Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: stable-baselines3
|
| 3 |
+
tags:
|
| 4 |
+
- LunarLander-v2
|
| 5 |
+
- deep-reinforcement-learning
|
| 6 |
+
- reinforcement-learning
|
| 7 |
+
- stable-baselines3
|
| 8 |
+
model-index:
|
| 9 |
+
- name: PPO
|
| 10 |
+
results:
|
| 11 |
+
- task:
|
| 12 |
+
type: reinforcement-learning
|
| 13 |
+
name: reinforcement-learning
|
| 14 |
+
dataset:
|
| 15 |
+
name: LunarLander-v2
|
| 16 |
+
type: LunarLander-v2
|
| 17 |
+
metrics:
|
| 18 |
+
- type: mean_reward
|
| 19 |
+
value: 266.40 +/- 22.88
|
| 20 |
+
name: mean_reward
|
| 21 |
+
verified: false
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
| 25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
| 26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
| 27 |
+
|
| 28 |
+
## Usage (with Stable-baselines3)
|
| 29 |
+
TODO: Add your code
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
```python
|
| 33 |
+
from stable_baselines3 import ...
|
| 34 |
+
from huggingface_sb3 import load_from_hub
|
| 35 |
+
|
| 36 |
+
...
|
| 37 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f020a005940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f020a0059d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f020a005a60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f020a005af0>", "_build": "<function ActorCriticPolicy._build at 0x7f020a005b80>", "forward": "<function ActorCriticPolicy.forward at 0x7f020a005c10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f020a005ca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f020a005d30>", "_predict": "<function ActorCriticPolicy._predict at 0x7f020a005dc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f020a005e50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f020a005ee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f020a005f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f020a000810>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674586977456648733, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3BFz2kMzu7N92KvJpgljwZDj686jaBPQAAgD8AAIA/AIDgvIVJtzy/TJS8rrCyvRO/qDpeevC9AAAAAAAAAADa9Ne9UuJ+P9zHSr56ZwW/lKVJvqOhWTwAAAAAAAAAALOSlb2ur5I5VscbuFnit7PBjCc8uqM+NwAAgD8AAIA/mvvfvKfIHz9cpgC9cWmZvv8e0zsuTXq9AAAAAAAAAABmpZM9XP8pOQSbMLxEPFo8SDzouNWfirsAAAAAAAAAAPqZBL6QT48+LhVRPn7nR74JlIs9OJZSPQAAAAAAAAAAM9S9PKWcpz+A524++voRv9unuzz+kA0+AAAAAAAAAACavcE7ONDtPEiTJD29MiS+bIiKPQud1z0AAAAAAAAAAPNM6b1NVzc+6LObPiRpbL4geBE9KZmiPAAAAAAAAAAAiheEvvyJ8D5ODJE+Vm2jvoWlHDuC0xE9AAAAAAAAAACaZmC9lMuJPlK10zy1m4y+af+Cu2n+sr0AAAAAAAAAADN7ELyhSv8960rMva1xfb6sqRu9jJKFPAAAAAAAAAAAsxMhvZF2hj2Cc9q9cQVQvodCjr3+CoO9AAAAAAAAAADNZvo9FkQEP90kF705RZq+Ll+dPD7DzL0AAAAAAAAAADPsb70T5VY/326yvR5jv74u+8G9hpJWPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/dr66b92cUCUhpRSlIwBbJRNCAGMAXSUR0CPDSppeu3ddX2UKGgGaAloD0MIIQIOocolcUCUhpRSlGgVTScBaBZHQI8Nat7rs0J1fZQoaAZoCWgPQwhtjJ3w0odyQJSGlFKUaBVNHgFoFkdAjw5h5ooNNXV9lChoBmgJaA9DCMST3cxo+W9AlIaUUpRoFU0UAWgWR0CPEOzmfXf7dX2UKGgGaAloD0MI2h8ot+3tcECUhpRSlGgVTSIBaBZHQI8RuKsMiKR1fZQoaAZoCWgPQwib5Ef8ColyQJSGlFKUaBVNawFoFkdAjxLBpYcNpnV9lChoBmgJaA9DCAVQjCwZNm5AlIaUUpRoFU0AAWgWR0CPFAm65Gz9dX2UKGgGaAloD0MIlfQwtHpQcECUhpRSlGgVTeABaBZHQI8UvvfCQ911fZQoaAZoCWgPQwhBfcuc7hJwQJSGlFKUaBVNNgFoFkdAjxe50CA+ZHV9lChoBmgJaA9DCIaTNH/MoW5AlIaUUpRoFU0jAWgWR0CPGXgkTpPidX2UKGgGaAloD0MIritmhPf0cUCUhpRSlGgVTZoDaBZHQI8aHi97F851fZQoaAZoCWgPQwjFO8CTluNyQJSGlFKUaBVL9WgWR0CPHS7gbZOBdX2UKGgGaAloD0MIh29h3TjBckCUhpRSlGgVTS0BaBZHQI8dy7TUiIN1fZQoaAZoCWgPQwgtBg/TPitjQJSGlFKUaBVN6ANoFkdAjx77/XGwR3V9lChoBmgJaA9DCNbIrrRMMHFAlIaUUpRoFU0dAWgWR0CPHzIdU83ddX2UKGgGaAloD0MIyF7v/nhgcUCUhpRSlGgVTR4BaBZHQI8fv9Nvfj11fZQoaAZoCWgPQwjDuBtEa+RxQJSGlFKUaBVNGQFoFkdAjyCLrxAjZHV9lChoBmgJaA9DCKG8j6N5eXFAlIaUUpRoFU1WAWgWR0CPIN9Tgl4UdX2UKGgGaAloD0MIwqVjzjPgbECUhpRSlGgVS/1oFkdAjyGpxvNu+HV9lChoBmgJaA9DCK63zVSI43JAlIaUUpRoFUvsaBZHQI8jV7OVxCJ1fZQoaAZoCWgPQwgZ5gRtMr5xQJSGlFKUaBVNKQFoFkdAjyTc1n/T9nV9lChoBmgJaA9DCMH9gAcGV3FAlIaUUpRoFU0hAWgWR0CPJYuCf6GhdX2UKGgGaAloD0MI7BUW3E9ickCUhpRSlGgVTSIBaBZHQI8pAIv8IiV1fZQoaAZoCWgPQwjI0LGDCllxQJSGlFKUaBVNLgFoFkdAjywyC4Bmw3V9lChoBmgJaA9DCN1B7ExhVHBAlIaUUpRoFU0LAWgWR0CPLaP2f02+dX2UKGgGaAloD0MITaPJxZhAcUCUhpRSlGgVS/5oFkdAjy/RN7BwdnV9lChoBmgJaA9DCPtYwW/D23FAlIaUUpRoFU0YAWgWR0CPL+TlDF6zdX2UKGgGaAloD0MIHM2RlV9ncUCUhpRSlGgVTTkBaBZHQI8wYbhm5Dt1fZQoaAZoCWgPQwiKy/EKBAxxQJSGlFKUaBVNCQFoFkdAjzD0zbeuWHV9lChoBmgJaA9DCC2WIvkK6XBAlIaUUpRoFU0pAWgWR0CPMTYzSCvpdX2UKGgGaAloD0MIpfRML7FcckCUhpRSlGgVTSMBaBZHQI8xa0a6z3R1fZQoaAZoCWgPQwjPTgZHSb9wQJSGlFKUaBVNDQFoFkdAjzImW+oLonV9lChoBmgJaA9DCCC4yhPIgXFAlIaUUpRoFU2hAWgWR0CPMxa6BiCrdX2UKGgGaAloD0MIONpxw2+ZbECUhpRSlGgVTRcBaBZHQI80UELYwqR1fZQoaAZoCWgPQwh/v5gtWU5yQJSGlFKUaBVNRwJoFkdAjzS9Y4hllXV9lChoBmgJaA9DCF2lu+vsTW9AlIaUUpRoFU0HAWgWR0CPNPFGXokidX2UKGgGaAloD0MIt0WZDbLeb0CUhpRSlGgVTRMBaBZHQI82GinHead1fZQoaAZoCWgPQwhfDOVEO/xjQJSGlFKUaBVN6ANoFkdAjzi9jXnQpnV9lChoBmgJaA9DCCmxa3v7ZXJAlIaUUpRoFU0dAWgWR0CPOYGQjlgddX2UKGgGaAloD0MIoPtyZrtucUCUhpRSlGgVTQYBaBZHQI88Y3Lmp2l1fZQoaAZoCWgPQwjD9L2GYIdxQJSGlFKUaBVNMAFoFkdAjz3F4C6pYXV9lChoBmgJaA9DCHXpX5IKd3BAlIaUUpRoFU0LAWgWR0CPPs+9Jz1cdX2UKGgGaAloD0MI88mK4SqDcECUhpRSlGgVTQcBaBZHQI8/A8Md92J1fZQoaAZoCWgPQwhzEd+JWYNwQJSGlFKUaBVNDwFoFkdAjz8F8XvYvnV9lChoBmgJaA9DCKchqvCnpHFAlIaUUpRoFU0SAWgWR0CPZm6vq1PWdX2UKGgGaAloD0MI/RLx1nn8b0CUhpRSlGgVTQkBaBZHQI9mz/82rGR1fZQoaAZoCWgPQwgurvGZbHRyQJSGlFKUaBVNNAFoFkdAj2g7dznzQXV9lChoBmgJaA9DCPjCZKpgRXBAlIaUUpRoFU0VAWgWR0CPaJwMpgCwdX2UKGgGaAloD0MIdEUpIdgMb0CUhpRSlGgVS/NoFkdAj2i16Vt4zXV9lChoBmgJaA9DCC2WIvlKbHJAlIaUUpRoFU0gAWgWR0CPas3l0YCRdX2UKGgGaAloD0MIxm00gDcHbUCUhpRSlGgVTYABaBZHQI9sverMkhR1fZQoaAZoCWgPQwi54Az+PtNxQJSGlFKUaBVNRQFoFkdAj26Hjp9qlHV9lChoBmgJaA9DCM0GmWTkaHFAlIaUUpRoFU2VAWgWR0CPcTEVnEl3dX2UKGgGaAloD0MIQgWHFwTRcECUhpRSlGgVTSsBaBZHQI9xRJXhfjV1fZQoaAZoCWgPQwjfMqfL4qtxQJSGlFKUaBVNQgFoFkdAj3G43vQWvnV9lChoBmgJaA9DCIZyol0FUnFAlIaUUpRoFUv6aBZHQI9yUXvYvnN1fZQoaAZoCWgPQwiy9QzhGHlxQJSGlFKUaBVNBQFoFkdAj3P7KRuCPXV9lChoBmgJaA9DCG75SEq6c3BAlIaUUpRoFU0eAWgWR0CPdXJyyUs4dX2UKGgGaAloD0MIFygpsIChckCUhpRSlGgVTS4BaBZHQI92NRekYXR1fZQoaAZoCWgPQwjCbAIMi5ByQJSGlFKUaBVNYAFoFkdAj3cQXyiEhHV9lChoBmgJaA9DCL+er1muDG9AlIaUUpRoFU0XAWgWR0CPeD+FUQ05dX2UKGgGaAloD0MIAoQPJdp8cECUhpRSlGgVTRQBaBZHQI94bRfF72N1fZQoaAZoCWgPQwgJxVbQNMhvQJSGlFKUaBVNUQFoFkdAj3nHavicXnV9lChoBmgJaA9DCNj1C3bDOm1AlIaUUpRoFU0IAWgWR0CPehuYx+KCdX2UKGgGaAloD0MIb0VighpCcUCUhpRSlGgVTVIBaBZHQI96Kp71Iy11fZQoaAZoCWgPQwiqDrkZLthxQJSGlFKUaBVNPwFoFkdAj3rITfzjFXV9lChoBmgJaA9DCEG8rl/wTnNAlIaUUpRoFU0qAWgWR0CPfXcIqsltdX2UKGgGaAloD0MI2/rpP2sDcUCUhpRSlGgVS/loFkdAj375P/JeV3V9lChoBmgJaA9DCFt8CoBx4GtAlIaUUpRoFU0NAWgWR0CPgCiKziS8dX2UKGgGaAloD0MIuHh4z4EbckCUhpRSlGgVTQUBaBZHQI+AP7N0NjN1fZQoaAZoCWgPQwiA07t4vzFvQJSGlFKUaBVNOwFoFkdAj4BazE74jHV9lChoBmgJaA9DCFIQPL49OXJAlIaUUpRoFUvzaBZHQI+BZA+pwS91fZQoaAZoCWgPQwgVG/M6ohNyQJSGlFKUaBVNFQFoFkdAj4GiCjDbanV9lChoBmgJaA9DCAPtDimG9m1AlIaUUpRoFU0OAWgWR0CPhAVSGahIdX2UKGgGaAloD0MI9WT+0Te0cECUhpRSlGgVTQcBaBZHQI+EUtoSL611fZQoaAZoCWgPQwgJjWDj+tJxQJSGlFKUaBVNHwFoFkdAj4ZbhvR7Z3V9lChoBmgJaA9DCEaXN4fr23BAlIaUUpRoFUv+aBZHQI+HnN5dGAl1fZQoaAZoCWgPQwgbDksDv0hxQJSGlFKUaBVNIgFoFkdAj4e7or4FinV9lChoBmgJaA9DCIygMZMoJHJAlIaUUpRoFU0TAWgWR0CPiHBlcyFgdX2UKGgGaAloD0MI0EICRtfYcUCUhpRSlGgVTUoBaBZHQI+J93jdYXB1fZQoaAZoCWgPQwiF0hdCTsFuQJSGlFKUaBVNKgFoFkdAj4n38n/kvXV9lChoBmgJaA9DCHfzVIccIHFAlIaUUpRoFU0tAWgWR0CPisLhrFfidX