michael20at commited on
Commit
7eb2fac
·
1 Parent(s): e0d39e1

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 250.37 +/- 22.20
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 269.11 +/- 14.54
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f83bc298170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f83bc298200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f83bc298290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f83bc298320>", "_build": "<function ActorCriticPolicy._build at 0x7f83bc2983b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f83bc298440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f83bc2984d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f83bc298560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f83bc2985f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f83bc298680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f83bc298710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f83bc2d2db0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1663148279.8506317, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrKoLwlsoY/tnUnPGFE0L4IVl69l7i4vQAAAAAAAAAAAIdPPe/XGD50mq09cgQ1vu6NtT3ElY08AAAAAAAAAABmRnG7GsGaPnH0hrw+RjK+nTIHPWgQfDsAAAAAAAAAADPzo7z28GC69ZAKMU0S5DASQ2+74NwSswAAgD8AAIA/jQmvPRkaNT6/JY29TBk/vjtW5DyUp0I8AAAAAAAAAABmcDQ9FWunP965ej4Gi7W+8IFOPcr+0D0AAAAAAAAAABoiqj1c+bU+Rn7LPJQ9fb4+MXc9tlvOvQAAAAAAAAAAZiKvO0hVgLzE/o+8DWLHPD0G5b3YAJ49AACAPwAAgD/Nz868NHATPqbQBj7CIRy+fcXgPSqscrwAAAAAAAAAABMUCT5QrpA/pauWPo8+or5wCCU+ZtZpPQAAAAAAAAAA/bpfvgM8HD1Jkp46SjYYuV5rsb5DTNm2AAAAAAAAgD9zKu69ZPeUPngNqT6E7WS+ZlKFPQc6sTwAAAAAAAAAAMDRhD2Ty5g/SjyrPW+lu74PdZC7cDVnPAAAAAAAAAAAALNSPgzTZj/hKI09CdWQvmrF5j2LDIa9AAAAAAAAAAAqd3C+a2F5P+NBpr6JeOq+6GqgvgUra7wAAAAAAAAAALNzAj3DSWe6chCUtMSGhC4CKW26AjtuMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+mAZG/oUcUCUhpRSlIwBbJRNJwGMAXSUR0CQh/H9FWn1dX2UKGgGaAloD0MIxcVRuYn0RUCUhpRSlGgVS9poFkdAkIgxWo3rEHV9lChoBmgJaA9DCIyjchM1tG5AlIaUUpRoFU07AWgWR0CQiGxeb/fgdX2UKGgGaAloD0MI6ZjzjD2vcECUhpRSlGgVTQ8BaBZHQJCIlgWrOqx1fZQoaAZoCWgPQwid2a7QRxlzQJSGlFKUaBVNbAFoFkdAkIjgjD8+A3V9lChoBmgJaA9DCERrRZujV3BAlIaUUpRoFU0iAWgWR0CQiVdX1anrdX2UKGgGaAloD0MIFCNL5lg4QkCUhpRSlGgVS8poFkdAkIuO85CF9XV9lChoBmgJaA9DCKTk1TkGLExAlIaUUpRoFUvmaBZHQJCLzL0SRKZ1fZQoaAZoCWgPQwi4k4jw7ylxQJSGlFKUaBVNIgFoFkdAkIxRHLA573V9lChoBmgJaA9DCJEpH4Kqbm5AlIaUUpRoFU0cAWgWR0CQjSlOoHcDdX2UKGgGaAloD0MI2ln0TgXmcUCUhpRSlGgVTT8BaBZHQJCN1nBciW51fZQoaAZoCWgPQwiesS/ZeABsQJSGlFKUaBVNKAFoFkdAkI5ODnNgSnV9lChoBmgJaA9DCLKfxVKkgHBAlIaUUpRoFU01AWgWR0CQjplgc94edX2UKGgGaAloD0MIP1QaMTN1bkCUhpRSlGgVTSIBaBZHQJCOzjLjght1fZQoaAZoCWgPQwgL0oxFUzBxQJSGlFKUaBVNKAFoFkdAkI9kYKpkw