Commit
Β·
1348a11
1
Parent(s):
e895b50
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,55 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
language: en
|
4 |
+
datasets:
|
5 |
+
- sst2
|
6 |
---
|
7 |
+
|
8 |
+
# T5-base fine-tuned for Sentiment Analysis ππ
|
9 |
+
|
10 |
+
|
11 |
+
[Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) base fine-tuned on [SST-2](https://huggingface.co/datasets/st2) dataset for **Sentiment Analysis** downstream task.
|
12 |
+
|
13 |
+
## Details of T5
|
14 |
+
|
15 |
+
The **T5** model was presented in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf) by *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu*
|
16 |
+
|
17 |
+
## Model fine-tuning ποΈβ
|
18 |
+
|
19 |
+
The model has been finetuned for 10 epochs on standard hyperparameters
|
20 |
+
|
21 |
+
|
22 |
+
## Val set metrics π§Ύ
|
23 |
+
|
24 |
+
|precision | recall | f1-score |support|
|
25 |
+
|----------|----------|---------|----------|-------|
|
26 |
+
|negative | 1.00 | 1.00| 1.00| 428 |
|
27 |
+
|positive | 1.00 | 1.00| 1.00| 444 |
|
28 |
+
|----------|----------|---------|----------|-------|
|
29 |
+
|accuracy| | | 1.00| 872 |
|
30 |
+
|macro avg| 1.00| 1.00| 1.00| 872 |
|
31 |
+
|weighted avg| 1.00| 1.00| 1.00 | 872 |
|
32 |
+
|
33 |
+
|
34 |
+
## Model in Action π
|
35 |
+
|
36 |
+
```python
|
37 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
38 |
+
|
39 |
+
tokenizer = T5Tokenizer.from_pretrained("t5-finetune-sst2")
|
40 |
+
model = T5ForConditionalGeneration.from_pretrained("t5-finetune-sst2")
|
41 |
+
|
42 |
+
def get_sentiment(text):
|
43 |
+
|
44 |
+
inputs = tokenizer("sentiment: " + text, max_length=128, truncation=True, return_tensors="pt").input_ids
|
45 |
+
preds = model.generate(inputs)
|
46 |
+
decoded_preds = tokenizer.batch_decode(sequences=preds, skip_special_tokens=True)
|
47 |
+
|
48 |
+
return decoded_preds
|
49 |
+
|
50 |
+
get_sentiment("This movie is awesome")
|
51 |
+
|
52 |
+
# Output: ['positive']
|
53 |
+
```
|
54 |
+
|
55 |
+
> This model card is based on "mrm8488/t5-base-finetuned-imdb-sentiment" by Manuel Romero/@mrm8488
|