2UKGgGaAloD0MINV8lH7uqcUCUhpRSlGgVTRkBaBZHQI+MeFpPAO91fZQoaAZoCWgPQwiuKZDZWaRxQJSGlFKUaBVL72gWR0CPjNKxs2vTdX2UKGgGaAloD0MI9TC0Ovn5cECUhpRSlGgVTSEBaBZHQI+Pu7e2uxN1fZQoaAZoCWgPQwhIbk26bSVwQJSGlFKUaBVNFQFoFkdAj5BfdqL0jHV9lChoBmgJaA9DCILknUNZzXBAlIaUUpRoFU0pAWgWR0CPkeKekHlfdX2UKGgGaAloD0MI3GgAbwFPcECUhpRSlGgVTUsBaBZHQI+SPOQhfSh1fZQoaAZoCWgPQwhstYe90PhxQJSGlFKUaBVNFgFoFkdAj5OW4Vh1DHV9lChoBmgJaA9DCP/mxYnvmHJAlIaUUpRoFU19AWgWR0CPlCWN3np0dX2UKGgGaAloD0MIsmK4OoCYb0CUhpRSlGgVTSABaBZHQI+UhC+lCTl1fZQoaAZoCWgPQwikchO1tDtyQJSGlFKUaBVNBwFoFkdAj5ZJX6qKg3V9lChoBmgJaA9DCJOOcjDbR3FAlIaUUpRoFU0eAWgWR0CPlmhxo7FLdX2UKGgGaAloD0MInff/cUINckCUhpRSlGgVTQwBaBZHQI+WrOxB3Rp1fZQoaAZoCWgPQwgH0zB8RIpwQJSGlFKUaBVL92gWR0CPl8xzq8lHdX2UKGgGaAloD0MIOSf20P6CcUCUhpRSlGgVS/JoFkdAj5hbCiyprHV9lChoBmgJaA9DCMpOP6jLV3FAlIaUUpRoFU0mAWgWR0CPmKV9nbqRdX2UKGgGaAloD0MI3UQtzS2qcECUhpRSlGgVS/poFkdAj5rDsdDIBHV9lChoBmgJaA9DCDoIOlpVBnJAlIaUUpRoFU0TAWgWR0CPm8YQ8OkMdX2UKGgGaAloD0MI106UhMRXcECUhpRSlGgVTWEBaBZHQI+dMuSOinJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7bc2003db70a2f24418e2edadb559bf83746f98e158e2acc8f59d556a303adf4
|
| 3 |
+
size 147536
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"policy_class": {
|
| 3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
| 4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
| 5 |
+
"__module__": "stable_baselines3.common.policies",
|
| 6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
| 7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f020a005940>",
|
| 8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f020a0059d0>",
|
| 9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f020a005a60>",
|
| 10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f020a005af0>",
|
| 11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f020a005b80>",
|
| 12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f020a005c10>",
|
| 13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f020a005ca0>",
|
| 14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f020a005d30>",
|
| 15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f020a005dc0>",
|
| 16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f020a005e50>",
|
| 17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f020a005ee0>",
|
| 18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f020a005f70>",
|
| 19 |
+
"__abstractmethods__": "frozenset()",
|
| 20 |
+
"_abc_impl": "<_abc_data object at 0x7f020a000810>"
