Commit
·
78c2790
1
Parent(s):
419dbca
Upload jinaai/jina-embedding-s-en-v1 ctranslate2 weights
Browse files- README.md +2795 -0
- config.json +61 -0
- model.bin +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- shared_vocabulary.json +0 -0
- special_tokens_map.json +107 -0
- tokenizer.json +0 -0
- tokenizer_config.json +111 -0
README.md
ADDED
@@ -0,0 +1,2795 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- ctranslate2
|
5 |
+
- int8
|
6 |
+
- float16
|
7 |
+
- finetuner
|
8 |
+
- mteb
|
9 |
+
- sentence-transformers
|
10 |
+
- feature-extraction
|
11 |
+
- sentence-similarity
|
12 |
+
datasets:
|
13 |
+
- jinaai/negation-dataset
|
14 |
+
language: en
|
15 |
+
license: apache-2.0
|
16 |
+
model-index:
|
17 |
+
- name: jina-embedding-s-en-v1
|
18 |
+
results:
|
19 |
+
- task:
|
20 |
+
type: Classification
|
21 |
+
dataset:
|
22 |
+
type: mteb/amazon_counterfactual
|
23 |
+
name: MTEB AmazonCounterfactualClassification (en)
|
24 |
+
config: en
|
25 |
+
split: test
|
26 |
+
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
27 |
+
metrics:
|
28 |
+
- type: accuracy
|
29 |
+
value: 64.82089552238806
|
30 |
+
- type: ap
|
31 |
+
value: 27.100981946230778
|
32 |
+
- type: f1
|
33 |
+
value: 58.3354886367184
|
34 |
+
- task:
|
35 |
+
type: Classification
|
36 |
+
dataset:
|
37 |
+
type: mteb/amazon_polarity
|
38 |
+
name: MTEB AmazonPolarityClassification
|
39 |
+
config: default
|
40 |
+
split: test
|
41 |
+
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
42 |
+
metrics:
|
43 |
+
- type: accuracy
|
44 |
+
value: 64.282775
|
45 |
+
- type: ap
|
46 |
+
value: 60.350688924943796
|
47 |
+
- type: f1
|
48 |
+
value: 62.06346948494396
|
49 |
+
- task:
|
50 |
+
type: Classification
|
51 |
+
dataset:
|
52 |
+
type: mteb/amazon_reviews_multi
|
53 |
+
name: MTEB AmazonReviewsClassification (en)
|
54 |
+
config: en
|
55 |
+
split: test
|
56 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
57 |
+
metrics:
|
58 |
+
- type: accuracy
|
59 |
+
value: 30.623999999999995
|
60 |
+
- type: f1
|
61 |
+
value: 29.427789186742153
|
62 |
+
- task:
|
63 |
+
type: Retrieval
|
64 |
+
dataset:
|
65 |
+
type: arguana
|
66 |
+
name: MTEB ArguAna
|
67 |
+
config: default
|
68 |
+
split: test
|
69 |
+
revision: None
|
70 |
+
metrics:
|
71 |
+
- type: map_at_1
|
72 |
+
value: 22.119
|
73 |
+
- type: map_at_10
|
74 |
+
value: 35.609
|
75 |
+
- type: map_at_100
|
76 |
+
value: 36.935
|
77 |
+
- type: map_at_1000
|
78 |
+
value: 36.957
|
79 |
+
- type: map_at_3
|
80 |
+
value: 31.046000000000003
|
81 |
+
- type: map_at_5
|
82 |
+
value: 33.574
|
83 |
+
- type: mrr_at_1
|
84 |
+
value: 22.404
|
85 |
+
- type: mrr_at_10
|
86 |
+
value: 35.695
|
87 |
+
- type: mrr_at_100
|
88 |
+
value: 37.021
|
89 |
+
- type: mrr_at_1000
|
90 |
+
value: 37.043
|
91 |
+
- type: mrr_at_3
|
92 |
+
value: 31.093
|
93 |
+
- type: mrr_at_5
|
94 |
+
value: 33.635999999999996
|
95 |
+
- type: ndcg_at_1
|
96 |
+
value: 22.119
|
97 |
+
- type: ndcg_at_10
|
98 |
+
value: 43.566
|
99 |
+
- type: ndcg_at_100
|
100 |
+
value: 49.370000000000005
|
101 |
+
- type: ndcg_at_1000
|
102 |
+
value: 49.901
|
103 |
+
- type: ndcg_at_3
|
104 |
+
value: 34.06
|
105 |
+
- type: ndcg_at_5
|
106 |
+
value: 38.653999999999996
|
107 |
+
- type: precision_at_1
|
108 |
+
value: 22.119
|
109 |
+
- type: precision_at_10
|
110 |
+
value: 6.92
|
111 |
+
- type: precision_at_100
|
112 |
+
value: 0.95
|
113 |
+
- type: precision_at_1000
|
114 |
+
value: 0.099
|
115 |
+
- type: precision_at_3
|
116 |
+
value: 14.272000000000002
|
117 |
+
- type: precision_at_5
|
118 |
+
value: 10.811
|
119 |
+
- type: recall_at_1
|
120 |
+
value: 22.119
|
121 |
+
- type: recall_at_10
|
122 |
+
value: 69.203
|
123 |
+
- type: recall_at_100
|
124 |
+
value: 95.021
|
125 |
+
- type: recall_at_1000
|
126 |
+
value: 99.075
|
127 |
+
- type: recall_at_3
|
128 |
+
value: 42.817
|
129 |
+
- type: recall_at_5
|
130 |
+
value: 54.054
|
131 |
+
- task:
|
132 |
+
type: Clustering
|
133 |
+
dataset:
|
134 |
+
type: mteb/arxiv-clustering-p2p
|
135 |
+
name: MTEB ArxivClusteringP2P
|
136 |
+
config: default
|
137 |
+
split: test
|
138 |
+
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
139 |
+
metrics:
|
140 |
+
- type: v_measure
|
141 |
+
value: 34.1740289109719
|
142 |
+
- task:
|
143 |
+
type: Clustering
|
144 |
+
dataset:
|
145 |
+
type: mteb/arxiv-clustering-s2s
|
146 |
+
name: MTEB ArxivClusteringS2S
|
147 |
+
config: default
|
148 |
+
split: test
|
149 |
+
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
150 |
+
metrics:
|
151 |
+
- type: v_measure
|
152 |
+
value: 23.985251383455463
|
153 |
+
- task:
|
154 |
+
type: Reranking
|
155 |
+
dataset:
|
156 |
+
type: mteb/askubuntudupquestions-reranking
|
157 |
+
name: MTEB AskUbuntuDupQuestions
|
158 |
+
config: default
|
159 |
+
split: test
|
160 |
+
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
161 |
+
metrics:
|
162 |
+
- type: map
|
163 |
+
value: 60.24873612289029
|
164 |
+
- type: mrr
|
165 |
+
value: 74.65692740623489
|
166 |
+
- task:
|
167 |
+
type: STS
|
168 |
+
dataset:
|
169 |
+
type: mteb/biosses-sts
|
170 |
+
name: MTEB BIOSSES
|
171 |
+
config: default
|
172 |
+
split: test
|
173 |
+
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
174 |
+
metrics:
|
175 |
+
- type: cos_sim_pearson
|
176 |
+
value: 86.22415390332444
|
177 |
+
- type: cos_sim_spearman
|
178 |
+
value: 82.9591191954711
|
179 |
+
- type: euclidean_pearson
|
180 |
+
value: 44.096317524324945
|
181 |
+
- type: euclidean_spearman
|
182 |
+
value: 42.95218351391625
|
183 |
+
- type: manhattan_pearson
|
184 |
+
value: 44.07766490545065
|
185 |
+
- type: manhattan_spearman
|
186 |
+
value: 42.78350497166606
|
187 |
+
- task:
|
188 |
+
type: Classification
|
189 |
+
dataset:
|
190 |
+
type: mteb/banking77
|
191 |
+
name: MTEB Banking77Classification
|
192 |
+
config: default
|
193 |
+
split: test
|
194 |
+
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
195 |
+
metrics:
|
196 |
+
- type: accuracy
|
197 |
+
value: 74.64285714285714
|
198 |
+
- type: f1
|
199 |
+
value: 73.53680835577447
|
200 |
+
- task:
|
201 |
+
type: Clustering
|
202 |
+
dataset:
|
203 |
+
type: mteb/biorxiv-clustering-p2p
|
204 |
+
name: MTEB BiorxivClusteringP2P
|
205 |
+
config: default
|
206 |
+
split: test
|
207 |
+
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
208 |
+
metrics:
|
209 |
+
- type: v_measure
|
210 |
+
value: 28.512813238490164
|
211 |
+
- task:
|
212 |
+
type: Clustering
|
213 |
+
dataset:
|
214 |
+
type: mteb/biorxiv-clustering-s2s
|
215 |
+
name: MTEB BiorxivClusteringS2S
|
216 |
+
config: default
|
217 |
+
split: test
|
218 |
+
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
219 |
+
metrics:
|
220 |
+
- type: v_measure
|
221 |
+
value: 20.942214972649488
|
222 |
+
- task:
|
223 |
+
type: Retrieval
|
224 |
+
dataset:
|
225 |
+
type: BeIR/cqadupstack
|
226 |
+
name: MTEB CQADupstackAndroidRetrieval
|
227 |
+
config: default
|
228 |
+
split: test
|
229 |
+
revision: None
|
230 |
+
metrics:
|
231 |
+
- type: map_at_1
|
232 |
+
value: 28.255999999999997
|
233 |
+
- type: map_at_10
|
234 |
+
value: 37.091
|
235 |
+
- type: map_at_100
|
236 |
+
value: 38.428000000000004
|
237 |
+
- type: map_at_1000
|
238 |
+
value: 38.559
|
239 |
+
- type: map_at_3
|
240 |
+
value: 34.073
|
241 |
+
- type: map_at_5
|
242 |
+
value: 35.739
|
243 |
+
- type: mrr_at_1
|
244 |
+
value: 34.907
|
245 |
+
- type: mrr_at_10
|
246 |
+
value: 42.769
|
247 |
+
- type: mrr_at_100
|
248 |
+
value: 43.607
|
249 |
+
- type: mrr_at_1000
|
250 |
+
value: 43.656
|
251 |
+
- type: mrr_at_3
|
252 |
+
value: 39.986
|
253 |
+
- type: mrr_at_5
|
254 |
+
value: 41.581
|
255 |
+
- type: ndcg_at_1
|
256 |
+
value: 34.907
|
257 |
+
- type: ndcg_at_10
|
258 |
+
value: 42.681000000000004
|
259 |
+
- type: ndcg_at_100
|
260 |
+
value: 48.213
|
261 |
+
- type: ndcg_at_1000
|
262 |
+
value: 50.464
|
263 |
+
- type: ndcg_at_3
|
264 |
+
value: 37.813
|
265 |
+
- type: ndcg_at_5
|
266 |
+
value: 39.936
|
267 |
+
- type: precision_at_1
|
268 |
+
value: 34.907
|
269 |
+
- type: precision_at_10
|
270 |
+
value: 7.911
|
271 |
+
- type: precision_at_100
|
272 |
+
value: 1.349
|
273 |
+
- type: precision_at_1000
|
274 |
+
value: 0.184
|
275 |
+
- type: precision_at_3
|
276 |
+
value: 17.93
|
277 |
+
- type: precision_at_5
|
278 |
+
value: 12.732
|
279 |
+
- type: recall_at_1
|
280 |
+
value: 28.255999999999997
|
281 |
+
- type: recall_at_10
|
282 |
+
value: 53.49699999999999
|
283 |
+
- type: recall_at_100
|
284 |
+
value: 77.288
|
285 |
+
- type: recall_at_1000
|
286 |
+
value: 91.776
|
287 |
+
- type: recall_at_3
|
288 |
+
value: 39.18
|
289 |
+
- type: recall_at_5
|
290 |
+
value: 45.365
|
291 |
+
- task:
|
292 |
+
type: Retrieval
|
293 |
+
dataset:
|
294 |
+
type: BeIR/cqadupstack
|
295 |
+
name: MTEB CQADupstackEnglishRetrieval
|
296 |
+
config: default
|
297 |
+
split: test
|
298 |
+
revision: None
|
299 |
+
metrics:
|
300 |
+
- type: map_at_1
|
301 |
+
value: 25.563999999999997
|
302 |
+
- type: map_at_10
|
303 |
+
value: 33.913
|
304 |
+
- type: map_at_100
|
305 |
+
value: 34.966
|
306 |
+
- type: map_at_1000
|
307 |
+
value: 35.104
|
308 |
+
- type: map_at_3
|
309 |
+
value: 31.413000000000004
|
310 |
+
- type: map_at_5
|
311 |
+
value: 32.854
|
312 |
+
- type: mrr_at_1
|
313 |
+
value: 31.72
|
314 |
+
- type: mrr_at_10
|
315 |
+
value: 39.391
|
316 |
+
- type: mrr_at_100
|
317 |
+
value: 40.02
|
318 |
+
- type: mrr_at_1000
|
319 |
+
value: 40.076
|
320 |
+
- type: mrr_at_3
|
321 |
+
value: 37.314
|
322 |
+
- type: mrr_at_5
|
323 |
+
value: 38.507999999999996
|
324 |
+
- type: ndcg_at_1
|
325 |
+
value: 31.72
|
326 |
+
- type: ndcg_at_10
|
327 |
+
value: 38.933
|
328 |
+
- type: ndcg_at_100
|
329 |
+
value: 43.024
|
330 |
+
- type: ndcg_at_1000
|
331 |
+
value: 45.556999999999995
|
332 |
+
- type: ndcg_at_3
|
333 |
+
value: 35.225
|
334 |
+
- type: ndcg_at_5
|
335 |
+
value: 36.984
|
336 |
+
- type: precision_at_1
|
337 |
+
value: 31.72
|
338 |
+
- type: precision_at_10
|
339 |
+
value: 7.248
|
340 |
+
- type: precision_at_100
|
341 |
+
value: 1.192
|
342 |
+
- type: precision_at_1000
|
343 |
+
value: 0.16999999999999998
|
344 |
+
- type: precision_at_3
|
345 |
+
value: 16.943
|
346 |
+
- type: precision_at_5
|
347 |
+
value: 11.975
|
348 |
+
- type: recall_at_1
|
349 |
+
value: 25.563999999999997
|
350 |
+
- type: recall_at_10
|
351 |
+
value: 47.808
|
352 |
+
- type: recall_at_100
|
353 |
+
value: 65.182
|
354 |
+
- type: recall_at_1000
|
355 |
+
value: 81.831
|
356 |
+
- type: recall_at_3
|
357 |
+
value: 36.889
|
358 |
+
- type: recall_at_5
|
359 |
+
value: 41.829
|
360 |
+
- task:
|
361 |
+
type: Retrieval
|
362 |
+
dataset:
|
363 |
+
type: BeIR/cqadupstack
|
364 |
+
name: MTEB CQADupstackGamingRetrieval
|
365 |
+
config: default
|
366 |
+
split: test
|
367 |
+
revision: None
|
368 |
+
metrics:
|
369 |
+
- type: map_at_1
|
370 |
+
value: 33.662
|
371 |
+
- type: map_at_10
|
372 |
+
value: 44.096999999999994
|
373 |
+
- type: map_at_100
|
374 |
+
value: 45.153999999999996
|
375 |
+
- type: map_at_1000
|
376 |
+
value: 45.223
|
377 |
+
- type: map_at_3
|
378 |
+
value: 41.377
|
379 |
+
- type: map_at_5
|
380 |
+
value: 42.935
|
381 |
+
- type: mrr_at_1
|
382 |
+
value: 38.997
|
383 |
+
- type: mrr_at_10
|
384 |
+
value: 47.675
|
385 |
+
- type: mrr_at_100
|
386 |
+
value: 48.476
|
387 |
+
- type: mrr_at_1000
|
388 |
+
value: 48.519
|
389 |
+
- type: mrr_at_3
|
390 |
+
value: 45.549
|
391 |
+
- type: mrr_at_5
|
392 |
+
value: 46.884
|
393 |
+
- type: ndcg_at_1
|
394 |
+
value: 38.997
|
395 |
+
- type: ndcg_at_10
|
396 |
+
value: 49.196
|
397 |
+
- type: ndcg_at_100
|
398 |
+
value: 53.788000000000004
|
399 |
+
- type: ndcg_at_1000
|
400 |
+
value: 55.393
|
401 |
+
- type: ndcg_at_3
|
402 |
+
value: 44.67
|
403 |
+
- type: ndcg_at_5
|
404 |
+
