloD0MI95Fbk24QcECUhpRSlGgVS61oFkdAvLqlgOSW7nV9lChoBmgJaA9DCA/uztptg3FAlIaUUpRoFUu1aBZHQLy6/1UEPlN1fZQoaAZoCWgPQwjhmjv6H0pwQJSGlFKUaBVLuWgWR0C8u3fCyhSMdX2UKGgGaAloD0MIhZm2f6Uec0CUhpRSlGgVS9xoFkdAvLub5aePJnV9lChoBmgJaA9DCNKOG373r3JAlIaUUpRoFUvaaBZHQLy7rsiSq2l1fZQoaAZoCWgPQwhfYFYo0rRyQJSGlFKUaBVLwGgWR0C8u7slC1JEdX2UKGgGaAloD0MIeO3ShsMNc0CUhpRSlGgVS85oFkdAvLu8P1+RYHV9lChoBmgJaA9DCBv0pbe/F3NAlIaUUpRoFUvFaBZHQLy79t2cJ+l1fZQoaAZoCWgPQwhlpx/UhZlwQJSGlFKUaBVLqGgWR0C8u/mE4//vdX2UKGgGaAloD0MI7KS+LG03ckCUhpRSlGgVS8VoFkdAvLwBLuhK2HV9lChoBmgJaA9DCAd+VMM+O3FAlIaUUpRoFUuyaBZHQLy8DTot+Th1fZQoaAZoCWgPQwjA54cRQipxQJSGlFKUaBVLzmgWR0C8vA+z2OABdX2UKGgGaAloD0MITMEaZxP2cECUhpRSlGgVS6poFkdAvLwgmF8G93V9lChoBmgJaA9DCEPnNXbJg3NAlIaUUpRoFUvKaBZHQLy8KB0IToN1fZQoaAZoCWgPQwhqvko+dvZyQJSGlFKUaBVLsWgWR0C8vIg482aVdX2UKGgGaAloD0MISwFp/wPWcECUhpRSlGgVS5xoFkdAvLzrjKgZj3V9lChoBmgJaA9DCCttcY3PdkFAlIaUUpRoFUuBaBZHQLy9J0knkT91fZQoaAZoCWgPQwhrRga5i0dzQJSGlFKUaBVLxmgWR0C8vSr0SRKZdX2UKGgGaAloD0MI+1qXGmEtc0CUhpRSlGgVS65oFkdAvL0q+RHPNXV9lChoBmgJaA9DCMRcUrWdT3FAlIaUUpRoFUuzaBZHQLy9QyksSTR1fZQoaAZoCWgPQwiVRszss31zQJSGlFKUaBVLumgWR0C8vVFzp5eJdX2UKGgGaAloD0MICisVVNSMcUCUhpRSlGgVS55oFkdAvL1aqgh8pnV9lChoBmgJaA9DCIlCy7r/gHFAlIaUUpRoFUuVaBZHQLy9amWMS9N1fZQoaAZoCWgPQwhjDRe5JxNxQJSGlFKUaBVLvmgWR0C8vZPmgam5dX2UKGgGaAloD0MIVTNrKaD1b0CUhpRSlGgVS7poFkdAvL2x27nPmnV9lChoBmgJaA9DCJerH5skgHBAlIaUUpRoFUvZaBZHQLy90amXPZ91fZQoaAZoCWgPQwj6K2SujG5xQJSGlFKUaBVL2mgWR0C8veZ1eSjhdX2UKGgGaAloD0MIPStpxTc7cECUhpRSlGgVS7ZoFkdAvL4gf2bobHV9lChoBmgJaA9DCCxn74y25kxAlIaUUpRoFUtwaBZHQLy+QEqUeMh1fZQoaAZoCWgPQwgzGvm8YthvQJSGlFKUaBVLqmgWR0C8vq1ndweedX2UKGgGaAloD0MIxAYLJ6lgckCUhpRSlGgVS9VoFkdAvL7arHU+cHV9lChoBmgJaA9DCKmhDcBG3nFAlIaUUpRoFUvCaBZHQLy+7mdRR/F1fZQoaAZoCWgPQwhRvMraJm9vQJSGlFKUaBVLtWgWR0C8vwbs0HhTdX2UKGgGaAloD0MIRKLQsq4yckCUhpRSlGgVS95oFkdAvL85i8WbgHV9lChoBmgJaA9DCC/gZYYNa3JAlIaUUpRoFUvDaBZHQLy/P9If8uV1fZQoaAZoCWgPQwiemPViaNVxQJSGlFKUaBVLz2gWR0C8vz/5HmRvdX2UKGgGaAloD0MIt2Pqrmz8ZkCUhpRSlGgVTegDaBZHQLy/jzkp7Tl1fZQoaAZoCWgPQwiZ1NAGYI1wQJSGlFKUaBVLq2gWR0C8v5GkzoECdX2UKGgGaAloD0MIYM0BgjkzckCUhpRSlGgVS6JoFkdAvL+xzySV4XV9lChoBmgJaA9DCMpt+x61kXNAlIaUUpRoFUvVaBZHQLy/u1FYuCh1fZQoaAZoCWgPQwhKXp1jAG9zQJSGlFKUaBVLr2gWR0C8v+xZIQOGdX2UKGgGaAloD0MIsDpypLOoZkCUhpRSlGgVTegDaBZHQLzAJP1tfol1fZQoaAZoCWgPQwjGounsZJFzQJSGlFKUaBVLvmgWR0C8wKIM8YAKdX2UKGgGaAloD0MIAaH18CXIcUCUhpRSlGgVS5xoFkdAvMCsC5mRNnV9lChoBmgJaA9DCNV46SbxxXJAlIaUUpRoFUu/aBZHQLzAtvkzXSV1fZQoaAZoCWgPQwhT6Sec3YNyQJSGlFKUaBVLrmgWR0C8wNF7MPjGdX2UKGgGaAloD0MIkGltGlu7ckCUhpRSlGgVS8RoFkdAvMDYoYvWYnV9lChoBmgJaA9DCLxZg/cVaHNAlIaUUpRoFUv7aBZHQLzBB08NhE11fZQoaAZoCWgPQwi/0Y4bfr1xQJSGlFKUaBVLomgWR0C8wQdsSCe3dX2UKGgGaAloD0MI8ghupGyOaECUhpRSlGgVTegDaBZHQLzBDHnlnyx1fZQoaAZoCWgPQwgAVHHjVrlzQJSGlFKUaBVL1WgWR0C8wS0Qsf7rdWUu"
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
+ "_n_updates": 3920,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dfbb1d514751563298d71e55301af367a6a5be84d5dc1de1cad9c056b307d59a
3
  size 84893
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c80fac24a44ddfe6cba35c171157d30555b3c2fea53cd72d9b84dcf1b95298a
3
  size 84893
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:94b8a56e54120256e1ba5059ca92814c0812ae35b84933000fa1b4d48fb251ba
3
  size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:094248b0c9ae8e64915c3b5acc6ed03508d043169068a083aef515df743b8a9d
3
  size 43201
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7545be74cbeec17d9d43f6b9a03cf2c99b049bc445a87cce6fca52fdc2c41bcf
3
- size 201294
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0254e7b7cd25add9e5e1630f807d1d98d17ce8e9d3462b3e3c58fc2899d0bc9
3
+ size 176052
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 283.3346053771715, "std_reward": 19.78014447241184, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-13T21:20:39.106882"}
 
1
+ {"mean_reward": 230.88679136796455, "std_reward": 91.05147991059931, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-13T22:30:36.977319"}