|
| 21 |
+
},
|
| 22 |
+
"verbose": 1,
|
| 23 |
+
"policy_kwargs": {},
|
| 24 |
+
"observation_space": {
|
| 25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
| 26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
| 27 |
+
"dtype": "float32",
|
| 28 |
+
"_shape": [
|
| 29 |
+
8
|
| 30 |
+
],
|
| 31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
| 32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
| 33 |
+
"bounded_below": "[False False False False False False False False]",
|
| 34 |
+
"bounded_above": "[False False False False False False False False]",
|
| 35 |
+
"_np_random": null
|
| 36 |
+
},
|
| 37 |
+
"action_space": {
|
| 38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
| 39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
| 40 |
+
"n": 4,
|
| 41 |
+
"_shape": [],
|
| 42 |
+
"dtype": "int64",
|
| 43 |
+
"_np_random": null
|
| 44 |
+
},
|
| 45 |
+
"n_envs": 16,
|
| 46 |
+
"num_timesteps": 1015808,
|
| 47 |
+
"_total_timesteps": 1000000,
|
| 48 |
+
"_num_timesteps_at_start": 0,
|
| 49 |
+
"seed": null,
|
| 50 |
+
"action_noise": null,
|
| 51 |
+
"start_time": 1674586977456648733,
|
| 52 |
+
"learning_rate": 0.0003,
|
| 53 |
+
"tensorboard_log": null,
|
| 54 |
+
"lr_schedule": {
|
| 55 |
+
":type:": "<class 'function'>",
|
| 56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
| 57 |
+
},
|
| 58 |
+
"_last_obs": {
|
| 59 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3BFz2kMzu7N92KvJpgljwZDj686jaBPQAAgD8AAIA/AIDgvIVJtzy/TJS8rrCyvRO/qDpeevC9AAAAAAAAAADa9Ne9UuJ+P9zHSr56ZwW/lKVJvqOhWTwAAAAAAAAAALOSlb2ur5I5VscbuFnit7PBjCc8uqM+NwAAgD8AAIA/mvvfvKfIHz9cpgC9cWmZvv8e0zsuTXq9AAAAAAAAAABmpZM9XP8pOQSbMLxEPFo8SDzouNWfirsAAAAAAAAAAPqZBL6QT48+LhVRPn7nR74JlIs9OJZSPQAAAAAAAAAAM9S9PKWcpz+A524++voRv9unuzz+kA0+AAAAAAAAAACavcE7ONDtPEiTJD29MiS+bIiKPQud1z0AAAAAAAAAAPNM6b1NVzc+6LObPiRpbL4geBE9KZmiPAAAAAAAAAAAiheEvvyJ8D5ODJE+Vm2jvoWlHDuC0xE9AAAAAAAAAACaZmC9lMuJPlK10zy1m4y+af+Cu2n+sr0AAAAAAAAAADN7ELyhSv8960rMva1xfb6sqRu9jJKFPAAAAAAAAAAAsxMhvZF2hj2Cc9q9cQVQvodCjr3+CoO9AAAAAAAAAADNZvo9FkQEP90kF705RZq+Ll+dPD7DzL0AAAAAAAAAADPsb70T5VY/326yvR5jv74u+8G9hpJWPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
| 61 |
+
},
|
| 62 |
+
"_last_episode_starts": {
|
| 63 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
| 65 |
+
},
|
| 66 |
+
"_last_original_obs": null,
|
| 67 |
+
"_episode_num": 0,
|
| 68 |
+
"use_sde": false,
|
| 69 |
+