value: 46.991
|
405 |
+
- type: precision_at_1
|
406 |
+
value: 38.997
|
407 |
+
- type: precision_at_10
|
408 |
+
value: 7.875
|
409 |
+
- type: precision_at_100
|
410 |
+
value: 1.102
|
411 |
+
- type: precision_at_1000
|
412 |
+
value: 0.13
|
413 |
+
- type: precision_at_3
|
414 |
+
value: 19.854
|
415 |
+
- type: precision_at_5
|
416 |
+
value: 13.605
|
417 |
+
- type: recall_at_1
|
418 |
+
value: 33.662
|
419 |
+
- type: recall_at_10
|
420 |
+
value: 60.75899999999999
|
421 |
+
- type: recall_at_100
|
422 |
+
value: 81.11699999999999
|
423 |
+
- type: recall_at_1000
|
424 |
+
value: 92.805
|
425 |
+
- type: recall_at_3
|
426 |
+
value: 48.577999999999996
|
427 |
+
- type: recall_at_5
|
428 |
+
value: 54.384
|
429 |
+
- task:
|
430 |
+
type: Retrieval
|
431 |
+
dataset:
|
432 |
+
type: BeIR/cqadupstack
|
433 |
+
name: MTEB CQADupstackGisRetrieval
|
434 |
+
config: default
|
435 |
+
split: test
|
436 |
+
revision: None
|
437 |
+
metrics:
|
438 |
+
- type: map_at_1
|
439 |
+
value: 21.313
|
440 |
+
- type: map_at_10
|
441 |
+
value: 29.036
|
442 |
+
- type: map_at_100
|
443 |
+
value: 29.975
|
444 |
+
- type: map_at_1000
|
445 |
+
value: 30.063000000000002
|
446 |
+
- type: map_at_3
|
447 |
+
value: 26.878999999999998
|
448 |
+
- type: map_at_5
|
449 |
+
value: 28.005999999999997
|
450 |
+
- type: mrr_at_1
|
451 |
+
value: 23.39
|
452 |
+
- type: mrr_at_10
|
453 |
+
value: 31.072
|
454 |
+
- type: mrr_at_100
|
455 |
+
value: 31.922
|
456 |
+
- type: mrr_at_1000
|
457 |
+
value: 31.995
|
458 |
+
- type: mrr_at_3
|
459 |
+
value: 28.908
|
460 |
+
- type: mrr_at_5
|
461 |
+
value: 30.104999999999997
|
462 |
+
- type: ndcg_at_1
|
463 |
+
value: 23.39
|
464 |
+
- type: ndcg_at_10
|
465 |
+
value: 33.448
|
466 |
+
- type: ndcg_at_100
|
467 |
+
value: 38.255
|
468 |
+
- type: ndcg_at_1000
|
469 |
+
value: 40.542
|
470 |
+
- type: ndcg_at_3
|
471 |
+
value: 29.060000000000002
|
472 |
+
- type: ndcg_at_5
|
473 |
+
value: 31.023
|
474 |
+
- type: precision_at_1
|
475 |
+
value: 23.39
|
476 |
+
- type: precision_at_10
|
477 |
+
value: 5.175
|
478 |
+
- type: precision_at_100
|
479 |
+
value: 0.8049999999999999
|
480 |
+
- type: precision_at_1000
|
481 |
+
value: 0.10300000000000001
|
482 |
+
- type: precision_at_3
|
483 |
+
value: 12.504999999999999
|
484 |
+
- type: precision_at_5
|
485 |
+
value: 8.61
|
486 |
+
- type: recall_at_1
|
487 |
+
value: 21.313
|
488 |
+
- type: recall_at_10
|
489 |
+
value: 45.345
|
490 |
+
- type: recall_at_100
|
491 |
+
value: 67.752
|
492 |
+
- type: recall_at_1000
|
493 |
+
value: 84.937
|
494 |
+
- type: recall_at_3
|
495 |
+
value: 33.033
|
496 |
+
- type: recall_at_5
|
497 |
+
value: 37.929
|
498 |
+
- task:
|
499 |
+
type: Retrieval
|
500 |
+
dataset:
|
501 |
+
type: BeIR/cqadupstack
|
502 |
+
name: MTEB CQADupstackMathematicaRetrieval
|
503 |
+
config: default
|
504 |
+
split: test
|
505 |
+
revision: None
|
506 |
+
metrics:
|
507 |
+
- type: map_at_1
|
508 |
+
value: 14.255999999999998
|
509 |
+
- type: map_at_10
|
510 |
+
value: 20.339
|
511 |
+
- type: map_at_100
|
512 |
+
value: 21.491
|
513 |
+
- type: map_at_1000
|
514 |
+
value: 21.616
|
515 |
+
- type: map_at_3
|
516 |
+
value: 18.481
|
517 |
+
- type: map_at_5
|
518 |
+
value: 19.594
|
519 |
+
- type: mrr_at_1
|
520 |
+
value: 17.413
|
521 |
+
- type: mrr_at_10
|
522 |
+
value: 24.146
|
523 |
+
- type: mrr_at_100
|
524 |
+
value: 25.188
|
525 |
+
- type: mrr_at_1000
|
526 |
+
value: 25.273
|
527 |
+
- type: mrr_at_3
|
528 |
+
value: 22.264
|
529 |
+
- type: mrr_at_5
|
530 |
+
value: 23.302
|
531 |
+
- type: ndcg_at_1
|
532 |
+
value: 17.413
|
533 |
+
- type: ndcg_at_10
|
534 |
+
value: 24.272
|
535 |
+
- type: ndcg_at_100
|
536 |
+
value: 29.82
|
537 |
+
- type: ndcg_at_1000
|
538 |
+
value: 33.072
|
539 |
+
- type: ndcg_at_3
|
540 |
+
value: 20.826
|
541 |
+
- type: ndcg_at_5
|
542 |
+
value: 22.535
|
543 |
+
- type: precision_at_1
|
544 |
+
value: 17.413
|
545 |
+
- type: precision_at_10
|
546 |
+
value: 4.366
|
547 |
+
- type: precision_at_100
|
548 |
+
value: 0.818
|
549 |
+
- type: precision_at_1000
|
550 |
+
value: 0.124
|
551 |
+
- type: precision_at_3
|
552 |
+
value: 9.866999999999999
|
553 |
+
- type: precision_at_5
|
554 |
+
value: 7.164
|
555 |
+
- type: recall_at_1
|
556 |
+
value: 14.255999999999998
|
557 |
+
- type: recall_at_10
|
558 |
+
value: 32.497
|
559 |
+
- type: recall_at_100
|
560 |
+
value: 56.592
|
561 |
+
- type: recall_at_1000
|
562 |
+
value: 80.17699999999999
|
563 |
+
- type: recall_at_3
|
564 |
+
value: 23.195
|
565 |
+
- type: recall_at_5
|
566 |
+
value: 27.392
|
567 |
+
- task:
|
568 |
+
type: Retrieval
|
569 |
+
dataset:
|
570 |
+
type: BeIR/cqadupstack
|
571 |
+
name: MTEB CQADupstackPhysicsRetrieval
|
572 |
+
config: default
|
573 |
+
split: test
|
574 |
+
revision: None
|
575 |
+
metrics:
|
576 |
+
- type: map_at_1
|
577 |
+
value: 22.709
|
578 |
+
- type: map_at_10
|
579 |
+
value: 31.377
|
580 |
+
- type: map_at_100
|
581 |
+
value: 32.536
|
582 |
+
- type: map_at_1000
|
583 |
+
value: 32.669
|
584 |
+
- type: map_at_3
|
585 |
+
value: 28.572999999999997
|
586 |
+
- type: map_at_5
|
587 |
+
value: 30.205
|
588 |
+
- type: mrr_at_1
|
589 |
+
value: 27.815
|
590 |
+
- type: mrr_at_10
|
591 |
+
value: 36.452
|
592 |
+
- type: mrr_at_100
|
593 |
+
value: 37.302
|
594 |
+
- type: mrr_at_1000
|
595 |
+
value: 37.364000000000004
|
596 |
+
- type: mrr_at_3
|
597 |
+
value: 33.75
|
598 |
+
- type: mrr_at_5
|
599 |
+
value: 35.43
|
600 |
+
- type: ndcg_at_1
|
601 |
+
value: 27.815
|
602 |
+
- type: ndcg_at_10
|
603 |
+
value: 36.84
|
604 |
+
- type: ndcg_at_100
|
605 |
+
value: 42.092
|
606 |
+
- type: ndcg_at_1000
|
607 |
+
value: 44.727
|
608 |
+
- type: ndcg_at_3
|
609 |
+
value: 31.964
|
610 |
+
- type: ndcg_at_5
|
611 |
+
value: 34.428
|
612 |
+
- type: precision_at_1
|
613 |
+
value: 27.815
|
614 |
+
- type: precision_at_10
|
615 |
+
value: 6.67
|
616 |
+
- type: precision_at_100
|
617 |
+
value: 1.093
|
618 |
+
- type: precision_at_1000
|
619 |
+
value: 0.151
|
620 |
+
- type: precision_at_3
|
621 |
+
value: 14.982000000000001
|
622 |
+
- type: precision_at_5
|
623 |
+
value: 10.857
|
624 |
+
- type: recall_at_1
|
625 |
+
value: 22.709
|
626 |
+
- type: recall_at_10
|
627 |
+
value: 48.308
|
628 |
+
- type: recall_at_100
|
629 |
+
value: 70.866
|
630 |
+
- type: recall_at_1000
|
631 |
+
value: 88.236
|
632 |
+
- type: recall_at_3
|
633 |
+
value: 34.709
|
634 |
+
- type: recall_at_5
|
635 |
+
value: 40.996
|
636 |
+
- task:
|
637 |
+
type: Retrieval
|
638 |
+
dataset:
|
639 |
+
type: BeIR/cqadupstack
|
640 |
+
name: MTEB CQADupstackProgrammersRetrieval
|
641 |
+
config: default
|
642 |
+
split: test
|
643 |
+
revision: None
|
644 |
+
metrics:
|
645 |
+
- type: map_at_1
|
646 |
+
value: 22.348000000000003
|
647 |
+
- type: map_at_10
|
648 |
+
value: 29.427999999999997
|
649 |
+
- type: map_at_100
|
650 |
+
value: 30.499
|
651 |
+
- type: map_at_1000
|
652 |
+
value: 30.631999999999998
|
653 |
+
- type: map_at_3
|
654 |
+
value: 27.035999999999998
|
655 |
+
- type: map_at_5
|
656 |
+
value: 28.351
|
657 |
+
- type: mrr_at_1
|
658 |
+
value: 27.74
|
659 |
+
- type: mrr_at_10
|
660 |
+
value: 34.424
|
661 |
+
- type: mrr_at_100
|
662 |
+
value: 35.341
|
663 |
+
- type: mrr_at_1000
|
664 |
+
value: 35.419
|
665 |
+
- type: mrr_at_3
|
666 |
+
value: 32.401
|
667 |
+
- type: mrr_at_5
|
668 |
+
value: 33.497
|
669 |
+
- type: ndcg_at_1
|
670 |
+
value: 27.74
|
671 |
+
- type: ndcg_at_10
|
672 |
+
value: 34.136
|
673 |
+
- type: ndcg_at_100
|
674 |
+
value: 39.269
|
675 |
+
- type: ndcg_at_1000
|
676 |
+
value: 42.263
|
677 |
+
- type: ndcg_at_3
|
678 |
+
value: 30.171999999999997
|
679 |
+
- type: ndcg_at_5
|
680 |
+
value: 31.956
|
681 |
+
- type: precision_at_1
|
682 |
+
value: 27.74
|
683 |
+
- type: precision_at_10
|
684 |
+
value: 6.062
|
685 |
+
- type: precision_at_100
|
686 |
+
value: 1.014
|
687 |
+
- type: precision_at_1000
|
688 |
+
value: 0.146
|
689 |
+
- type: precision_at_3
|
690 |
+
value: 14.079
|
691 |
+
- type: precision_at_5
|
692 |
+
value: 9.977
|
693 |
+
- type: recall_at_1
|
694 |
+
value: 22.348000000000003
|
695 |
+
- type: recall_at_10
|
696 |
+
value: 43.477
|
697 |
+
- type: recall_at_100
|
698 |
+
value: 65.945
|
699 |
+
- type: recall_at_1000
|
700 |
+
value: 86.587
|
701 |
+
- type: recall_at_3
|
702 |
+
value: 32.107
|
703 |
+
- type: recall_at_5
|
704 |
+
value: 36.974000000000004
|
705 |
+
- task:
|
706 |
+
type: Retrieval
|
707 |
+
dataset:
|
708 |
+
type: BeIR/cqadupstack
|
709 |
+
name: MTEB CQADupstackRetrieval
|
710 |
+
config: default
|
711 |
+
split: test
|
712 |
+
revision: None
|
713 |
+
metrics:
|
714 |
+
- type: map_at_1
|
715 |
+
value: 21.688499999999998
|
716 |
+
- type: map_at_10
|
717 |
+
value: 29.164666666666665
|
718 |
+
- type: map_at_100
|
719 |
+
value: 30.22575
|
720 |
+
- type: map_at_1000
|
721 |
+
value: 30.350833333333334
|
722 |
+
- type: map_at_3
|
723 |
+
value: 26.82025
|
724 |
+
- type: map_at_5
|
725 |
+
value: 28.14966666666667
|
726 |
+
- type: mrr_at_1
|
727 |
+
value: 25.779249999999998
|
728 |
+
- type: mrr_at_10
|
729 |
+
value: 32.969
|
730 |
+
- type: mrr_at_100
|
731 |
+
value: 33.81725
|
732 |
+
- type: mrr_at_1000
|
733 |
+
value: 33.88825
|
734 |
+
- type: mrr_at_3
|
735 |
+
value: 30.831250000000004
|
736 |
+
- type: mrr_at_5
|
737 |
+
value: 32.065000000000005
|
738 |
+
- type: ndcg_at_1
|
739 |
+
value: 25.779249999999998
|
740 |
+
- type: ndcg_at_10
|
741 |
+
value: 33.73675
|
742 |
+
- type: ndcg_at_100
|
743 |
+
value: 38.635666666666665
|
744 |
+
- type: ndcg_at_1000
|
745 |
+
value: 41.353500000000004
|
746 |
+
- type: ndcg_at_3
|
747 |
+
value: 29.66283333333333
|
748 |
+
- type: ndcg_at_5
|
749 |
+
value: 31.607249999999997
|
750 |
+
- type: precision_at_1
|
751 |
+
value: 25.779249999999998
|
752 |
+
- type: precision_at_10
|
753 |
+
value: 5.861416666666667
|
754 |
+
- type: precision_at_100
|
755 |
+
value: 0.9852500000000002
|
756 |
+
- type: precision_at_1000
|
757 |
+
value: 0.14108333333333334
|
758 |
+
- type: precision_at_3
|
759 |
+
value: 13.563583333333332
|
760 |
+
- type: precision_at_5
|
761 |
+
value: 9.630333333333335
|
762 |
+
- type: recall_at_1
|
763 |
+
value: 21.688499999999998
|
764 |
+
- type: recall_at_10
|
765 |
+
value: 43.605
|
766 |
+
- type: recall_at_100
|
767 |
+
value: 65.52366666666667
|
768 |
+
- type: recall_at_1000
|
769 |
+
value: 84.69683333333332
|
770 |
+
- type: recall_at_3
|
771 |
+
value: 32.195499999999996
|
772 |
+
- type: recall_at_5
|
773 |
+
value: 37.25325
|
774 |
+
- task:
|
775 |
+
type: Retrieval
|
776 |
+
dataset:
|
777 |
+
type: BeIR/cqadupstack
|
778 |
+
name: MTEB CQADupstackStatsRetrieval
|
779 |
+
config: default
|
780 |
+
split: test
|
781 |
+
revision: None
|
782 |
+
metrics:
|
783 |
+
- type: map_at_1
|
784 |
+
value: 17.279
|
785 |
+
- type: map_at_10
|
786 |
+
value: 23.238
|
787 |
+
- type: map_at_100
|
788 |
+
value: 24.026
|
789 |
+
- type: map_at_1000
|
790 |
+
value: 24.13
|
791 |
+
- type: map_at_3
|
792 |
+
value: 20.730999999999998
|
793 |
+
- type: map_at_5
|
794 |
+
value: 22.278000000000002
|
795 |
+
- type: mrr_at_1
|
796 |
+
value: 19.017999999999997
|
797 |
+
- type: mrr_at_10
|
798 |
+
value: 25.188
|
799 |
+
- type: mrr_at_100
|
800 |
+
value: 25.918999999999997
|
801 |
+
- type: mrr_at_1000
|
802 |
+
value: 25.996999999999996
|
803 |
+
- type: mrr_at_3
|
804 |
+
value: 22.776
|
805 |
+
- type: mrr_at_5
|
806 |
+
value: 24.256
|
807 |
+
- type: ndcg_at_1
|
808 |
+
value: 19.017999999999997
|
809 |
+
- type: ndcg_at_10
|
810 |
+
value: 27.171
|
811 |
+
- type: ndcg_at_100
|
812 |
+
value: 31.274
|
813 |
+
- type: ndcg_at_1000
|
814 |
+
value: 34.016000000000005
|
815 |
+
- type: ndcg_at_3
|
816 |
+
value: 22.442
|
817 |
+
- type: ndcg_at_5
|
818 |
+
value: 24.955
|