"sde_sample_freq": -1,
|
| 70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
| 71 |
+
"ep_info_buffer": {
|
| 72 |
+
":type:": "<class 'collections.deque'>",
|
| 73 |
+
":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/dr66b92cUCUhpRSlIwBbJRNCAGMAXSUR0CPDSppeu3ddX2UKGgGaAloD0MIIQIOocolcUCUhpRSlGgVTScBaBZHQI8Nat7rs0J1fZQoaAZoCWgPQwhtjJ3w0odyQJSGlFKUaBVNHgFoFkdAjw5h5ooNNXV9lChoBmgJaA9DCMST3cxo+W9AlIaUUpRoFU0UAWgWR0CPEOzmfXf7dX2UKGgGaAloD0MI2h8ot+3tcECUhpRSlGgVTSIBaBZHQI8RuKsMiKR1fZQoaAZoCWgPQwib5Ef8ColyQJSGlFKUaBVNawFoFkdAjxLBpYcNpnV9lChoBmgJaA9DCAVQjCwZNm5AlIaUUpRoFU0AAWgWR0CPFAm65Gz9dX2UKGgGaAloD0MIlfQwtHpQcECUhpRSlGgVTeABaBZHQI8UvvfCQ911fZQoaAZoCWgPQwhBfcuc7hJwQJSGlFKUaBVNNgFoFkdAjxe50CA+ZHV9lChoBmgJaA9DCIaTNH/MoW5AlIaUUpRoFU0jAWgWR0CPGXgkTpPidX2UKGgGaAloD0MIritmhPf0cUCUhpRSlGgVTZoDaBZHQI8aHi97F851fZQoaAZoCWgPQwjFO8CTluNyQJSGlFKUaBVL9WgWR0CPHS7gbZOBdX2UKGgGaAloD0MIh29h3TjBckCUhpRSlGgVTS0BaBZHQI8dy7TUiIN1fZQoaAZoCWgPQwgtBg/TPitjQJSGlFKUaBVN6ANoFkdAjx77/XGwR3V9lChoBmgJaA9DCNbIrrRMMHFAlIaUUpRoFU0dAWgWR0CPHzIdU83ddX2UKGgGaAloD0MIyF7v/nhgcUCUhpRSlGgVTR4BaBZHQI8fv9Nvfj11fZQoaAZoCWgPQwjDuBtEa+RxQJSGlFKUaBVNGQFoFkdAjyCLrxAjZHV9lChoBmgJaA9DCKG8j6N5eXFAlIaUUpRoFU1WAWgWR0CPIN9Tgl4UdX2UKGgGaAloD0MIwqVjzjPgbECUhpRSlGgVS/1oFkdAjyGpxvNu+HV9lChoBmgJaA9DCK63zVSI43JAlIaUUpRoFUvsaBZHQI8jV7OVxCJ1fZQoaAZoCWgPQwgZ5gRtMr5xQJSGlFKUaBVNKQFoFkdAjyTc1n/T9nV9lChoBmgJaA9DCMH9gAcGV3FAlIaUUpRoFU0hAWgWR0CPJYuCf6GhdX2UKGgGaAloD0MI7BUW3E9ickCUhpRSlGgVTSIBaBZHQI8pAIv8IiV1fZQoaAZoCWgPQwjI0LGDCllxQJSGlFKUaBVNLgFoFkdAjywyC4Bmw3V9lChoBmgJaA9DCN1B7ExhVHBAlIaUUpRoFU0LAWgWR0CPLaP2f02+dX2UKGgGaAloD0MITaPJxZhAcUCUhpRSlGgVS/5oFkdAjy/RN7BwdnV9lChoBmgJaA9DCPtYwW/D23FAlIaUUpRoFU0YAWgWR0CPL+TlDF6zdX2UKGgGaAloD0MIHM2RlV9ncUCUhpRSlGgVTTkBaBZHQI8wYbhm5Dt1fZQoaAZoCWgPQwiKy/EKBAxxQJSGlFKUaBVNCQFoFkdAjzD0zbeuWHV9lChoBmgJaA9DCC2WIvkK6XBAlIaUUpRoFU0pAWgWR0CPMTYzSCvpdX2UKGgGaAloD0MIpfRML7FcckCUhpRSlGgVTSMBaBZHQI8xa0a6z3R1fZQoaAZoCWgPQwjPTgZHSb9wQJSGlFKUaBVNDQFoFkdAjzImW+oLonV9lChoBmgJaA9DCCC4yhPIgXFAlIaUUpRoFU2hAWgWR0CPMxa6BiCrdX2UKGgGaAloD0MIONpxw2+ZbECUhpRSlGgVTRcBaBZHQI80UELYwqR1fZQoaAZoCWgPQwh/v5gtWU5yQJSGlFKUaBVNRwJoFkdAjzS9Y4hllXV9lChoBmgJaA9DCF2lu+vsTW9AlIaUUpRoFU0HAWgWR0CPNPFGXokidX2UKGgGaAloD0MIt0WZDbLeb0CUhpRSlGgVTRMBaBZHQI82GinHead1fZQoaAZoCWgPQwhfDOVEO/xjQJSGlFKUaBVN6ANoFkdAjzi9jXnQpnV9lChoBmgJaA9DCCmxa3v7ZXJAlIaUUpRoFU0dAWgWR0CPOYGQjlgddX2UKGgGaAloD0MIoPtyZrtucUCUhpRSlGgVTQYBaBZHQI88Y3Lmp2l1fZQoaAZoCWgPQwjD9L2GYIdxQJSGlFKUaBVNMAFoFkdAjz3F4C6pYXV9lChoBmgJaA9DCHXpX5IKd3BAlIaUUpRoFU0LAWgWR0CPPs+9Jz1cdX2UKGgGaAloD0MI88mK4SqDcECUhpRSlGgVTQcBaBZHQI8/A8Md92J1fZQoaAZoCWgPQwhzEd+JWYNwQJSGlFKUaBVNDwFoFkdAjz8F8XvYvnV9lChoBmgJaA9DCKchqvCnpHFAlIaUUpRoFU0SAWgWR0CPZm6vq1PWdX2UKGgGaAloD0MI/RLx1nn8b0CUhpRSlGgVTQkBaBZHQI9mz/82rGR1fZQoaAZoCWgPQwgurvGZbHRyQJSGlFKUaBVNNAFoFkdAj2g7dznzQXV9lChoBmgJaA9DCPjCZKpgRXBAlIaUUpRoFU0VAWgWR0CPaJwMpgCwdX2UKGgGaAloD0MIdEUpIdgMb0CUhpRSlGgVS/NoFkdAj2i16Vt4zXV9lChoBmgJaA9DCC2WIvlKbHJAlIaUUpRoFU0gAWgWR0CPas3l0YCRdX2UKGgGaAloD0MIxm00gDcHbUCUhpRSlGgVTYABaBZHQI9sverMkhR1fZQoaAZoCWgPQwi54Az+PtNxQJSGlFKUaBVNRQFoFkdAj26Hjp9qlHV9lChoBmgJaA9DCM0GmWTkaHFAlIaUUpRoFU2VAWgWR0CPcTEVnEl3dX2UKGgGaAloD0MIQgWHFwTRcECUhpRSlGgVTSsBaBZHQI9xRJXhfjV1fZQoaAZoCWgPQwjfMqfL4qtxQJSGlFKUaBVNQgFoFkdAj3G43vQWvnV9lChoBmgJaA9DCIZyol0FUnFAlIaUUpRoFUv6aBZHQI9yUXvYvnN1fZQoaAZoCWgPQwiy9QzhGHlxQJSGlFKUaBVNBQFoFkdAj3P7KRuCPXV9lChoBmgJaA9DCG75SEq6c3BAlIaUUpRoFU0eAWgWR0CPdXJyyUs4dX2UKGgGaAloD0MIFygpsIChckCUhpRSlGgVTS4BaBZHQI92NRekYXR1fZQoaAZoCWgPQwjCbAIMi5ByQJSGlFKUaBVNYAFoFkdAj3cQXyiEhHV9lChoBmgJaA9DCL+er1muDG9AlIaUUpRoFU0XAWgWR0CPeD+FUQ05dX2UKGgGaAloD0MIAoQPJdp8cECUhpRSlGgVTRQBaBZHQI94bRfF72N1fZQoaAZoCWgPQwgJxVbQNMhvQJSGlFKUaBVNUQFoFkdAj3nHavicXnV9lChoBmgJaA9DCNj1C3bDOm1AlIaUUpRoFU0IAWgWR0CPehuYx+KCdX2UKGgGaAloD0MIb0VighpCcUCUhpRSlGgVTVIBaBZHQI96Kp71Iy11fZQoaAZoCWgPQwiqDrkZLthxQJSGlFKUaBVNPwFoFkdAj3rITfzjFXV9lChoBmgJaA9DCEG8rl/wTnNAlIaUUpRoFU0qAWgWR0CPfXcIqsltdX2UKGgGaAloD0MI2/rpP2sDcUCUhpRSlGgVS/loFkdAj375P/JeV3V9lChoBmgJaA9DCFt8CoBx4GtAlIaUUpRoFU0NAWgWR0CPgCiKziS8dX2UKGgGaAloD0MIuHh4z4EbckCUhpRSlGgVTQUBaBZHQI+AP7N0NjN1fZQoaAZoCWgPQwiA07t4vzFvQJSGlFKUaBVNOwFoFkdAj4BazE74jHV9lChoBmgJaA9DCFIQPL49OXJAlIaUUpRoFUvzaBZHQI+BZA+pwS91fZQoaAZoCWgPQwgVG/M6ohNyQJSGlFKUaBVNFQFoFkdAj4GiCjDbanV9lChoBmgJaA9DCAPtDimG9m1AlIaUUpRoFU0OAWgWR0CPhAVSGahIdX2UKGgGaAloD0MI9WT+0Te0cECUhpRSlGgVTQcBaBZHQI+EUtoSL611fZQoaAZoCWgPQwgJjWDj+tJxQJSGlFKUaBVNHwFoFkdAj4ZbhvR7Z3V9lChoBmgJaA9DCEaXN4fr23BAlIaUUpRoFUv+aBZHQI+HnN5dGAl1fZQoaAZoCWgPQwgbDksDv0hxQJSGlFKUaBVNIgFoFkdAj4e7or4FinV9lChoBmgJaA9DCIygMZMoJHJAlIaUUpRoFU0TAWgWR0CPiHBlcyFgdX2UKGgGaAloD0MI0EICRtfYcUCUhpRSlGgVTUoBaBZHQI+J93jdYXB1fZQoaAZoCWgPQwiF0hdCTsFuQJSGlFKUaBVNKgFoFkdAj4n38n/kvXV9lChoBmgJaA9DCHfzVIccIHFAlIaUUpRoFU0tAWgWR0CPisLhrFfidX2UKGgGaAloD0MINV8lH7uqcUCUhpRSlGgVTRkBaBZHQI+MeFpPAO91fZQoaAZoCWgPQwiuKZDZWaRxQJSGlFKUaBVL72gWR0CPjNKxs2vTdX2UKGgGaAloD0MI9TC0Ovn5cECUhpRSlGgVTSEBaBZHQI+Pu7e2uxN1fZQoaAZoCWgPQwhIbk26bSVwQJSGlFKUaBVNFQFoFkdAj5BfdqL0jHV9lChoBmgJaA9DCILknUNZzXBAlIaUUpRoFU0pAWgWR0CPkeKekHlfdX2UKGgGaAloD0MI3GgAbwFPcECUhpRSlGgVTUsBaBZHQI+SPOQhfSh1fZQoaAZoCWgPQwhstYe90PhxQJSGlFKUaBVNFgFoFkdAj5OW4Vh1DHV9lChoBmgJaA9DCP/mxYnvmHJAlIaUUpRoFU19AWgWR0CPlCWN3np0dX2UKGgGaAloD0MIsmK4OoCYb0CUhpRSlGgVTSABaBZHQI+UhC+lCTl1fZQoaAZoCWgPQwikchO1tDtyQJSGlFKUaBVNBwFoFkdAj5ZJX6qKg3V9lChoBmgJaA9DCJOOcjDbR3FAlIaUUpRoFU0eAWgWR0CPlmhxo7FLdX2UKGgGaAloD0MInff/cUINckCUhpRSlGgVTQwBaBZHQI+WrOxB3Rp1fZQoaAZoCWgPQwgH0zB8RIpwQJSGlFKUaBVL92gWR0CPl8xzq8lHdX2UKGgGaAloD0MIOSf20P6CcUCUhpRSlGgVS/JoFkdAj5hbCiyprHV9lChoBmgJaA9DCMpOP6jLV3FAlIaUUpRoFU0mAWgWR0CPmKV9nbqRdX2UKGgGaAloD0MI3UQtzS2qcECUhpRSlGgVS/poFkdAj5rDsdDIBHV9lChoBmgJaA9DCDoIOlpVBnJAlIaUUpRoFU0TAWgWR0CPm8YQ8OkMdX2UKGgGaAloD0MI106UhMRXcECUhpRSlGgVTWEBaBZHQI+dMuSOinJ1ZS4="
|
| 74 |
+
},
|
| 75 |
+
"ep_success_buffer": {
|
| 76 |
+
":type:": "<class 'collections.deque'>",
|
| 77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
| 78 |
+
},
|
| 79 |
+
"_n_updates": 248,
|
| 80 |
+
"n_steps": 1024,
|
| 81 |
+
"gamma": 0.999,
|
| 82 |
+
"gae_lambda": 0.98,
|
| 83 |
+
"ent_coef": 0.01,
|
| 84 |
+
"vf_coef": 0.5,
|
| 85 |
+
"max_grad_norm": 0.5,
|
| 86 |
+
"batch_size": 64,
|
| 87 |
+
"n_epochs": 4,
|
| 88 |
+
"clip_range": {
|
| 89 |
+
":type:": "<class 'function'>",
|
| 90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
| 91 |
+
},
|
| 92 |
+
"clip_range_vf": null,
|
| 93 |
+
"normalize_advantage": true,
|
| 94 |
+
"target_kl": null
|
| 95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2b560dbeb6eb1d2780edbdd320757a9c9a0acc7923c9dde73455ab43821d8256
|
| 3 |
+
size 88057
|
ppo-LunarLander-v2/policy.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:65d5e66440ba5a0de31fb203919f87013f5471c11619bb07a2b13025d59f4218
|
| 3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
| 3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
| 2 |
+
- Python: 3.8.10
|
| 3 |
+
- Stable-Baselines3: 1.7.0
|
| 4 |
+
- PyTorch: 1.13.1+cu116
|
| 5 |
+
- GPU Enabled: True
|
| 6 |
+
- Numpy: 1.21.6
|
| 7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
|
Binary file (203 kB). View file
|
|
|
results.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"mean_reward": 266.3988315804448, "std_reward": 22.877371114748613, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-25T19:04:44.332701"}
|