819 |
+
- type: precision_at_1
|
820 |
+
value: 19.017999999999997
|
821 |
+
- type: precision_at_10
|
822 |
+
value: 4.494
|
823 |
+
- type: precision_at_100
|
824 |
+
value: 0.712
|
825 |
+
- type: precision_at_1000
|
826 |
+
value: 0.10300000000000001
|
827 |
+
- type: precision_at_3
|
828 |
+
value: 9.611
|
829 |
+
- type: precision_at_5
|
830 |
+
value: 7.331
|
831 |
+
- type: recall_at_1
|
832 |
+
value: 17.279
|
833 |
+
- type: recall_at_10
|
834 |
+
value: 37.464999999999996
|
835 |
+
- type: recall_at_100
|
836 |
+
value: 56.458
|
837 |
+
- type: recall_at_1000
|
838 |
+
value: 76.759
|
839 |
+
- type: recall_at_3
|
840 |
+
value: 24.659
|
841 |
+
- type: recall_at_5
|
842 |
+
value: 30.672
|
843 |
+
- task:
|
844 |
+
type: Retrieval
|
845 |
+
dataset:
|
846 |
+
type: BeIR/cqadupstack
|
847 |
+
name: MTEB CQADupstackTexRetrieval
|
848 |
+
config: default
|
849 |
+
split: test
|
850 |
+
revision: None
|
851 |
+
metrics:
|
852 |
+
- type: map_at_1
|
853 |
+
value: 14.901
|
854 |
+
- type: map_at_10
|
855 |
+
value: 20.268
|
856 |
+
- type: map_at_100
|
857 |
+
value: 21.143
|
858 |
+
- type: map_at_1000
|
859 |
+
value: 21.264
|
860 |
+
- type: map_at_3
|
861 |
+
value: 18.557000000000002
|
862 |
+
- type: map_at_5
|
863 |
+
value: 19.483
|
864 |
+
- type: mrr_at_1
|
865 |
+
value: 17.997
|
866 |
+
- type: mrr_at_10
|
867 |
+
value: 23.591
|
868 |
+
- type: mrr_at_100
|
869 |
+
value: 24.387
|
870 |
+
- type: mrr_at_1000
|
871 |
+
value: 24.471
|
872 |
+
- type: mrr_at_3
|
873 |
+
value: 21.874
|
874 |
+
- type: mrr_at_5
|
875 |
+
value: 22.797
|
876 |
+
- type: ndcg_at_1
|
877 |
+
value: 17.997
|
878 |
+
- type: ndcg_at_10
|
879 |
+
value: 23.87
|
880 |
+
- type: ndcg_at_100
|
881 |
+
value: 28.459
|
882 |
+
- type: ndcg_at_1000
|
883 |
+
value: 31.66
|
884 |
+
- type: ndcg_at_3
|
885 |
+
value: 20.779
|
886 |
+
- type: ndcg_at_5
|
887 |
+
value: 22.137
|
888 |
+
- type: precision_at_1
|
889 |
+
value: 17.997
|
890 |
+
- type: precision_at_10
|
891 |
+
value: 4.25
|
892 |
+
- type: precision_at_100
|
893 |
+
value: 0.761
|
894 |
+
- type: precision_at_1000
|
895 |
+
value: 0.121
|
896 |
+
- type: precision_at_3
|
897 |
+
value: 9.716
|
898 |
+
- type: precision_at_5
|
899 |
+
value: 6.909999999999999
|
900 |
+
- type: recall_at_1
|
901 |
+
value: 14.901
|
902 |
+
- type: recall_at_10
|
903 |
+
value: 31.44
|
904 |
+
- type: recall_at_100
|
905 |
+
value: 52.717000000000006
|
906 |
+
- type: recall_at_1000
|
907 |
+
value: 76.102
|
908 |
+
- type: recall_at_3
|
909 |
+
value: 22.675
|
910 |
+
- type: recall_at_5
|
911 |
+
value: 26.336
|
912 |
+
- task:
|
913 |
+
type: Retrieval
|
914 |
+
dataset:
|
915 |
+
type: BeIR/cqadupstack
|
916 |
+
name: MTEB CQADupstackUnixRetrieval
|
917 |
+
config: default
|
918 |
+
split: test
|
919 |
+
revision: None
|
920 |
+
metrics:
|
921 |
+
- type: map_at_1
|
922 |
+
value: 21.52
|
923 |
+
- type: map_at_10
|
924 |
+
value: 28.397
|
925 |
+
- type: map_at_100
|
926 |
+
value: 29.443
|
927 |
+
- type: map_at_1000
|
928 |
+
value: 29.56
|
929 |
+
- type: map_at_3
|
930 |
+
value: 26.501
|
931 |
+
- type: map_at_5
|
932 |
+
value: 27.375
|
933 |
+
- type: mrr_at_1
|
934 |
+
value: 25.28
|
935 |
+
- type: mrr_at_10
|
936 |
+
value: 32.102000000000004
|
937 |
+
- type: mrr_at_100
|
938 |
+
value: 33.005
|
939 |
+
- type: mrr_at_1000
|
940 |
+
value: 33.084
|
941 |
+
- type: mrr_at_3
|
942 |
+
value: 30.208000000000002
|
943 |
+
- type: mrr_at_5
|
944 |
+
value: 31.146
|
945 |
+
- type: ndcg_at_1
|
946 |
+
value: 25.28
|
947 |
+
- type: ndcg_at_10
|
948 |
+
value: 32.635
|
949 |
+
- type: ndcg_at_100
|
950 |
+
value: 37.672
|
951 |
+
- type: ndcg_at_1000
|
952 |
+
value: 40.602
|
953 |
+
- type: ndcg_at_3
|
954 |
+
value: 28.951999999999998
|
955 |
+
- type: ndcg_at_5
|
956 |
+
value: 30.336999999999996
|
957 |
+
- type: precision_at_1
|
958 |
+
value: 25.28
|
959 |
+
- type: precision_at_10
|
960 |
+
value: 5.3260000000000005
|
961 |
+
- type: precision_at_100
|
962 |
+
value: 0.8840000000000001
|
963 |
+
- type: precision_at_1000
|
964 |
+
value: 0.126
|
965 |
+
- type: precision_at_3
|
966 |
+
value: 12.687000000000001
|
967 |
+
- type: precision_at_5
|
968 |
+
value: 8.638
|
969 |
+
- type: recall_at_1
|
970 |
+
value: 21.52
|
971 |
+
- type: recall_at_10
|
972 |
+
value: 41.955
|
973 |
+
- type: recall_at_100
|
974 |
+
value: 64.21
|
975 |
+
- type: recall_at_1000
|
976 |
+
value: 85.28099999999999
|
977 |
+
- type: recall_at_3
|
978 |
+
value: 31.979999999999997
|
979 |
+
- type: recall_at_5
|
980 |
+
value: 35.406
|
981 |
+
- task:
|
982 |
+
type: Retrieval
|
983 |
+
dataset:
|
984 |
+
type: BeIR/cqadupstack
|
985 |
+
name: MTEB CQADupstackWebmastersRetrieval
|
986 |
+
config: default
|
987 |
+
split: test
|
988 |
+
revision: None
|
989 |
+
metrics:
|
990 |
+
- type: map_at_1
|
991 |
+
value: 20.296
|
992 |
+
- type: map_at_10
|
993 |
+
value: 28.449999999999996
|
994 |
+
- type: map_at_100
|
995 |
+
value: 29.847
|
996 |
+
- type: map_at_1000
|
997 |
+
value: 30.073
|
998 |
+
- type: map_at_3
|
999 |
+
value: 25.995
|
1000 |
+
- type: map_at_5
|
1001 |
+
value: 27.603
|
1002 |
+
- type: mrr_at_1
|
1003 |
+
value: 25.296000000000003
|
1004 |
+
- type: mrr_at_10
|
1005 |
+
value: 32.751999999999995
|
1006 |
+
- type: mrr_at_100
|
1007 |
+
value: 33.705
|
1008 |
+
- type: mrr_at_1000
|
1009 |
+
value: 33.783
|
1010 |
+
- type: mrr_at_3
|
1011 |
+
value: 30.731
|
1012 |
+
- type: mrr_at_5
|
1013 |
+
value: 32.006
|
1014 |
+
- type: ndcg_at_1
|
1015 |
+
value: 25.296000000000003
|
1016 |
+
- type: ndcg_at_10
|
1017 |
+
value: 33.555
|
1018 |
+
- type: ndcg_at_100
|
1019 |
+
value: 38.891999999999996
|
1020 |
+
- type: ndcg_at_1000
|
1021 |
+
value: 42.088
|
1022 |
+
- type: ndcg_at_3
|
1023 |
+
value: 29.944
|
1024 |
+
- type: ndcg_at_5
|
1025 |
+
value: 31.997999999999998
|
1026 |
+
- type: precision_at_1
|
1027 |
+
value: 25.296000000000003
|
1028 |
+
- type: precision_at_10
|
1029 |
+
value: 6.542000000000001
|
1030 |
+
- type: precision_at_100
|
1031 |
+
value: 1.354
|
1032 |
+
- type: precision_at_1000
|
1033 |
+
value: 0.22599999999999998
|
1034 |
+
- type: precision_at_3
|
1035 |
+
value: 14.360999999999999
|
1036 |
+
- type: precision_at_5
|
1037 |
+
value: 10.593
|
1038 |
+
- type: recall_at_1
|
1039 |
+
value: 20.296
|
1040 |
+
- type: recall_at_10
|
1041 |
+
value: 42.742000000000004
|
1042 |
+
- type: recall_at_100
|
1043 |
+
value: 67.351
|
1044 |
+
- type: recall_at_1000
|
1045 |
+
value: 88.774
|
1046 |
+
- type: recall_at_3
|
1047 |
+
value: 32.117000000000004
|
1048 |
+
- type: recall_at_5
|
1049 |
+
value: 37.788
|
1050 |
+
- task:
|
1051 |
+
type: Retrieval
|
1052 |
+
dataset:
|
1053 |
+
type: BeIR/cqadupstack
|
1054 |
+
name: MTEB CQADupstackWordpressRetrieval
|
1055 |
+
config: default
|
1056 |
+
split: test
|
1057 |
+
revision: None
|
1058 |
+
metrics:
|
1059 |
+
- type: map_at_1
|
1060 |
+
value: 18.157999999999998
|
1061 |
+
- type: map_at_10
|
1062 |
+
value: 24.342
|
1063 |
+
- type: map_at_100
|
1064 |
+
value: 25.201
|
1065 |
+
- type: map_at_1000
|
1066 |
+
value: 25.317
|
1067 |
+
- type: map_at_3
|
1068 |
+
value: 22.227
|
1069 |
+
- type: map_at_5
|
1070 |
+
value: 23.372999999999998
|
1071 |
+
- type: mrr_at_1
|
1072 |
+
value: 19.778000000000002
|
1073 |
+
- type: mrr_at_10
|
1074 |
+
value: 26.066
|
1075 |
+
- type: mrr_at_100
|
1076 |
+
value: 26.935
|
1077 |
+
- type: mrr_at_1000
|
1078 |
+
value: 27.022000000000002
|
1079 |
+
- type: mrr_at_3
|
1080 |
+
value: 24.214
|
1081 |
+
- type: mrr_at_5
|
1082 |
+
value: 25.268
|
1083 |
+
- type: ndcg_at_1
|
1084 |
+
value: 19.778000000000002
|
1085 |
+
- type: ndcg_at_10
|
1086 |
+
value: 28.104000000000003
|
1087 |
+
- type: ndcg_at_100
|
1088 |
+
value: 32.87
|
1089 |
+
- type: ndcg_at_1000
|
1090 |
+
value: 35.858000000000004
|
1091 |
+
- type: ndcg_at_3
|
1092 |
+
value: 24.107
|
1093 |
+
- type: ndcg_at_5
|
1094 |
+
value: 26.007
|
1095 |
+
- type: precision_at_1
|
1096 |
+
value: 19.778000000000002
|
1097 |
+
- type: precision_at_10
|
1098 |
+
value: 4.417999999999999
|
1099 |
+
- type: precision_at_100
|
1100 |
+
value: 0.739
|
1101 |
+
- type: precision_at_1000
|
1102 |
+
value: 0.109
|
1103 |
+
- type: precision_at_3
|
1104 |
+
value: 10.228
|
1105 |
+
- type: precision_at_5
|
1106 |
+
value: 7.172000000000001
|
1107 |
+
- type: recall_at_1
|
1108 |
+
value: 18.157999999999998
|
1109 |
+
- type: recall_at_10
|
1110 |
+
value: 37.967
|
1111 |
+
- type: recall_at_100
|
1112 |
+
value: 60.806000000000004
|
1113 |
+
- type: recall_at_1000
|
1114 |
+
value: 83.097
|
1115 |
+
- type: recall_at_3
|
1116 |
+
value: 27.223999999999997
|
1117 |
+
- type: recall_at_5
|
1118 |
+
value: 31.968000000000004
|
1119 |
+
- task:
|
1120 |
+
type: Retrieval
|
1121 |
+
dataset:
|
1122 |
+
type: climate-fever
|
1123 |
+
name: MTEB ClimateFEVER
|
1124 |
+
config: default
|
1125 |
+
split: test
|
1126 |
+
revision: None
|
1127 |
+
metrics:
|
1128 |
+
- type: map_at_1
|
1129 |
+
value: 7.055
|
1130 |
+
- type: map_at_10
|
1131 |
+
value: 11.609
|
1132 |
+
- type: map_at_100
|
1133 |
+
value: 12.83
|
1134 |
+
- type: map_at_1000
|
1135 |
+
value: 12.995000000000001
|
1136 |
+
- type: map_at_3
|
1137 |
+
value: 9.673
|
1138 |
+
- type: map_at_5
|
1139 |
+
value: 10.761999999999999
|
1140 |
+
- type: mrr_at_1
|
1141 |
+
value: 15.309000000000001
|
1142 |
+
- type: mrr_at_10
|
1143 |
+
value: 23.655
|
1144 |
+
- type: mrr_at_100
|
1145 |
+
value: 24.785
|
1146 |
+
- type: mrr_at_1000
|
1147 |
+
value: 24.856
|
1148 |
+
- type: mrr_at_3
|
1149 |
+
value: 20.499000000000002
|
1150 |
+
- type: mrr_at_5
|
1151 |
+
value: 22.425
|
1152 |
+
- type: ndcg_at_1
|
1153 |
+
value: 15.309000000000001
|
1154 |
+
- type: ndcg_at_10
|
1155 |
+
value: 17.252000000000002
|
1156 |
+
- type: ndcg_at_100
|
1157 |
+
value: 22.976
|
1158 |
+
- type: ndcg_at_1000
|
1159 |
+
value: 26.480999999999998
|
1160 |
+
- type: ndcg_at_3
|
1161 |
+
value: 13.418
|
1162 |
+
- type: ndcg_at_5
|
1163 |
+
value: 15.084
|
1164 |
+
- type: precision_at_1
|
1165 |
+
value: 15.309000000000001
|
1166 |
+
- type: precision_at_10
|
1167 |
+
value: 5.309
|
1168 |
+
- type: precision_at_100
|
1169 |
+
value: 1.1320000000000001
|
1170 |
+
- type: precision_at_1000
|
1171 |
+
value: 0.17600000000000002
|
1172 |
+
- type: precision_at_3
|
1173 |
+
value: 9.62
|
1174 |
+
- type: precision_at_5
|
1175 |
+
value: 7.883
|
1176 |
+
- type: recall_at_1
|
1177 |
+
value: 7.055
|
1178 |
+
- type: recall_at_10
|
1179 |
+
value: 21.891
|
1180 |
+
- type: recall_at_100
|
1181 |
+
value: 41.979
|
1182 |
+
- type: recall_at_1000
|
1183 |
+
value: 62.239999999999995
|
1184 |
+
- type: recall_at_3
|
1185 |
+
value: 12.722
|
1186 |
+
- type: recall_at_5
|
1187 |
+
value: 16.81
|
1188 |
+
- task:
|
1189 |
+
type: Retrieval
|
1190 |
+
dataset:
|
1191 |
+
type: dbpedia-entity
|
1192 |
+
name: MTEB DBPedia
|
1193 |
+
config: default
|
1194 |
+
split: test
|
1195 |
+
revision: None
|
1196 |
+
metrics:
|
1197 |
+
- type: map_at_1
|
1198 |
+
value: 6.909
|
1199 |
+
- type: map_at_10
|
1200 |
+
value: 12.844
|
1201 |
+
- type: map_at_100
|
1202 |
+
value: 16.435
|
1203 |
+
- type: map_at_1000
|
1204 |
+
value: 17.262
|
1205 |
+
- type: map_at_3
|
1206 |
+
value: 10.131
|
1207 |
+
- type: map_at_5
|
1208 |
+
value: 11.269
|
1209 |
+
- type: mrr_at_1
|
1210 |
+
value: 54.50000000000001
|
1211 |
+
- type: mrr_at_10
|
1212 |
+
value: 62.202
|
1213 |
+
- type: mrr_at_100
|
1214 |
+
value: 62.81
|
1215 |
+
- type: mrr_at_1000
|
1216 |
+
value: 62.824000000000005
|
1217 |
+
- type: mrr_at_3
|
1218 |
+
value: 60.5
|
1219 |
+
- type: mrr_at_5
|
1220 |
+
value: 61.324999999999996
|
1221 |
+
- type: ndcg_at_1
|
1222 |
+
value: 42.125
|
1223 |
+
- type: ndcg_at_10
|
1224 |
+
value: 28.284
|
1225 |
+
- type: ndcg_at_100
|
1226 |
+
value: 30.444
|
1227 |
+
- type: ndcg_at_1000
|
1228 |
+
value: 36.397
|
1229 |
+
- type: ndcg_at_3
|
1230 |
+
value: 33.439
|
1231 |
+
- type: ndcg_at_5
|
1232 |
+
value: 30.473
|
1233 |
+
- type: precision_at_1
|
1234 |
+
value: 54.50000000000001
|
1235 |
+
- type: precision_at_10
|
1236 |
+
value: 21.4
|
1237 |
+
- type: precision_at_100
|
1238 |
+
value: 6.192
|
1239 |
+
- type: precision_at_1000
|
1240 |
+
value: 1.398
|
1241 |
+
- type: precision_at_3
|
1242 |
+
value: 36.583
|
1243 |
+
- type: precision_at_5
|
1244 |
+
value: 28.799999999999997
|
1245 |
+
- type: recall_at_1
|
1246 |
+
value: 6.909
|
1247 |
+
- type: recall_at_10
|
1248 |
+
value: 17.296
|
1249 |
+
- type: recall_at_100
|
1250 |
+
value: 33.925
|
1251 |
+
- type: recall_at_1000
|
1252 |
+
value: 53.786
|
1253 |
+
- type: recall_at_3
|
1254 |
+
value: 11.333
|
1255 |
+
- type: recall_at_5
|
1256 |
+
value: 13.529
|
1257 |
+
- task:
|
1258 |
+
type: Classification
|
1259 |
+
dataset:
|
1260 |
+
type: mteb/emotion
|
1261 |
+
name: MTEB EmotionClassification
|
1262 |
+
config: default
|
1263 |
+
split: test
|
1264 |
+
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
1265 |
+
metrics:
|
1266 |
+
- type: accuracy
|
1267 |
+
value: 36.08
|
1268 |
+
- type: f1
|
1269 |
+
value: 33.016420191943766
|
1270 |
+
- task:
|
1271 |
+
type: Retrieval
|
1272 |
+
dataset:
|
1273 |
+
type: fever
|
1274 |
+
name: MTEB FEVER
|
1275 |
+
config: default
|
1276 |
+
split: test
|
1277 |
+
revision: None
|
1278 |
+
metrics:
|
1279 |
+
- type: map_at_1
|
1280 |
+
value: 52.605000000000004
|
1281 |
+
- type: map_at_10
|
1282 |
+
value: 63.31400000000001
|
1283 |
+
- type: map_at_100
|
1284 |
+
value: 63.678000000000004
|
1285 |
+
- type: map_at_1000
|
1286 |
+
value: 63.699
|
1287 |
+
- type: map_at_3
|
1288 |
+
value: 61.141
|
1289 |
+
- type: map_at_5
|
1290 |
+
value: 62.517999999999994
|
1291 |
+
- type: mrr_at_1
|
1292 |
+
value: 56.871
|
1293 |
+
- type: mrr_at_10
|
1294 |
+
value: 67.915
|
1295 |
+
- type: mrr_at_100
|
1296 |
+
value: 68.24900000000001
|
1297 |
+
- type: mrr_at_1000
|
1298 |
+
value: 68.262
|
1299 |
+
- type: mrr_at_3
|
1300 |
+
value: 65.809
|
1301 |
+
- type: mrr_at_5
|
1302 |
+
value: 67.171
|
1303 |
+
- type: ndcg_at_1
|
1304 |
+
value: 56.871
|
1305 |
+
- type: ndcg_at_10
|
1306 |
+
value: 69.122
|
1307 |
+
- type: ndcg_at_100
|
1308 |
+
value: 70.855
|
1309 |
+
- type: ndcg_at_1000
|
1310 |
+
value: 71.368
|
1311 |
+
- type: ndcg_at_3
|
1312 |
+
value: 64.974
|
1313 |
+
- type: ndcg_at_5
|
1314 |
+
value: 67.318
|
1315 |
+
- type: precision_at_1
|
1316 |
+
value: 56.871
|
1317 |
+
- type: precision_at_10
|
1318 |
+
value: 9.029
|
1319 |
+
- type: precision_at_100
|
1320 |
+
value: 0.996
|
1321 |
+
- type: precision_at_1000
|
1322 |
+
value: 0.105
|
1323 |
+
- type: precision_at_3
|
1324 |
+
value: 25.893
|
1325 |
+
- type: precision_at_5
|
1326 |
+
value: 16.838
|
1327 |
+
- type: recall_at_1
|
1328 |
+
value: 52.605000000000004
|
1329 |
+
- type: recall_at_10
|
1330 |
+
value: 82.679
|
1331 |
+
- type: recall_at_100
|
1332 |
+
value: 90.586
|
1333 |
+
- type: recall_at_1000
|
1334 |
+
value: 94.38
|
1335 |
+
- type: recall_at_3
|
1336 |
+
value: 71.447
|
1337 |
+
- type: recall_at_5
|
1338 |
+
value: 77.218
|
1339 |
+
- task:
|
1340 |
+
type: Retrieval
|
1341 |
+
dataset:
|
1342 |
+
type: fiqa
|
1343 |
+
name: MTEB FiQA2018
|
1344 |
+
config: default
|
1345 |
+
split: test
|
1346 |
+
revision: None
|
1347 |
+
metrics:
|
1348 |
+
- type: map_at_1
|
1349 |
+
value: 10.759
|
1350 |
+
- type: map_at_10
|
1351 |
+
value: 18.877
|
1352 |
+
- type: map_at_100
|
1353 |
+
value: 20.498
|
1354 |
+
- type: map_at_1000
|
1355 |
+
value: 20.682000000000002
|
1356 |
+
- type: map_at_3
|
1357 |
+
value: 16.159000000000002
|
1358 |
+
- type: map_at_5
|
1359 |
+
value: 17.575
|
1360 |
+
- type: mrr_at_1
|
1361 |
+
value: 22.531000000000002
|
1362 |
+
- type: mrr_at_10
|
1363 |
+
value: 31.155
|
1364 |
+
- type: mrr_at_100
|
1365 |
+
value: 32.188
|
1366 |
+
- type: mrr_at_1000
|
1367 |
+
value: 32.245000000000005
|
1368 |
+
- type: mrr_at_3
|
1369 |
+
value: 28.781000000000002
|
1370 |
+
- type: mrr_at_5
|
1371 |
+
value: 30.054
|
1372 |
+
- type: ndcg_at_1
|
1373 |
+
value: 22.531000000000002
|
1374 |
+
- type: ndcg_at_10
|
1375 |
+
value: 25.189
|
1376 |
+
- type: ndcg_at_100
|
1377 |
+
value: 31.958
|
1378 |
+
- type: ndcg_at_1000
|
1379 |
+
value: 35.693999999999996
|
1380 |
+
- type: ndcg_at_3
|
1381 |
+
value: 22.235
|
1382 |
+
- type: ndcg_at_5
|
1383 |
+
value: 23.044999999999998
|
1384 |
+
- type: precision_at_1
|
1385 |
+
value: 22.531000000000002
|
1386 |
+
- type: precision_at_10
|
1387 |
+
value: 7.438000000000001
|
1388 |
+
- type: precision_at_100
|
1389 |
+
value: 1.418
|
1390 |
+
- type: precision_at_1000
|
1391 |
+
value: 0.208
|
1392 |
+
- type: precision_at_3
|
1393 |
+
value: 15.329
|
1394 |
+
- type: precision_at_5
|
1395 |
+
value: 11.451
|
1396 |
+
- type: recall_at_1
|
1397 |
+
value: 10.759
|
1398 |
+
- type: recall_at_10
|
1399 |
+
value: 31.416
|
1400 |
+
- type: recall_at_100
|
1401 |
+
value: 56.989000000000004
|
1402 |
+
- type: recall_at_1000
|
1403 |
+
value: 80.33200000000001
|
1404 |
+
- type: recall_at_3
|
1405 |
+
value: 20.61
|
1406 |
+
- type: recall_at_5
|
1407 |
+
value: 24.903
|
1408 |
+
- task:
|
1409 |
+
type: Retrieval
|
1410 |
+
dataset:
|
1411 |
+
type: hotpotqa
|
1412 |
+
name: MTEB HotpotQA
|
1413 |
+
config: default
|
1414 |
+
split: test
|
1415 |
+
revision: None
|
1416 |
+
metrics:
|
1417 |
+
- type: map_at_1
|
1418 |
+
value: 29.21
|
1419 |
+
- type: map_at_10
|
1420 |
+
value: 38.765
|
1421 |
+
- type: map_at_100
|
1422 |
+
value: 39.498
|
1423 |
+
- type: map_at_1000
|
1424 |
+
value: 39.568
|
1425 |
+
- type: map_at_3
|
1426 |
+
value: 36.699
|
1427 |
+
- type: map_at_5
|
1428 |
+
value: 37.925
|
1429 |
+
- type: mrr_at_1
|
1430 |
+
value: 58.42
|
1431 |
+
- type: mrr_at_10
|
1432 |
+
value: 65.137
|
1433 |
+
- type: mrr_at_100
|
1434 |
+
value: 65.542
|
1435 |
+
- type: mrr_at_1000
|
1436 |
+
value: 65.568
|
1437 |
+
- type: mrr_at_3
|
1438 |
+
value: 63.698
|
1439 |
+
- type: mrr_at_5
|
1440 |
+
value: 64.575
|
1441 |
+
- type: ndcg_at_1
|
1442 |
+
value: 58.42
|
1443 |
+
- type: ndcg_at_10
|
1444 |
+
value: 47.476
|
1445 |
+
- type: ndcg_at_100
|
1446 |
+
value: 50.466
|
1447 |
+
- type: ndcg_at_1000
|
1448 |
+
value: 52.064
|
1449 |
+
- type: ndcg_at_3
|
1450 |
+
value: 43.986
|
1451 |
+
- type: ndcg_at_5
|
1452 |
+
value: 45.824
|
1453 |
+
- type: precision_at_1
|
1454 |
+
value: 58.42
|
1455 |
+
- type: precision_at_10
|
1456 |
+
value: 9.649000000000001
|
1457 |
+
- type: precision_at_100
|
1458 |
+
value: 1.201
|
1459 |
+
- type: precision_at_1000
|
1460 |
+
value: 0.14100000000000001
|
1461 |
+
- type: precision_at_3
|
1462 |
+
value: 26.977
|
1463 |
+
- type: precision_at_5
|
1464 |
+
value: 17.642
|
1465 |
+
- type: recall_at_1
|
1466 |
+
value: 29.21
|
1467 |
+
- type: recall_at_10
|
1468 |
+
value: 48.244
|
1469 |
+
- type: recall_at_100
|
1470 |
+
value: 60.041
|
1471 |
+
- type: recall_at_1000
|
1472 |
+
value: 70.743
|
1473 |
+
- type: recall_at_3
|
1474 |
+
value: 40.466
|
1475 |
+
- type: recall_at_5
|
1476 |
+
value: 44.105
|
1477 |
+
- task:
|
1478 |
+
type: Classification
|
1479 |
+
dataset:
|
1480 |
+
type: mteb/imdb
|
1481 |
+
name: MTEB ImdbClassification
|
1482 |
+
config: default
|
1483 |
+
split: test
|
1484 |
+
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
1485 |
+
metrics:
|
1486 |
+
- type: accuracy
|
1487 |
+
value: 58.7064
|
1488 |
+
- type: ap
|
1489 |
+
value: 55.36326227125519
|
1490 |
+
- type: f1
|
1491 |
+
value: 57.46763115215848
|
1492 |
+
- task:
|
1493 |
+
type: Retrieval
|
1494 |
+
dataset:
|
1495 |
+
type: msmarco
|
1496 |
+
name: MTEB MSMARCO
|
1497 |
+
config: default
|
1498 |
+
split: dev
|
1499 |
+
revision: None
|
1500 |
+
metrics:
|
1501 |
+
- type: map_at_1
|
1502 |
+
value: 15.889000000000001
|
1503 |
+
- type: map_at_10
|
1504 |
+
value: 25.979000000000003
|
1505 |
+
- type: map_at_100
|
1506 |
+
value: 27.21
|
1507 |
+
- type: map_at_1000
|
1508 |
+
value: 27.284000000000002
|
1509 |
+
- type: map_at_3
|
1510 |
+
value: 22.665
|
1511 |
+
- type: map_at_5
|
1512 |
+
value: 24.578
|
1513 |
+
- type: mrr_at_1
|
1514 |
+
value: 16.39
|
1515 |
+
- type: mrr_at_10
|
1516 |
+
value: 26.504
|
1517 |
+
- type: mrr_at_100
|
1518 |
+
value: 27.689999999999998
|
1519 |
+
- type: mrr_at_1000
|
1520 |
+
value: 27.758
|
1521 |
+
- type: mrr_at_3
|
1522 |
+
value: 23.24
|
1523 |
+
- type: mrr_at_5
|
1524 |
+
value: 25.108000000000004
|
1525 |
+
- type: ndcg_at_1
|
1526 |
+
value: 16.39
|
1527 |
+
- type: ndcg_at_10
|
1528 |
+
value: 31.799
|
1529 |
+
- type: ndcg_at_100
|
1530 |
+
value: 38.034
|
1531 |
+
- type: ndcg_at_1000
|
1532 |
+
value: 39.979
|
1533 |
+
- type: ndcg_at_3
|
1534 |
+
value: 25.054
|
1535 |
+
- type: ndcg_at_5
|
1536 |
+
value: 28.463
|
1537 |
+
- type: precision_at_1
|
1538 |
+
value: 16.39
|
1539 |
+
- type: precision_at_10
|
1540 |
+
value: 5.189
|
1541 |
+
- type: precision_at_100
|
1542 |
+
value: 0.835
|
1543 |
+
- type: precision_at_1000
|
1544 |
+
value: 0.1
|
1545 |
+
- type: precision_at_3
|
1546 |
+
value: 10.84
|
1547 |
+
- type: precision_at_5
|
1548 |
+
value: 8.238
|
1549 |
+
- type: recall_at_1
|
1550 |
+
value: 15.889000000000001
|
1551 |
+
- type: recall_at_10
|
1552 |
+
value: 49.739
|
1553 |
+
- type: recall_at_100
|
1554 |
+
value: 79.251
|
1555 |
+
- type: recall_at_1000
|
1556 |
+
value: 94.298
|
1557 |
+
- type: recall_at_3
|
1558 |
+
value: 31.427
|
1559 |
+
- type: recall_at_5
|
1560 |
+
value: 39.623000000000005
|
1561 |
+
- task:
|
1562 |
+
type: Classification
|
1563 |
+
dataset:
|
1564 |
+
type: mteb/mtop_domain
|
1565 |
+
name: MTEB MTOPDomainClassification (en)
|
1566 |
+
config: en
|
1567 |
+
split: test
|
1568 |
+
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
1569 |
+
metrics:
|
1570 |
+
- type: accuracy
|
1571 |
+
value: 88.81668946648426
|
1572 |
+
- type: f1
|
1573 |
+
value: 88.55200075528438
|
1574 |
+
- task:
|
1575 |
+
type: Classification
|
1576 |
+
dataset:
|
1577 |
+
type: mteb/mtop_intent
|
1578 |
+
name: MTEB MTOPIntentClassification (en)
|
1579 |
+
config: en
|
1580 |
+
split: test
|
1581 |
+
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
1582 |
+
metrics:
|
1583 |
+
- type: accuracy
|
1584 |
+
value: 58.611491108071135
|
1585 |
+
- type: f1
|
1586 |
+
value: 42.12391403999353
|
1587 |
+
- task:
|
1588 |
+
type: Classification
|
1589 |
+
dataset:
|
1590 |
+
type: mteb/amazon_massive_intent
|
1591 |
+
name: MTEB MassiveIntentClassification (en)
|
1592 |
+
config: en
|
1593 |
+
split: test
|
1594 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
1595 |
+
metrics:
|
1596 |
+
- type: accuracy
|
1597 |
+
value: 64.67047747141896
|
1598 |
+
- type: f1
|
1599 |
+
value: 62.88410885922258
|
1600 |
+
- task:
|
1601 |
+
type: Classification
|
1602 |
+
dataset:
|
1603 |
+
type: mteb/amazon_massive_scenario
|
1604 |
+
name: MTEB MassiveScenarioClassification (en)
|
1605 |
+
config: en
|
1606 |
+
split: test
|
1607 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1608 |
+
metrics:
|
1609 |
+
- type: accuracy
|
1610 |
+
value: 71.78547410894419
|
1611 |
+
- type: f1
|
1612 |
+
value: 71.69467869218154
|
1613 |
+
- task:
|
1614 |
+
type: Clustering
|
1615 |
+
dataset:
|
1616 |
+
type: mteb/medrxiv-clustering-p2p
|
1617 |
+
name: MTEB MedrxivClusteringP2P
|
1618 |
+
config: default
|
1619 |
+
split: test
|
1620 |
+
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
1621 |
+
metrics:
|
1622 |
+
- type: v_measure
|
1623 |
+
value: 27.23799937752035
|
1624 |
+
- task:
|
1625 |
+
type: Clustering
|
1626 |
+
dataset:
|
1627 |
+
type: mteb/medrxiv-clustering-s2s
|
1628 |
+
name: MTEB MedrxivClusteringS2S
|
1629 |
+
config: default
|
1630 |
+
split: test
|
1631 |
+
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
1632 |
+
metrics:
|
1633 |
+
- type: v_measure
|
1634 |
+
value: 23.26502601343789
|
1635 |
+
- task:
|
1636 |
+
type: Reranking
|
1637 |
+
dataset:
|
1638 |
+
type: mteb/mind_small
|
1639 |
+
name: MTEB MindSmallReranking
|
1640 |
+
config: default
|
1641 |
+
split: test
|
1642 |
+
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
1643 |
+
metrics:
|
1644 |
+
- type: map
|
1645 |
+
value: 30.680711484149832
|
1646 |
+
- type: mrr
|
1647 |
+
value: 31.705059795117307
|
1648 |
+
- task:
|
1649 |
+
type: Retrieval
|
1650 |
+
dataset:
|
1651 |
+
type: nfcorpus
|
1652 |
+
name: MTEB NFCorpus
|
1653 |
+
config: default
|
1654 |
+
split: test
|
1655 |
+
revision: None
|
1656 |
+
metrics:
|
1657 |
+
- type: map_at_1
|
1658 |
+
value: 4.077
|
1659 |
+
- type: map_at_10
|
1660 |
+
value: 8.657
|
1661 |
+
- type: map_at_100
|
1662 |
+
value: 10.753
|
1663 |
+
- type: map_at_1000
|
1664 |
+
value: 11.885
|
1665 |
+
- type: map_at_3
|
1666 |
+
value: 6.5089999999999995
|
1667 |
+
- type: map_at_5
|
1668 |
+
value: 7.405
|
1669 |
+
- type: mrr_at_1
|
1670 |
+
value: 38.7
|
1671 |
+
- type: mrr_at_10
|
1672 |
+
value: 46.065
|
1673 |
+
- type: mrr_at_100
|
1674 |
+
value: 46.772000000000006
|
1675 |
+
- type: mrr_at_1000
|
1676 |
+
value: 46.83
|
1677 |
+
- type: mrr_at_3
|
1678 |
+
value: 44.118
|
1679 |
+
- type: mrr_at_5
|
1680 |
+
value: 45.015
|
1681 |
+
- type: ndcg_at_1
|
1682 |
+
value: 36.997
|
1683 |
+
- type: ndcg_at_10
|
1684 |
+
value: 25.96
|
1685 |
+
- type: ndcg_at_100
|
1686 |
+
value: 23.607
|
1687 |
+
- type: ndcg_at_1000
|
1688 |
+
value: 32.317
|
1689 |
+
- type: ndcg_at_3
|
1690 |
+
value: 31.06
|
1691 |
+
- type: ndcg_at_5
|
1692 |
+
value: 28.921000000000003
|
1693 |
+
- type: precision_at_1
|
1694 |
+
value: 38.7
|
1695 |
+
- type: precision_at_10
|
1696 |
+
value: 19.195
|
1697 |
+
- type: precision_at_100
|
1698 |
+
value: 6.164
|
1699 |
+
- type: precision_at_1000
|
1700 |
+
value: 1.839
|
1701 |
+
- type: precision_at_3
|
1702 |
+
value: 28.999000000000002
|
1703 |
+
- type: precision_at_5
|
1704 |
+
value: 25.014999999999997
|
1705 |
+
- type: recall_at_1
|
1706 |
+
value: 4.077
|
1707 |
+
- type: recall_at_10
|
1708 |
+
value: 11.802
|
1709 |
+
- type: recall_at_100
|
1710 |
+
value: 24.365000000000002
|
1711 |
+
- type: recall_at_1000
|
1712 |
+
value: 55.277
|
1713 |
+
- type: recall_at_3
|
1714 |
+
value: 7.435
|
1715 |
+
- type: recall_at_5
|
1716 |
+
value: 8.713999999999999
|
1717 |
+
- task:
|
1718 |
+
type: Retrieval
|
1719 |
+
dataset:
|
1720 |
+
type: nq
|
1721 |
+
name: MTEB NQ
|
1722 |
+
config: default
|
1723 |
+
split: test
|
1724 |
+
revision: None
|
1725 |
+
metrics:
|
1726 |
+
- type: map_at_1
|
1727 |
+
value: 19.588
|
1728 |
+
- type: map_at_10
|
1729 |
+
value: 32.08
|
1730 |
+
- type: map_at_100
|
1731 |
+
value: 33.32
|
1732 |
+
- type: map_at_1000
|
1733 |
+
value: 33.377
|
1734 |
+
- type: map_at_3
|
1735 |
+
value: 28.166000000000004
|
1736 |
+
- type: map_at_5
|
1737 |
+
value: 30.383
|
1738 |
+
- type: mrr_at_1
|
1739 |
+
value: 22.161
|
1740 |
+
- type: mrr_at_10
|
1741 |
+
value: 34.121
|
1742 |
+
- type: mrr_at_100
|
1743 |
+
value: 35.171
|
1744 |
+
- type: mrr_at_1000
|
1745 |
+
value: 35.214
|
1746 |
+
- type: mrr_at_3
|
1747 |
+
value: 30.692000000000004
|
1748 |
+
- type: mrr_at_5
|
1749 |
+
value: 32.706
|
1750 |
+
- type: ndcg_at_1
|
1751 |
+
value: 22.131999999999998
|
1752 |
+
- type: ndcg_at_10
|
1753 |
+
value: 38.887
|
1754 |
+
- type: ndcg_at_100
|
1755 |
+
value: 44.433
|
1756 |
+
- type: ndcg_at_1000
|
1757 |
+
value: 45.823
|
1758 |
+
- type: ndcg_at_3
|
1759 |
+
value: 31.35
|
1760 |
+
- type: ndcg_at_5
|
1761 |
+
value: 35.144
|
1762 |
+
- type: precision_at_1
|
1763 |
+
value: 22.131999999999998
|
1764 |
+
- type: precision_at_10
|
1765 |
+
value: 6.8629999999999995
|
1766 |
+
- type: precision_at_100
|
1767 |
+
value: 0.993
|
1768 |
+
- type: precision_at_1000
|
1769 |
+
value: 0.11199999999999999
|
1770 |
+
- type: precision_at_3
|
1771 |
+
value: 14.706
|
1772 |
+
- type: precision_at_5
|
1773 |
+
value: 10.972999999999999
|
1774 |
+
- type: recall_at_1
|
1775 |
+
value: 19.588
|
1776 |
+
- type: recall_at_10
|
1777 |
+
value: 57.703
|
1778 |
+
- type: recall_at_100
|
1779 |
+
value: 82.194
|
1780 |
+
- type: recall_at_1000
|
1781 |
+
value: 92.623
|
1782 |
+
- type: recall_at_3
|
1783 |
+
value: 38.012
|
1784 |
+
- type: recall_at_5
|
1785 |
+
value: 46.847
|
1786 |
+
- task:
|
1787 |
+
type: Retrieval
|
1788 |
+
dataset:
|
1789 |
+
type: quora
|
1790 |
+
name: MTEB QuoraRetrieval
|
1791 |
+
config: default
|
1792 |
+
split: test
|
1793 |
+
revision: None
|
1794 |
+
metrics:
|
1795 |
+
- type: map_at_1
|
1796 |
+
value: 68.038
|
1797 |
+
- type: map_at_10
|
1798 |
+
value: 81.572
|
1799 |
+
- type: map_at_100
|
1800 |
+
value: 82.25200000000001
|
1801 |
+
- type: map_at_1000
|
1802 |
+
value: 82.27600000000001
|
1803 |
+
- type: map_at_3
|
1804 |
+
value: 78.618
|
1805 |
+
- type: map_at_5
|
1806 |
+
value: 80.449
|
1807 |
+
- type: mrr_at_1
|
1808 |
+
value: 78.31
|
1809 |
+
- type: mrr_at_10
|
1810 |
+
value: 84.98
|
1811 |
+
- type: mrr_at_100
|
1812 |
+
value: 85.122
|
1813 |
+
- type: mrr_at_1000
|
1814 |
+
value: 85.124
|
1815 |
+
- type: mrr_at_3
|
1816 |
+
value: 83.852
|
1817 |
+
- type: mrr_at_5
|
1818 |
+
value: 84.6
|
1819 |
+
- type: ndcg_at_1
|
1820 |
+
value: 78.31
|
1821 |
+
- type: ndcg_at_10
|
1822 |
+
value: 85.693
|
1823 |
+
- type: ndcg_at_100
|
1824 |
+
value: 87.191
|
1825 |
+
- type: ndcg_at_1000
|
1826 |
+
value: 87.386
|
1827 |
+
- type: ndcg_at_3
|
1828 |
+
value: 82.585
|
1829 |
+
- type: ndcg_at_5
|
1830 |
+
value: 84.255
|
1831 |
+
- type: precision_at_1
|
1832 |
+
value: 78.31
|
1833 |
+
- type: precision_at_10
|
1834 |
+
value: 12.986
|
1835 |
+
- type: precision_at_100
|
1836 |
+
value: 1.505
|
1837 |
+
- type: precision_at_1000
|
1838 |
+
value: 0.156
|
1839 |
+
- type: precision_at_3
|
1840 |
+
value: 36.007
|
1841 |
+
- type: precision_at_5
|
1842 |
+
value: 23.735999999999997
|
1843 |
+
- type: recall_at_1
|
1844 |
+
value: 68.038
|
1845 |
+
- type: recall_at_10
|
1846 |
+
value: 93.598
|
1847 |
+
- type: recall_at_100
|
1848 |
+
value: 98.869
|
1849 |
+
- type: recall_at_1000
|
1850 |
+
value: 99.86500000000001
|
1851 |
+
- type: recall_at_3
|
1852 |
+
value: 84.628
|
1853 |
+
- type: recall_at_5
|
1854 |
+
value: 89.316
|
1855 |
+
- task:
|
1856 |
+
type: Clustering
|
1857 |
+
dataset:
|
1858 |
+
type: mteb/reddit-clustering
|
1859 |
+
name: MTEB RedditClustering
|
1860 |
+
config: default
|
1861 |
+
split: test
|
1862 |
+
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
1863 |
+
metrics:
|
1864 |
+
- type: v_measure
|
1865 |
+
value: 37.948231664922865
|
1866 |
+
- task:
|
1867 |
+
type: Clustering
|
1868 |
+
dataset:
|
1869 |
+
type: mteb/reddit-clustering-p2p
|
1870 |
+
name: MTEB RedditClusteringP2P
|
1871 |
+
config: default
|
1872 |
+
split: test
|
1873 |
+
revision: 282350215ef01743dc01b456c7f5241fa8937f16
|
1874 |
+
metrics:
|
1875 |
+
- type: v_measure
|
1876 |
+
value: 49.90597913763894
|
1877 |
+
- task:
|
1878 |
+
type: Retrieval
|
1879 |
+
dataset:
|
1880 |
+
type: scidocs
|
1881 |
+
name: MTEB SCIDOCS
|
1882 |
+
config: default
|
1883 |
+
split: test
|
1884 |
+
revision: None
|
1885 |
+
metrics:
|
1886 |
+
- type: map_at_1
|
1887 |
+
value: 3.753
|
1888 |
+
- type: map_at_10
|
1889 |
+
value: 8.915
|
1890 |
+
- type: map_at_100
|
1891 |
+
value: 10.374
|
1892 |
+
- type: map_at_1000
|
1893 |
+
value: 10.612
|
1894 |
+
- type: map_at_3
|
1895 |
+
value: 6.577
|
1896 |
+
- type: map_at_5
|
1897 |
+
value: 7.8
|
1898 |
+
- type: mrr_at_1
|
1899 |
+
value: 18.4
|
1900 |
+
- type: mrr_at_10
|
1901 |
+
value: 27.325
|
1902 |
+
- type: mrr_at_100
|
1903 |
+
value: 28.419
|
1904 |
+
- type: mrr_at_1000
|
1905 |
+
value: 28.494000000000003
|
1906 |
+
- type: mrr_at_3
|
1907 |
+
value: 24.349999999999998
|
1908 |
+
- type: mrr_at_5
|
1909 |
+
value: 26.205000000000002
|
1910 |
+
- type: ndcg_at_1
|
1911 |
+
value: 18.4
|
1912 |
+
- type: ndcg_at_10
|
1913 |
+
value: 15.293000000000001
|
1914 |
+
- type: ndcg_at_100
|
1915 |
+
value: 21.592
|
1916 |
+
- type: ndcg_at_1000
|
1917 |
+
value: 26.473000000000003
|
1918 |
+
- type: ndcg_at_3
|
1919 |
+
value: 14.748
|
1920 |
+
- type: ndcg_at_5
|
1921 |
+
value: 12.98
|
1922 |
+
- type: precision_at_1
|
1923 |
+
value: 18.4
|
1924 |
+
- type: precision_at_10
|
1925 |
+
value: 7.779999999999999
|
1926 |
+
- type: precision_at_100
|
1927 |
+
value: 1.693
|
1928 |
+
- type: precision_at_1000
|
1929 |
+
value: 0.28800000000000003
|
1930 |
+
- type: precision_at_3
|
1931 |
+
value: 13.700000000000001
|
1932 |
+
- type: precision_at_5
|
1933 |
+
value: 11.379999999999999
|
1934 |
+
- type: recall_at_1
|
1935 |
+
value: 3.753
|
1936 |
+
- type: recall_at_10
|
1937 |
+
value: 15.806999999999999
|
1938 |
+
- type: recall_at_100
|
1939 |
+
value: 34.37
|
1940 |
+
- type: recall_at_1000
|
1941 |
+
value: 58.463
|
1942 |
+
- type: recall_at_3
|
1943 |
+
value: 8.338
|
1944 |
+
- type: recall_at_5
|
1945 |
+
value: 11.538
|
1946 |
+
- task:
|
1947 |
+
type: STS
|
1948 |
+
dataset:
|
1949 |
+
type: mteb/sickr-sts
|
1950 |
+
name: MTEB SICK-R
|
1951 |
+
config: default
|
1952 |
+
split: test
|
1953 |
+
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
1954 |
+
metrics:
|
1955 |
+
- type: cos_sim_pearson
|
1956 |
+
value: 82.58843987639705
|
1957 |
+
- type: cos_sim_spearman
|
1958 |
+
value: 76.33071660715956
|
1959 |
+
- type: euclidean_pearson
|
1960 |
+
value: 72.8029921002978
|
1961 |
+
- type: euclidean_spearman
|
1962 |
+
value: 69.34534284782808
|
1963 |
+
- type: manhattan_pearson
|
1964 |
+
value: 72.49781034973653
|
1965 |
+
- type: manhattan_spearman
|
1966 |
+
value: 69.24754112621694
|
1967 |
+
- task:
|
1968 |
+
type: STS
|
1969 |
+
dataset:
|
1970 |
+
type: mteb/sts12-sts
|
1971 |
+
name: MTEB STS12
|
1972 |
+
config: default
|
1973 |
+
split: test
|
1974 |
+
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
1975 |
+
metrics:
|
1976 |
+
- type: cos_sim_pearson
|
1977 |
+
value: 83.31673079903189
|
1978 |
+
- type: cos_sim_spearman
|
1979 |
+
value: 74.27699263517789
|
1980 |
+
- type: euclidean_pearson
|
1981 |
+
value: 69.4008910999579
|
1982 |
+
- type: euclidean_spearman
|
1983 |
+
value: 59.0716984643048
|
1984 |
+
- type: manhattan_pearson
|
1985 |
+
value: 68.87342686919199
|
1986 |
+
- type: manhattan_spearman
|
1987 |
+
value: 58.904612865335025
|
1988 |
+
- task:
|
1989 |
+
type: STS
|
1990 |
+
dataset:
|
1991 |
+
type: mteb/sts13-sts
|
1992 |
+
name: MTEB STS13
|
1993 |
+
config: default
|
1994 |
+
split: test
|
1995 |
+
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
1996 |
+
metrics:
|
1997 |
+
- type: cos_sim_pearson
|
1998 |
+
value: 77.59122302327788
|
1999 |
+
- type: cos_sim_spearman
|
2000 |
+
value: 78.55383586979005
|
2001 |
+
- type: euclidean_pearson
|
2002 |
+
value: 68.18338642204289
|
2003 |
+
- type: euclidean_spearman
|
2004 |
+
value: 68.95092864180276
|
2005 |
+
- type: manhattan_pearson
|
2006 |
+
value: 68.08807059822706
|
2007 |
+
- type: manhattan_spearman
|
2008 |
+
value: 68.86135938270193
|
2009 |
+
- task:
|
2010 |
+
type: STS
|
2011 |
+
dataset:
|
2012 |
+
type: mteb/sts14-sts
|
2013 |
+
name: MTEB STS14
|
2014 |
+
config: default
|
2015 |
+
split: test
|
2016 |
+
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
2017 |
+
metrics:
|
2018 |
+
- type: cos_sim_pearson
|
2019 |
+
value: 78.51766841424501
|
2020 |
+
- type: cos_sim_spearman
|
2021 |
+
value: 73.84318001499558
|
2022 |
+
- type: euclidean_pearson
|
2023 |
+
value: 67.2007138855177
|
2024 |
+
- type: euclidean_spearman
|
2025 |
+
value: 63.98672842723766
|
2026 |
+
- type: manhattan_pearson
|
2027 |
+
value: 67.17773810895949
|
2028 |
+
- type: manhattan_spearman
|
2029 |
+
value: 64.07359154832962
|
2030 |
+
- task:
|
2031 |
+
type: STS
|
2032 |
+
dataset:
|
2033 |
+
type: mteb/sts15-sts
|
2034 |
+
name: MTEB STS15
|
2035 |
+
config: default
|
2036 |
+
split: test
|
2037 |
+
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
2038 |
+
metrics:
|
2039 |
+
- type: cos_sim_pearson
|
2040 |
+
value: 82.73438541570299
|
2041 |
+
- type: cos_sim_spearman
|
2042 |
+
value: 83.71357922283677
|
2043 |
+
- type: euclidean_pearson
|
2044 |
+
value: 57.50131347498546
|
2045 |
+
- type: euclidean_spearman
|
2046 |
+
value: 57.73623619252132
|
2047 |
+
- type: manhattan_pearson
|
2048 |
+
value: 58.082992079000725
|
2049 |
+
- type: manhattan_spearman
|
2050 |
+
value: 58.42728201167522
|
2051 |
+
- task:
|
2052 |
+
type: STS
|
2053 |
+
dataset:
|
2054 |
+
type: mteb/sts16-sts
|
2055 |
+
name: MTEB STS16
|
2056 |
+
config: default
|
2057 |
+
split: test
|
2058 |
+
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
2059 |
+
metrics:
|
2060 |
+
- type: cos_sim_pearson
|
2061 |
+
value: 78.14794654172421
|
2062 |
+
- type: cos_sim_spearman
|
2063 |
+
value: 80.025736165043
|
2064 |
+
- type: euclidean_pearson
|
2065 |
+
value: 65.87773913985473
|
2066 |
+
- type: euclidean_spearman
|
2067 |
+
value: 66.69337751784794
|
2068 |
+
- type: manhattan_pearson
|
2069 |
+
value: 66.01039761004415
|
2070 |
+
- type: manhattan_spearman
|
2071 |
+
value: 66.89215027952318
|
2072 |
+
- task:
|
2073 |
+
type: STS
|
2074 |
+
dataset:
|
2075 |
+
type: mteb/sts17-crosslingual-sts
|
2076 |
+
name: MTEB STS17 (en-en)
|
2077 |
+
config: en-en
|
2078 |
+
split: test
|
2079 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
2080 |
+
metrics:
|
2081 |
+
- type: cos_sim_pearson
|
2082 |
+
value: 87.10554507136152
|
2083 |
+
- type: cos_sim_spearman
|
2084 |
+
value: 87.4898082140765
|
2085 |
+
- type: euclidean_pearson
|
2086 |
+
value: 72.19391114541367
|
2087 |
+
- type: euclidean_spearman
|
2088 |
+
value: 70.36647944993783
|
2089 |
+
- type: manhattan_pearson
|
2090 |
+
value: 72.18680758133698
|
2091 |
+
- type: manhattan_spearman
|
2092 |
+
value: 70.3871215447305
|
2093 |
+
- task:
|
2094 |
+
type: STS
|
2095 |
+
dataset:
|
2096 |
+
type: mteb/sts22-crosslingual-sts
|
2097 |
+
name: MTEB STS22 (en)
|
2098 |
+
config: en
|
2099 |
+
split: test
|
2100 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2101 |
+
metrics:
|
2102 |
+
- type: cos_sim_pearson
|
2103 |
+
value: 64.54868111501618
|
2104 |
+
- type: cos_sim_spearman
|
2105 |
+
value: 64.25173617448473
|
2106 |
+
- type: euclidean_pearson
|
2107 |
+
value: 39.116088900637116
|
2108 |
+
- type: euclidean_spearman
|
2109 |
+
value: 53.300772929884
|
2110 |
+
- type: manhattan_pearson
|
2111 |
+
value: 38.3844195287959
|
2112 |
+
- type: manhattan_spearman
|
2113 |
+
value: 52.846675312001246
|
2114 |
+
- task:
|
2115 |
+
type: STS
|
2116 |
+
dataset:
|
2117 |
+
type: mteb/stsbenchmark-sts
|
2118 |
+
name: MTEB STSBenchmark
|
2119 |
+
config: default
|
2120 |
+
split: test
|
2121 |
+
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
2122 |
+
metrics:
|
2123 |
+
- type: cos_sim_pearson
|
2124 |
+
value: 80.04396610550214
|
2125 |
+
- type: cos_sim_spearman
|
2126 |
+
value: 79.19504854997832
|
2127 |
+
- type: euclidean_pearson
|
2128 |
+
value: 66.3284657637072
|
2129 |
+
- type: euclidean_spearman
|
2130 |
+
value: 63.69531796729492
|
2131 |
+
- type: manhattan_pearson
|
2132 |
+
value: 66.82324081038026
|
2133 |
+
- type: manhattan_spearman
|
2134 |
+
value: 64.18254512904923
|
2135 |
+
- task:
|
2136 |
+
type: Reranking
|
2137 |
+
dataset:
|
2138 |
+
type: mteb/scidocs-reranking
|
2139 |
+
name: MTEB SciDocsRR
|
2140 |
+
config: default
|
2141 |
+
split: test
|
2142 |
+
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
2143 |
+
metrics:
|
2144 |
+
- type: map
|
2145 |
+
value: 74.16264051781705
|
2146 |
+
- type: mrr
|
2147 |
+
value: 91.80864796060874
|
2148 |
+
- task:
|
2149 |
+
type: Retrieval
|
2150 |
+
dataset:
|
2151 |
+
type: scifact
|
2152 |
+
name: MTEB SciFact
|
2153 |
+
config: default
|
2154 |
+
split: test
|
2155 |
+
revision: None
|
2156 |
+
metrics:
|
2157 |
+
- type: map_at_1
|
2158 |
+
value: 38.983000000000004
|
2159 |
+
- type: map_at_10
|
2160 |
+
value: 47.858000000000004
|
2161 |
+
- type: map_at_100
|
2162 |
+
value: 48.695
|
2163 |
+
- type: map_at_1000
|
2164 |
+
value: 48.752
|
2165 |
+
- type: map_at_3
|
2166 |
+
value: 45.444
|
2167 |
+
- type: map_at_5
|
2168 |
+
value: 46.906
|
2169 |
+
- type: mrr_at_1
|
2170 |
+
value: 41.333
|
2171 |
+
- type: mrr_at_10
|
2172 |
+
value: 49.935
|
2173 |
+
- type: mrr_at_100
|
2174 |
+
value: 50.51
|
2175 |
+
- type: mrr_at_1000
|
2176 |
+
value: 50.55500000000001
|
2177 |
+
- type: mrr_at_3
|
2178 |
+
value: 47.833
|
2179 |
+
- type: mrr_at_5
|
2180 |
+
value: 49.117
|
2181 |
+
- type: ndcg_at_1
|
2182 |
+
value: 41.333
|
2183 |
+
- type: ndcg_at_10
|
2184 |
+
value: 52.398999999999994
|
2185 |
+
- type: ndcg_at_100
|
2186 |
+
value: 56.196
|
2187 |
+
- type: ndcg_at_1000
|
2188 |
+
value: 57.838
|
2189 |
+
- type: ndcg_at_3
|
2190 |
+
value: 47.987
|
2191 |
+
- type: ndcg_at_5
|
2192 |
+
value: 50.356
|
2193 |
+
- type: precision_at_1
|
2194 |
+
value: 41.333
|
2195 |
+
- type: precision_at_10
|
2196 |
+
value: 7.167
|
2197 |
+
- type: precision_at_100
|
2198 |
+
value: 0.9299999999999999
|
2199 |
+
- type: precision_at_1000
|
2200 |
+
value: 0.108
|
2201 |
+
- type: precision_at_3
|
2202 |
+
value: 19.0
|
2203 |
+
- type: precision_at_5
|
2204 |
+
value: 12.8
|
2205 |
+
- type: recall_at_1
|
2206 |
+
value: 38.983000000000004
|
2207 |
+
- type: recall_at_10
|
2208 |
+
value: 64.183
|
2209 |
+
- type: recall_at_100
|
2210 |
+
value: 82.02199999999999
|
2211 |
+
- type: recall_at_1000
|
2212 |
+
value: 95.167
|
2213 |
+
- type: recall_at_3
|
2214 |
+
value: 52.383
|
2215 |
+
- type: recall_at_5
|
2216 |
+
value: 58.411
|
2217 |
+
- task:
|
2218 |
+
type: PairClassification
|
2219 |
+
dataset:
|
2220 |
+
type: mteb/sprintduplicatequestions-pairclassification
|
2221 |
+
name: MTEB SprintDuplicateQuestions
|
2222 |
+
config: default
|
2223 |
+
split: test
|
2224 |
+
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
2225 |
+
metrics:
|
2226 |
+
- type: cos_sim_accuracy
|
2227 |
+
value: 99.8019801980198
|
2228 |
+
- type: cos_sim_ap
|
2229 |
+
value: 94.9287554635848
|
2230 |
+
- type: cos_sim_f1
|
2231 |
+
value: 89.83739837398375
|
2232 |
+
- type: cos_sim_precision
|
2233 |
+
value: 91.32231404958677
|
2234 |
+
- type: cos_sim_recall
|
2235 |
+
value: 88.4
|
2236 |
+
- type: dot_accuracy
|
2237 |
+
value: 99.23762376237623
|
2238 |
+
- type: dot_ap
|
2239 |
+
value: 55.22534191245801
|
2240 |
+
- type: dot_f1
|
2241 |
+
value: 54.054054054054056
|
2242 |
+
- type: dot_precision
|
2243 |
+
value: 55.15088449531738
|
2244 |
+
- type: dot_recall
|
2245 |
+
value: 53.0
|
2246 |
+
- type: euclidean_accuracy
|
2247 |
+
value: 99.6108910891089
|
2248 |
+
- type: euclidean_ap
|
2249 |
+
value: 82.5195111329438
|
2250 |
+
- type: euclidean_f1
|
2251 |
+
value: 78.2847718526663
|
2252 |
+
- type: euclidean_precision
|
2253 |
+
value: 86.93528693528694
|
2254 |
+
- type: euclidean_recall
|
2255 |
+
value: 71.2
|
2256 |
+
- type: manhattan_accuracy
|
2257 |
+
value: 99.5970297029703
|
2258 |
+
- type: manhattan_ap
|
2259 |
+
value: 81.96876777875492
|
2260 |
+
- type: manhattan_f1
|
2261 |
+
value: 77.33773377337734
|
2262 |
+
- type: manhattan_precision
|
2263 |
+
value: 85.94132029339853
|
2264 |
+
- type: manhattan_recall
|
2265 |
+
value: 70.3
|
2266 |
+
- type: max_accuracy
|
2267 |
+
value: 99.8019801980198
|
2268 |
+
- type: max_ap
|
2269 |
+
value: 94.9287554635848
|
2270 |
+
- type: max_f1
|
2271 |
+
value: 89.83739837398375
|
2272 |
+
- task:
|
2273 |
+
type: Clustering
|
2274 |
+
dataset:
|
2275 |
+
type: mteb/stackexchange-clustering
|
2276 |
+
name: MTEB StackExchangeClustering
|
2277 |
+
config: default
|
2278 |
+
split: test
|
2279 |
+
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
2280 |
+
metrics:
|
2281 |
+
- type: v_measure
|
2282 |
+
value: 46.34997003954114
|
2283 |
+
- task:
|
2284 |
+
type: Clustering
|
2285 |
+
dataset:
|
2286 |
+
type: mteb/stackexchange-clustering-p2p
|
2287 |
+
name: MTEB StackExchangeClusteringP2P
|
2288 |
+
config: default
|
2289 |
+
split: test
|
2290 |
+
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
2291 |
+
metrics:
|
2292 |
+
- type: v_measure
|
2293 |
+
value: 31.462336020554893
|
2294 |
+
- task:
|
2295 |
+
type: Reranking
|
2296 |
+
dataset:
|
2297 |
+
type: mteb/stackoverflowdupquestions-reranking
|
2298 |
+
name: MTEB StackOverflowDupQuestions
|
2299 |
+
config: default
|
2300 |
+
split: test
|
2301 |
+
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
2302 |
+
metrics:
|
2303 |
+
- type: map
|
2304 |
+
value: 47.1757817459526
|
2305 |
+
- type: mrr
|
2306 |
+
value: 47.941057104660054
|
2307 |
+
- task:
|
2308 |
+
type: Summarization
|
2309 |
+
dataset:
|
2310 |
+
type: mteb/summeval
|
2311 |
+
name: MTEB SummEval
|
2312 |
+
config: default
|
2313 |
+
split: test
|
2314 |
+
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
2315 |
+
metrics:
|
2316 |
+
- type: cos_sim_pearson
|
2317 |
+
value: 30.56106249068471
|
2318 |
+
- type: cos_sim_spearman
|
2319 |
+
value: 31.24613190558528
|
2320 |
+
- type: dot_pearson
|
2321 |
+
value: 20.486610035794257
|
2322 |
+
- type: dot_spearman
|
2323 |
+
value: 23.115667545894546
|
2324 |
+
- task:
|
2325 |
+
type: Retrieval
|
2326 |
+
dataset:
|
2327 |
+
type: trec-covid
|
2328 |
+
name: MTEB TRECCOVID
|
2329 |
+
config: default
|
2330 |
+
split: test
|
2331 |
+
revision: None
|
2332 |
+
metrics:
|
2333 |
+
- type: map_at_1
|
2334 |
+
value: 0.182
|
2335 |
+
- type: map_at_10
|
2336 |
+
value: 1.155
|
2337 |
+
- type: map_at_100
|
2338 |
+
value: 5.118
|
2339 |
+
- type: map_at_1000
|
2340 |
+
value: 11.827
|
2341 |
+
- type: map_at_3
|
2342 |
+
value: 0.482
|
2343 |
+
- type: map_at_5
|
2344 |
+
value: 0.712
|
2345 |
+
- type: mrr_at_1
|
2346 |
+
value: 70.0
|
2347 |
+
- type: mrr_at_10
|
2348 |
+
value: 79.483
|
2349 |
+
- type: mrr_at_100
|
2350 |
+
value: 79.637
|
2351 |
+
- type: mrr_at_1000
|
2352 |
+
value: 79.637
|
2353 |
+
- type: mrr_at_3
|
2354 |
+
value: 77.667
|
2355 |
+
- type: mrr_at_5
|
2356 |
+
value: 78.567
|
2357 |
+
- type: ndcg_at_1
|
2358 |
+
value: 63.0
|
2359 |
+
- type: ndcg_at_10
|
2360 |
+
value: 52.303
|
2361 |
+
- type: ndcg_at_100
|
2362 |
+
value: 37.361
|
2363 |
+
- type: ndcg_at_1000
|
2364 |
+
value: 32.84
|
2365 |
+
- type: ndcg_at_3
|
2366 |
+
value: 58.274
|
2367 |
+
- type: ndcg_at_5
|
2368 |
+
value: 55.601
|
2369 |
+
- type: precision_at_1
|
2370 |
+
value: 70.0
|
2371 |
+
- type: precision_at_10
|
2372 |
+
value: 55.60000000000001
|
2373 |
+
- type: precision_at_100
|
2374 |
+
value: 37.96
|
2375 |
+
- type: precision_at_1000
|
2376 |
+
value: 14.738000000000001
|
2377 |
+
- type: precision_at_3
|
2378 |
+
value: 62.666999999999994
|
2379 |
+
- type: precision_at_5
|
2380 |
+
value: 60.0
|
2381 |
+
- type: recall_at_1
|
2382 |
+
value: 0.182
|
2383 |
+
- type: recall_at_10
|
2384 |
+
value: 1.4120000000000001
|
2385 |
+
- type: recall_at_100
|
2386 |
+
value: 8.533
|
2387 |
+
- type: recall_at_1000
|
2388 |
+
value: 30.572
|
2389 |
+
- type: recall_at_3
|
2390 |
+
value: 0.5309999999999999
|
2391 |
+
- type: recall_at_5
|
2392 |
+
value: 0.814
|
2393 |
+
- task:
|
2394 |
+
type: Retrieval
|
2395 |
+
dataset:
|
2396 |
+
type: webis-touche2020
|
2397 |
+
name: MTEB Touche2020
|
2398 |
+
config: default
|
2399 |
+
split: test
|
2400 |
+
revision: None
|
2401 |
+
metrics:
|
2402 |
+
- type: map_at_1
|
2403 |
+
value: 1.385
|
2404 |
+
- type: map_at_10
|
2405 |
+
value: 7.185999999999999
|
2406 |
+
- type: map_at_100
|
2407 |
+
value: 11.642
|
2408 |
+
- type: map_at_1000
|
2409 |
+
value: 12.953000000000001
|
2410 |
+
- type: map_at_3
|
2411 |
+
value: 3.496
|
2412 |
+
- type: map_at_5
|
2413 |
+
value: 4.82
|
2414 |
+
- type: mrr_at_1
|
2415 |
+
value: 16.326999999999998
|
2416 |
+
- type: mrr_at_10
|
2417 |
+
value: 29.461
|
2418 |
+
- type: mrr_at_100
|
2419 |
+
value: 31.436999999999998
|
2420 |
+
- type: mrr_at_1000
|
2421 |
+
value: 31.436999999999998
|
2422 |
+
- type: mrr_at_3
|
2423 |
+
value: 24.490000000000002
|
2424 |
+
- type: mrr_at_5
|
2425 |
+
value: 27.857
|
2426 |
+
- type: ndcg_at_1
|
2427 |
+
value: 14.285999999999998
|
2428 |
+
- type: ndcg_at_10
|
2429 |
+
value: 16.672
|
2430 |
+
- type: ndcg_at_100
|
2431 |
+
value: 28.691
|
2432 |
+
- type: ndcg_at_1000
|
2433 |
+
value: 39.817
|
2434 |
+
- type: ndcg_at_3
|
2435 |
+
value: 15.277
|
2436 |
+
- type: ndcg_at_5
|
2437 |
+
value: 15.823
|
2438 |
+
- type: precision_at_1
|
2439 |
+
value: 16.326999999999998
|
2440 |
+
- type: precision_at_10
|
2441 |
+
value: 15.509999999999998
|
2442 |
+
- type: precision_at_100
|
2443 |
+
value: 6.49
|
2444 |
+
- type: precision_at_1000
|
2445 |
+
value: 1.4080000000000001
|
2446 |
+
- type: precision_at_3
|
2447 |
+
value: 16.326999999999998
|
2448 |
+
- type: precision_at_5
|
2449 |
+
value: 16.735
|
2450 |
+
- type: recall_at_1
|
2451 |
+
value: 1.385
|
2452 |
+
- type: recall_at_10
|
2453 |
+
value: 12.586
|
2454 |
+
- type: recall_at_100
|
2455 |
+
value: 40.765
|
2456 |
+
- type: recall_at_1000
|
2457 |
+
value: 75.198
|
2458 |
+
- type: recall_at_3
|
2459 |
+
value: 4.326
|
2460 |
+
- type: recall_at_5
|
2461 |
+
value: 7.074999999999999
|
2462 |
+
- task:
|
2463 |
+
type: Classification
|
2464 |
+
dataset:
|
2465 |
+
type: mteb/toxic_conversations_50k
|
2466 |
+
name: MTEB ToxicConversationsClassification
|
2467 |
+
config: default
|
2468 |
+
split: test
|
2469 |
+
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
2470 |
+
metrics:
|
2471 |
+
- type: accuracy
|
2472 |
+
value: 59.4402
|
2473 |
+
- type: ap
|
2474 |
+
value: 10.16922814263879
|
2475 |
+
- type: f1
|
2476 |
+
value: 45.374485104940476
|
2477 |
+
- task:
|
2478 |
+
type: Classification
|
2479 |
+
dataset:
|
2480 |
+
type: mteb/tweet_sentiment_extraction
|
2481 |
+
name: MTEB TweetSentimentExtractionClassification
|
2482 |
+
config: default
|
2483 |
+
split: test
|
2484 |
+
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
2485 |
+
metrics:
|
2486 |
+
- type: accuracy
|
2487 |
+
value: 54.25863044708545
|
2488 |
+
- type: f1
|
2489 |
+
value: 54.20154252609619
|
2490 |
+
- task:
|
2491 |
+
type: Clustering
|
2492 |
+
dataset:
|
2493 |
+
type: mteb/twentynewsgroups-clustering
|
2494 |
+
name: MTEB TwentyNewsgroupsClustering
|
2495 |
+
config: default
|
2496 |
+
split: test
|
2497 |
+
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
2498 |
+
metrics:
|
2499 |
+
- type: v_measure
|
2500 |
+
value: 34.3883169293051
|
2501 |
+
- task:
|
2502 |
+
type: PairClassification
|
2503 |
+
dataset:
|
2504 |
+
type: mteb/twittersemeval2015-pairclassification
|
2505 |
+
name: MTEB TwitterSemEval2015
|
2506 |
+
config: default
|
2507 |
+
split: test
|
2508 |
+
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
2509 |
+
metrics:
|
2510 |
+
- type: cos_sim_accuracy
|
2511 |
+
value: 81.76670441676104
|
2512 |
+
- type: cos_sim_ap
|
2513 |
+
value: 59.29878710961347
|
2514 |
+
- type: cos_sim_f1
|
2515 |
+
value: 57.33284971587474
|
2516 |
+
- type: cos_sim_precision
|
2517 |
+
value: 52.9122963624191
|
2518 |
+
- type: cos_sim_recall
|
2519 |
+
value: 62.559366754617415
|
2520 |
+
- type: dot_accuracy
|
2521 |
+
value: 77.52279907015557
|
2522 |
+
- type: dot_ap
|
2523 |
+
value: 34.17588904643467
|
2524 |
+
- type: dot_f1
|
2525 |
+
value: 41.063567529494634
|
2526 |
+
- type: dot_precision
|
2527 |
+
value: 30.813953488372093
|
2528 |
+
- type: dot_recall
|
2529 |
+
value: 61.53034300791557
|
2530 |
+
- type: euclidean_accuracy
|
2531 |
+
value: 80.61631996185254
|
2532 |
+
- type: euclidean_ap
|
2533 |
+
value: 54.00362361479352
|
2534 |
+
- type: euclidean_f1
|
2535 |
+
value: 53.99111751290361
|
2536 |
+
- type: euclidean_precision
|
2537 |
+
value: 49.52653600528518
|
2538 |
+
- type: euclidean_recall
|
2539 |
+
value: 59.340369393139845
|
2540 |
+
- type: manhattan_accuracy
|
2541 |
+
value: 80.65208320915539
|
2542 |
+
- type: manhattan_ap
|
2543 |
+
value: 54.18329507159467
|
2544 |
+
- type: manhattan_f1
|
2545 |
+
value: 53.85550960836779
|
2546 |
+
- type: manhattan_precision
|
2547 |
+
value: 49.954873646209386
|
2548 |
+
- type: manhattan_recall
|
2549 |
+
value: 58.41688654353562
|
2550 |
+
- type: max_accuracy
|
2551 |
+
value: 81.76670441676104
|
2552 |
+
- type: max_ap
|
2553 |
+
value: 59.29878710961347
|
2554 |
+
- type: max_f1
|
2555 |
+
value: 57.33284971587474
|
2556 |
+
- task:
|
2557 |
+
type: PairClassification
|
2558 |
+
dataset:
|
2559 |
+
type: mteb/twitterurlcorpus-pairclassification
|
2560 |
+
name: MTEB TwitterURLCorpus
|
2561 |
+
config: default
|
2562 |
+
split: test
|
2563 |
+
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
2564 |
+
metrics:
|
2565 |
+
- type: cos_sim_accuracy
|
2566 |
+
value: 87.99433383785463
|
2567 |
+
- type: cos_sim_ap
|
2568 |
+
value: 83.43513915159009
|
2569 |
+
- type: cos_sim_f1
|
2570 |
+
value: 76.3906784964842
|
2571 |
+
- type: cos_sim_precision
|
2572 |
+
value: 73.19223985890653
|
2573 |
+
- type: cos_sim_recall
|
2574 |
+
value: 79.88142901139513
|
2575 |
+
- type: dot_accuracy
|
2576 |
+
value: 81.96142352621571
|
2577 |
+
- type: dot_ap
|
2578 |
+
value: 67.78764755689359
|
2579 |
+
- type: dot_f1
|
2580 |
+
value: 64.42823356983445
|
2581 |
+
- type: dot_precision
|
2582 |
+
value: 56.77801913931779
|
2583 |
+
- type: dot_recall
|
2584 |
+
value: 74.46104096088698
|
2585 |
+
- type: euclidean_accuracy
|
2586 |
+
value: 81.9478402607987
|
2587 |
+
- type: euclidean_ap
|
2588 |
+
value: 67.13958457373279
|
2589 |
+
- type: euclidean_f1
|
2590 |
+
value: 60.45118343195266
|
2591 |
+
- type: euclidean_precision
|
2592 |
+
value: 58.1625391403359
|
2593 |
+
- type: euclidean_recall
|
2594 |
+
value: 62.92731752386819
|
2595 |
+
- type: manhattan_accuracy
|
2596 |
+
value: 82.01769705437188
|
2597 |
+
- type: manhattan_ap
|
2598 |
+
value: 67.24709477497046
|
2599 |
+
- type: manhattan_f1
|
2600 |
+
value: 60.4103846436714
|
2601 |
+
- type: manhattan_precision
|
2602 |
+
value: 57.82063916654935
|
2603 |
+
- type: manhattan_recall
|
2604 |
+
value: 63.24299353249153
|
2605 |
+
- type: max_accuracy
|
2606 |
+
value: 87.99433383785463
|
2607 |
+
- type: max_ap
|
2608 |
+
value: 83.43513915159009
|
2609 |
+
- type: max_f1
|
2610 |
+
value: 76.3906784964842
|
2611 |
+
---
|
2612 |
+
# # Fast-Inference with Ctranslate2
|
2613 |
+
Speedup inference while reducing memory by 2x-4x using int8 inference in C++ on CPU or GPU.
|
2614 |
+
|
2615 |
+
quantized version of [jinaai/jina-embedding-s-en-v1](https://huggingface.co/jinaai/jina-embedding-s-en-v1)
|
2616 |
+
```bash
|
2617 |
+
pip install hf-hub-ctranslate2>=2.12.0 ctranslate2>=3.17.1
|
2618 |
+
```
|
2619 |
+
|
2620 |
+
```python
|
2621 |
+
# from transformers import AutoTokenizer
|
2622 |
+
model_name = "michaelfeil/ct2fast-jina-embedding-s-en-v1"
|
2623 |
+
model_name_orig="jinaai/jina-embedding-s-en-v1"
|
2624 |
+
|
2625 |
+
from hf_hub_ctranslate2 import EncoderCT2fromHfHub
|
2626 |
+
model = EncoderCT2fromHfHub(
|
2627 |
+
# load in int8 on CUDA
|
2628 |
+
model_name_or_path=model_name,
|
2629 |
+
device="cuda",
|
2630 |
+
compute_type="int8_float16"
|
2631 |
+
)
|
2632 |
+
outputs = model.generate(
|
2633 |
+
text=["I like soccer", "I like tennis", "The eiffel tower is in Paris"],
|
2634 |
+
max_length=64,
|
2635 |
+
) # perform downstream tasks on outputs
|
2636 |
+
outputs["pooler_output"]
|
2637 |
+
outputs["last_hidden_state"]
|
2638 |
+
outputs["attention_mask"]
|
2639 |
+
|
2640 |
+
# alternative, use SentenceTransformer Mix-In
|
2641 |
+
# for end-to-end Sentence embeddings generation
|
2642 |
+
# (not pulling from this CT2fast-HF repo)
|
2643 |
+
|
2644 |
+
from hf_hub_ctranslate2 import CT2SentenceTransformer
|
2645 |
+
model = CT2SentenceTransformer(
|
2646 |
+
model_name_orig, compute_type="int8_float16", device="cuda"
|
2647 |
+
)
|
2648 |
+
embeddings = model.encode(
|
2649 |
+
["I like soccer", "I like tennis", "The eiffel tower is in Paris"],
|
2650 |
+
batch_size=32,
|
2651 |
+
convert_to_numpy=True,
|
2652 |
+
normalize_embeddings=True,
|
2653 |
+
)
|
2654 |
+
print(embeddings.shape, embeddings)
|
2655 |
+
scores = (embeddings @ embeddings.T) * 100
|
2656 |
+
|
2657 |
+
# Hint: you can also host this code via REST API and
|
2658 |
+
# via github.com/michaelfeil/infinity
|
2659 |
+
|
2660 |
+
|
2661 |
+
```
|
2662 |
+
|
2663 |
+
Checkpoint compatible to [ctranslate2>=3.17.1](https://github.com/OpenNMT/CTranslate2)
|
2664 |
+
and [hf-hub-ctranslate2>=2.12.0](https://github.com/michaelfeil/hf-hub-ctranslate2)
|
2665 |
+
- `compute_type=int8_float16` for `device="cuda"`
|
2666 |
+
- `compute_type=int8` for `device="cpu"`
|
2667 |
+
|
2668 |
+
Converted on 2023-10-13 using
|
2669 |
+
```
|
2670 |
+
LLama-2 -> removed <pad> token.
|
2671 |
+
```
|
2672 |
+
|
2673 |
+
# Licence and other remarks:
|
2674 |
+
This is just a quantized version. Licence conditions are intended to be idential to original huggingface repo.
|
2675 |
+
|
2676 |
+
# Original description
|
2677 |
+
|
2678 |
+
|
2679 |
+
<br><br>
|
2680 |
+
|
2681 |
+
<p align="center">
|
2682 |
+
<img src="https://github.com/jina-ai/finetuner/blob/main/docs/_static/finetuner-logo-ani.svg?raw=true" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px">
|
2683 |
+
</p>
|
2684 |
+
|
2685 |
+
|
2686 |
+
<p align="center">
|
2687 |
+
<b>The text embedding set trained by <a href="https://jina.ai/"><b>Jina AI</b></a>, <a href="https://github.com/jina-ai/finetuner"><b>Finetuner</b></a> team.</b>
|
2688 |
+
</p>
|
2689 |
+
|
2690 |
+
|
2691 |
+
## Intented Usage & Model Info
|
2692 |
+
|
2693 |
+
`jina-embedding-s-en-v1` is a language model that has been trained using Jina AI's Linnaeus-Clean dataset.
|
2694 |
+
This dataset consists of 380 million pairs of sentences, which include both query-document pairs.
|
2695 |
+
These pairs were obtained from various domains and were carefully selected through a thorough cleaning process.
|
2696 |
+
The Linnaeus-Full dataset, from which the Linnaeus-Clean dataset is derived, originally contained 1.6 billion sentence pairs.
|
2697 |
+
|
2698 |
+
The model has a range of use cases, including information retrieval, semantic textual similarity, text reranking, and more.
|
2699 |
+
|
2700 |
+
With a compact size of just 35 million parameters,
|
2701 |
+
the model enables lightning-fast inference while still delivering impressive performance.
|
2702 |
+
Additionally, we provide the following options:
|
2703 |
+
|
2704 |
+
- [`jina-embedding-t-en-v1`](https://huggingface.co/jinaai/jina-embedding-t-en-v1): 14 million parameters.
|
2705 |
+
- [`jina-embedding-s-en-v1`](https://huggingface.co/jinaai/jina-embedding-s-en-v1): 35 million parameters **(you are here)**.
|
2706 |
+
- [`jina-embedding-b-en-v1`](https://huggingface.co/jinaai/jina-embedding-b-en-v1): 110 million parameters.
|
2707 |
+
- [`jina-embedding-l-en-v1`](https://huggingface.co/jinaai/jina-embedding-l-en-v1): 330 million parameters.
|
2708 |
+
- `jina-embedding-1b-en-v1`: 1.2 billion parameters, 10 times bert-base (soon).
|
2709 |
+
- `jina-embedding-6b-en-v1`: 6 billion parameters, 30 times bert-base (soon).
|
2710 |
+
|
2711 |
+
## Data & Parameters
|
2712 |
+
|
2713 |
+
Please checkout our [technical blog](https://arxiv.org/abs/2307.11224).
|
2714 |
+
|
2715 |
+
## Metrics
|
2716 |
+
|
2717 |
+
We compared the model against `all-minilm-l6-v2`/`all-mpnet-base-v2` from sbert and `text-embeddings-ada-002` from OpenAI:
|
2718 |
+
|
2719 |
+
|Name|param |dimension|
|
2720 |
+
|------------------------------|-----|------|
|
2721 |
+
|all-minilm-l6-v2|23m |384|
|
2722 |
+
|all-mpnet-base-v2 |110m |768|
|
2723 |
+
|ada-embedding-002|Unknown/OpenAI API |1536|
|
2724 |
+
|jina-embedding-t-en-v1|14m |312|
|
2725 |
+
|jina-embedding-s-en-v1|35m |512|
|
2726 |
+
|jina-embedding-b-en-v1|110m |768|
|
2727 |
+
|jina-embedding-l-en-v1|330m |1024|
|
2728 |
+
|
2729 |
+
|
2730 |
+
|Name|STS12|STS13|STS14|STS15|STS16|STS17|TRECOVID|Quora|SciFact|
|
2731 |
+
|------------------------------|-----|-----|-----|-----|-----|-----|--------|-----|-----|
|
2732 |
+
|all-minilm-l6-v2|0.724|0.806|0.756|0.854|0.79 |0.876|0.473 |0.876|0.645 |
|
2733 |
+
|all-mpnet-base-v2|0.726|**0.835**|0.78 |0.857|0.8 |**0.906**|0.513 |0.875|0.656 |
|
2734 |
+
|ada-embedding-002|0.698|0.833|0.761|0.861|**0.86** |0.903|**0.685** |0.876|**0.726** |
|
2735 |
+
|jina-embedding-t-en-v1|0.717|0.773|0.731|0.829|0.777|0.860|0.482 |0.840|0.522 |
|
2736 |
+
|jina-embedding-s-en-v1|0.743|0.786|0.738|0.837|0.80|0.875|0.523 |0.857|0.524 |
|
2737 |
+
|jina-embedding-b-en-v1|**0.751**|0.809|0.761|0.856|0.812|0.890|0.606 |0.876|0.594 |
|
2738 |
+
|jina-embedding-l-en-v1|0.745|0.832|**0.781**|**0.869**|0.837|0.902|0.573 |**0.881**|0.598 |
|
2739 |
+
|
2740 |
+
## Usage
|
2741 |
+
|
2742 |
+
Use with Jina AI Finetuner
|
2743 |
+
|
2744 |
+
```python
|
2745 |
+
!pip install finetuner
|
2746 |
+
import finetuner
|
2747 |
+
|
2748 |
+
model = finetuner.build_model('jinaai/jina-embedding-s-en-v1')
|
2749 |
+
embeddings = finetuner.encode(
|
2750 |
+
model=model,
|
2751 |
+
data=['how is the weather today', 'What is the current weather like today?']
|
2752 |
+
)
|
2753 |
+
print(finetuner.cos_sim(embeddings[0], embeddings[1]))
|
2754 |
+
```
|
2755 |
+
|
2756 |
+
Use with sentence-transformers:
|
2757 |
+
|
2758 |
+
```python
|
2759 |
+
from sentence_transformers import SentenceTransformer
|
2760 |
+
from sentence_transformers.util import cos_sim
|
2761 |
+
|
2762 |
+
sentences = ['how is the weather today', 'What is the current weather like today?']
|
2763 |
+
|
2764 |
+
model = SentenceTransformer('jinaai/jina-embedding-s-en-v1')
|
2765 |
+
embeddings = model.encode(sentences)
|
2766 |
+
print(cos_sim(embeddings[0], embeddings[1]))
|
2767 |
+
```
|
2768 |
+
|
2769 |
+
## Fine-tuning
|
2770 |
+
|
2771 |
+
Please consider [Finetuner](https://github.com/jina-ai/finetuner).
|
2772 |
+
|
2773 |
+
## Plans
|
2774 |
+
|
2775 |
+
1. The development of `jina-embedding-s-en-v2` is currently underway with two main objectives: improving performance and increasing the maximum sequence length.
|
2776 |
+
2. We are currently working on a bilingual embedding model that combines English and X language. The upcoming model will be called `jina-embedding-s/b/l-de-v1`.
|
2777 |
+
|
2778 |
+
## Contact
|
2779 |
+
|
2780 |
+
Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas.
|
2781 |
+
|
2782 |
+
## Citation
|
2783 |
+
|
2784 |
+
If you find Jina Embeddings useful in your research, please cite the following paper:
|
2785 |
+
|
2786 |
+
``` latex
|
2787 |
+
@misc{günther2023jina,
|
2788 |
+
title={Jina Embeddings: A Novel Set of High-Performance Sentence Embedding Models},
|
2789 |
+
author={Michael Günther and Louis Milliken and Jonathan Geuter and Georgios Mastrapas and Bo Wang and Han Xiao},
|
2790 |
+
year={2023},
|
2791 |
+
eprint={2307.11224},
|
2792 |
+
archivePrefix={arXiv},
|
2793 |
+
primaryClass={cs.CL}
|
2794 |
+
}
|
2795 |
+
```
|
config.json
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "tmp/",
|
3 |
+
"architectures": [
|
4 |
+
"T5EncoderModel"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoModel": "modeling_t5.T5EncoderModel"
|
8 |
+
},
|
9 |
+
"d_ff": 2048,
|
10 |
+
"d_kv": 64,
|
11 |
+
"d_model": 512,
|
12 |
+
"decoder_start_token_id": 0,
|
13 |
+
"dropout_rate": 0.1,
|
14 |
+
"eos_token_id": 1,
|
15 |
+
"initializer_factor": 1.0,
|
16 |
+
"is_encoder_decoder": true,
|
17 |
+
"layer_norm_epsilon": null,
|
18 |
+
"model_type": "t5",
|
19 |
+
"n_positions": 512,
|
20 |
+
"num_heads": 8,
|
21 |
+
"num_layers": 6,
|
22 |
+
"output_past": true,
|
23 |
+
"pad_token_id": 0,
|
24 |
+
"relative_attention_num_buckets": 32,
|
25 |
+
"task_specific_params": {
|
26 |
+
"summarization": {
|
27 |
+
"early_stopping": true,
|
28 |
+
"length_penalty": 2.0,
|
29 |
+
"max_length": 200,
|
30 |
+
"min_length": 30,
|
31 |
+
"no_repeat_ngram_size": 3,
|
32 |
+
"num_beams": 4,
|
33 |
+
"prefix": "summarize: "
|
34 |
+
},
|
35 |
+
"translation_en_to_de": {
|
36 |
+
"early_stopping": true,
|
37 |
+
"max_length": 300,
|
38 |
+
"num_beams": 4,
|
39 |
+
"prefix": "translate English to German: "
|
40 |
+
},
|
41 |
+
"translation_en_to_fr": {
|
42 |
+
"early_stopping": true,
|
43 |
+
"max_length": 300,
|
44 |
+
"num_beams": 4,
|
45 |
+
"prefix": "translate English to French: "
|
46 |
+
},
|
47 |
+
"translation_en_to_ro": {
|
48 |
+
"early_stopping": true,
|
49 |
+
"max_length": 300,
|
50 |
+
"num_beams": 4,
|
51 |
+
"prefix": "translate English to Romanian: "
|
52 |
+
}
|
53 |
+
},
|
54 |
+
"vocab_size": 32128,
|
55 |
+
"add_source_bos": false,
|
56 |
+
"add_source_eos": false,
|
57 |
+
"bos_token": "<pad>",
|
58 |
+
"decoder_start_token": "<pad>",
|
59 |
+
"eos_token": "</s>",
|
60 |
+
"unk_token": "<unk>"
|
61 |
+
}
|
model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca2488b0bdf1208605844c337d3a71777d87ea28fad2fa2376dfb3471bba4fdd
|
3 |
+
size 146190810
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
shared_vocabulary.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
special_tokens_map.json
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<extra_id_0>",
|
4 |
+
"<extra_id_1>",
|
5 |
+
"<extra_id_2>",
|
6 |
+
"<extra_id_3>",
|
7 |
+
"<extra_id_4>",
|
8 |
+
"<extra_id_5>",
|
9 |
+
"<extra_id_6>",
|
10 |
+
"<extra_id_7>",
|
11 |
+
"<extra_id_8>",
|
12 |
+
"<extra_id_9>",
|
13 |
+
"<extra_id_10>",
|
14 |
+
"<extra_id_11>",
|
15 |
+
"<extra_id_12>",
|
16 |
+
"<extra_id_13>",
|
17 |
+
"<extra_id_14>",
|
18 |
+
"<extra_id_15>",
|
19 |
+
"<extra_id_16>",
|
20 |
+
"<extra_id_17>",
|
21 |
+
"<extra_id_18>",
|
22 |
+
"<extra_id_19>",
|
23 |
+
"<extra_id_20>",
|
24 |
+
"<extra_id_21>",
|
25 |
+
"<extra_id_22>",
|
26 |
+
"<extra_id_23>",
|
27 |
+
"<extra_id_24>",
|
28 |
+
"<extra_id_25>",
|
29 |
+
"<extra_id_26>",
|
30 |
+
"<extra_id_27>",
|
31 |
+
"<extra_id_28>",
|
32 |
+
"<extra_id_29>",
|
33 |
+
"<extra_id_30>",
|
34 |
+
"<extra_id_31>",
|
35 |
+
"<extra_id_32>",
|
36 |
+
"<extra_id_33>",
|
37 |
+
"<extra_id_34>",
|
38 |
+
"<extra_id_35>",
|
39 |
+
"<extra_id_36>",
|
40 |
+
"<extra_id_37>",
|
41 |
+
"<extra_id_38>",
|
42 |
+
"<extra_id_39>",
|
43 |
+
"<extra_id_40>",
|
44 |
+
"<extra_id_41>",
|
45 |
+
"<extra_id_42>",
|
46 |
+
"<extra_id_43>",
|
47 |
+
"<extra_id_44>",
|
48 |
+
"<extra_id_45>",
|
49 |
+
"<extra_id_46>",
|
50 |
+
"<extra_id_47>",
|
51 |
+
"<extra_id_48>",
|
52 |
+
"<extra_id_49>",
|
53 |
+
"<extra_id_50>",
|
54 |
+
"<extra_id_51>",
|
55 |
+
"<extra_id_52>",
|
56 |
+
"<extra_id_53>",
|
57 |
+
"<extra_id_54>",
|
58 |
+
"<extra_id_55>",
|
59 |
+
"<extra_id_56>",
|
60 |
+
"<extra_id_57>",
|
61 |
+
"<extra_id_58>",
|
62 |
+
"<extra_id_59>",
|
63 |
+
"<extra_id_60>",
|
64 |
+
"<extra_id_61>",
|
65 |
+
"<extra_id_62>",
|
66 |
+
"<extra_id_63>",
|
67 |
+
"<extra_id_64>",
|
68 |
+
"<extra_id_65>",
|
69 |
+
"<extra_id_66>",
|
70 |
+
"<extra_id_67>",
|
71 |
+
"<extra_id_68>",
|
72 |
+
"<extra_id_69>",
|
73 |
+
"<extra_id_70>",
|
74 |
+
"<extra_id_71>",
|
75 |
+
"<extra_id_72>",
|
76 |
+
"<extra_id_73>",
|
77 |
+
"<extra_id_74>",
|
78 |
+
"<extra_id_75>",
|
79 |
+
"<extra_id_76>",
|
80 |
+
"<extra_id_77>",
|
81 |
+
"<extra_id_78>",
|
82 |
+
"<extra_id_79>",
|
83 |
+
"<extra_id_80>",
|
84 |
+
"<extra_id_81>",
|
85 |
+
"<extra_id_82>",
|
86 |
+
"<extra_id_83>",
|
87 |
+
"<extra_id_84>",
|
88 |
+
"<extra_id_85>",
|
89 |
+
"<extra_id_86>",
|
90 |
+
"<extra_id_87>",
|
91 |
+
"<extra_id_88>",
|
92 |
+
"<extra_id_89>",
|
93 |
+
"<extra_id_90>",
|
94 |
+
"<extra_id_91>",
|
95 |
+
"<extra_id_92>",
|
96 |
+
"<extra_id_93>",
|
97 |
+
"<extra_id_94>",
|
98 |
+
"<extra_id_95>",
|
99 |
+
"<extra_id_96>",
|
100 |
+
"<extra_id_97>",
|
101 |
+
"<extra_id_98>",
|
102 |
+
"<extra_id_99>"
|
103 |
+
],
|
104 |
+
"eos_token": "</s>",
|
105 |
+
"pad_token": "<pad>",
|
106 |
+
"unk_token": "<unk>"
|
107 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<extra_id_0>",
|
4 |
+
"<extra_id_1>",
|
5 |
+
"<extra_id_2>",
|
6 |
+
"<extra_id_3>",
|
7 |
+
"<extra_id_4>",
|
8 |
+
"<extra_id_5>",
|
9 |
+
"<extra_id_6>",
|
10 |
+
"<extra_id_7>",
|
11 |
+
"<extra_id_8>",
|
12 |
+
"<extra_id_9>",
|
13 |
+
"<extra_id_10>",
|
14 |
+
"<extra_id_11>",
|
15 |
+
"<extra_id_12>",
|
16 |
+
"<extra_id_13>",
|
17 |
+
"<extra_id_14>",
|
18 |
+
"<extra_id_15>",
|
19 |
+
"<extra_id_16>",
|
20 |
+
"<extra_id_17>",
|
21 |
+
"<extra_id_18>",
|
22 |
+
"<extra_id_19>",
|
23 |
+
"<extra_id_20>",
|
24 |
+
"<extra_id_21>",
|
25 |
+
"<extra_id_22>",
|
26 |
+
"<extra_id_23>",
|
27 |
+
"<extra_id_24>",
|
28 |
+
"<extra_id_25>",
|
29 |
+
"<extra_id_26>",
|
30 |
+
"<extra_id_27>",
|
31 |
+
"<extra_id_28>",
|
32 |
+
"<extra_id_29>",
|
33 |
+
"<extra_id_30>",
|
34 |
+
"<extra_id_31>",
|
35 |
+
"<extra_id_32>",
|
36 |
+
"<extra_id_33>",
|
37 |
+
"<extra_id_34>",
|
38 |
+
"<extra_id_35>",
|
39 |
+
"<extra_id_36>",
|
40 |
+
"<extra_id_37>",
|
41 |
+
"<extra_id_38>",
|
42 |
+
"<extra_id_39>",
|
43 |
+
"<extra_id_40>",
|
44 |
+
"<extra_id_41>",
|
45 |
+
"<extra_id_42>",
|
46 |
+
"<extra_id_43>",
|
47 |
+
"<extra_id_44>",
|
48 |
+
"<extra_id_45>",
|
49 |
+
"<extra_id_46>",
|
50 |
+
"<extra_id_47>",
|
51 |
+
"<extra_id_48>",
|
52 |
+
"<extra_id_49>",
|
53 |
+
"<extra_id_50>",
|
54 |
+
"<extra_id_51>",
|
55 |
+
"<extra_id_52>",
|
56 |
+
"<extra_id_53>",
|
57 |
+
"<extra_id_54>",
|
58 |
+
"<extra_id_55>",
|
59 |
+
"<extra_id_56>",
|
60 |
+
"<extra_id_57>",
|
61 |
+
"<extra_id_58>",
|
62 |
+
"<extra_id_59>",
|
63 |
+
"<extra_id_60>",
|
64 |
+
"<extra_id_61>",
|
65 |
+
"<extra_id_62>",
|
66 |
+
"<extra_id_63>",
|
67 |
+
"<extra_id_64>",
|
68 |
+
"<extra_id_65>",
|
69 |
+
"<extra_id_66>",
|
70 |
+
"<extra_id_67>",
|
71 |
+
"<extra_id_68>",
|
72 |
+
"<extra_id_69>",
|
73 |
+
"<extra_id_70>",
|
74 |
+
"<extra_id_71>",
|
75 |
+
"<extra_id_72>",
|
76 |
+
"<extra_id_73>",
|
77 |
+
"<extra_id_74>",
|
78 |
+
"<extra_id_75>",
|
79 |
+
"<extra_id_76>",
|
80 |
+
"<extra_id_77>",
|
81 |
+
"<extra_id_78>",
|
82 |
+
"<extra_id_79>",
|
83 |
+
"<extra_id_80>",
|
84 |
+
"<extra_id_81>",
|
85 |
+
"<extra_id_82>",
|
86 |
+
"<extra_id_83>",
|
87 |
+
"<extra_id_84>",
|
88 |
+
"<extra_id_85>",
|
89 |
+
"<extra_id_86>",
|
90 |
+
"<extra_id_87>",
|
91 |
+
"<extra_id_88>",
|
92 |
+
"<extra_id_89>",
|
93 |
+
"<extra_id_90>",
|
94 |
+
"<extra_id_91>",
|
95 |
+
"<extra_id_92>",
|
96 |
+
"<extra_id_93>",
|
97 |
+
"<extra_id_94>",
|
98 |
+
"<extra_id_95>",
|
99 |
+
"<extra_id_96>",
|
100 |
+
"<extra_id_97>",
|
101 |
+
"<extra_id_98>",
|
102 |
+
"<extra_id_99>"
|
103 |
+
],
|
104 |
+
"clean_up_tokenization_spaces": true,
|
105 |
+
"eos_token": "</s>",
|
106 |
+
"extra_ids": 100,
|
107 |
+
"model_max_length": 512,
|
108 |
+
"pad_token": "<pad>",
|
109 |
+
"tokenizer_class": "T5Tokenizer",
|
110 |
+
"unk_token": "<unk>"
|
111 |
+
}
|