3V9lChoBmgJaA9DCMjRHFl5lm9AlIaUUpRoFU0TAWgWR0CQj4k5IYm+dX2UKGgGaAloD0MIyERKszmqcUCUhpRSlGgVTScBaBZHQJCP1nEl3Ql1fZQoaAZoCWgPQwjM7zSZMSJxQJSGlFKUaBVNHgFoFkdAkJB+HzpX63V9lChoBmgJaA9DCAlwehevUXBAlIaUUpRoFU1FAWgWR0CQkXilBQendX2UKGgGaAloD0MIRG0bRoH3cECUhpRSlGgVTTEBaBZHQJCReEsasIV1fZQoaAZoCWgPQwgrM6X1N2hyQJSGlFKUaBVNJQFoFkdAkJGi3gDRt3V9lChoBmgJaA9DCKhUibL3o3FAlIaUUpRoFU0WAWgWR0CQlJQ04zacdX2UKGgGaAloD0MIwY9q2G/db0CUhpRSlGgVTcIBaBZHQJCVC5e7cwh1fZQoaAZoCWgPQwhh304igjFwQJSGlFKUaBVNVgFoFkdAkJYQazeGf3V9lChoBmgJaA9DCALzkCkfgWpAlIaUUpRoFU1dAWgWR0CQlqO/L1VYdX2UKGgGaAloD0MIgSBAhs7wcUCUhpRSlGgVTTkBaBZHQJCW8dIXj2l1fZQoaAZoCWgPQwhXlX1XxJNwQJSGlFKUaBVNDgFoFkdAkJdGuX/o7nV9lChoBmgJaA9DCAuYwK27VnFAlIaUUpRoFU1AAWgWR0CQmHOo5xR3dX2UKGgGaAloD0MISWb1DrdhbECUhpRSlGgVTScBaBZHQJCY4fwI+nt1fZQoaAZoCWgPQwjGFKxxNthwQJSGlFKUaBVNSQFoFkdAkJkc0k4WDnV9lChoBmgJaA9DCEQWaeJd0HFAlIaUUpRoFU0ZAWgWR0CQmb97ngYQdX2UKGgGaAloD0MIETY8vVJMcECUhpRSlGgVTTwBaBZHQJCaIcn3L3d1fZQoaAZoCWgPQwgs1nCRe1xMQJSGlFKUaBVNBwFoFkdAkJo4nSfDk3V9lChoBmgJaA9DCNF5jV0iQ3BAlIaUUpRoFU2NAWgWR0CQmoSDyvs7dX2UKGgGaAloD0MIem02VqKicECUhpRSlGgVTXMBaBZHQJCbXU6PsAx1fZQoaAZoCWgPQwhZFeEmo/huQJSGlFKUaBVNNAFoFkdAkJt8EzO5a3V9lChoBmgJaA9DCOepDrkZtHFAlIaUUpRoFU00AWgWR0CQm6THsC1adX2UKGgGaAloD0MI/YLdsG35M0CUhpRSlGgVS/BoFkdAkJ32TxG2C3V9lChoBmgJaA9DCCF4fHuXPHJAlIaUUpRoFU06AWgWR0CQnp4xk/bCdX2UKGgGaAloD0MI/wWCAJkkcUCUhpRSlGgVTUMBaBZHQJCfV/WlMyt1fZQoaAZoCWgPQwgV5dL4BcxwQJSGlFKUaBVNPgFoFkdAkKASTlkpZ3V9lChoBmgJaA9DCI50Bkae1nJAlIaUUpRoFU02AWgWR0CQoJkuYhMbdX2UKGgGaAloD0MIFXDP82c8cECUhpRSlGgVTTUBaBZHQJCg4GwA2ht1fZQoaAZoCWgPQwhUq6+uSkhyQJSGlFKUaBVNDAFoFkdAkKEJVGTcI3V9lChoBmgJaA9DCAwCK4dWYnFAlIaUUpRoFU0RAWgWR0CQogEofCAMdX2UKGgGaAloD0MIH7sLlBQbcECUhpRSlGgVTS4BaBZHQJCiWfdyksV1fZQoaAZoCWgPQwiQMAxYchpxQJSGlFKUaBVNDgFoFkdAkKK5Y1YQrnV9lChoBmgJaA9DCDF9ryH4E3FAlIaUUpRoFU1MAWgWR0CQordz4k/sdX2UKGgGaAloD0MITfT5KCMvcUCUhpRSlGgVTUYBaBZHQJC2pefI0ZZ1fZQoaAZoCWgPQwjMfXIU4DdzQJSGlFKUaBVNRAFoFkdAkLauFg2If3V9lChoBmgJaA9DCP5/nDDhc25AlIaUUpRoFU0fAWgWR0CQtskka/ATdX2UKGgGaAloD0MIFY+LahF/bkCUhpRSlGgVTUYBaBZHQJC4Bqh11W91fZQoaAZoCWgPQwjtSPWdX5xCQJSGlFKUaBVL6mgWR0CQuQpkPMB7dX2UKGgGaAloD0MIFCUhkbbxSUCUhpRSlGgVS/NoFkdAkLqjaTOgQHV9lChoBmgJaA9DCEvMs5LWRHJAlIaUUpRoFU2cAWgWR0CQuqYvnKW+dX2UKGgGaAloD0MI3szoR8M0cECUhpRSlGgVTUQBaBZHQJC6wzj3mFJ1fZQoaAZoCWgPQwhLOV/svYJvQJSGlFKUaBVNSQFoFkdAkLugc94eLnV9lChoBmgJaA9DCI7O+SkOkGxAlIaUUpRoFU0/AWgWR0CQvMNoakyldX2UKGgGaAloD0MIdhw/VJpkcUCUhpRSlGgVTTMBaBZHQJC9LwKBuoB1fZQoaAZoCWgPQwivsOB+QIVuQJSGlFKUaBVNOgFoFkdAkL2T4+KTCHV9lChoBmgJaA9DCALzkCnfUXBAlIaUUpRoFU0pAWgWR0CQvgElE7W/dX2UKGgGaAloD0MIJF8JpMQ5cUCUhpRSlGgVTSABaBZHQJC+FHkLhJl1fZQoaAZoCWgPQwgzpIrilZdwQJSGlFKUaBVNHwFoFkdAkL5ntWuHOHV9lChoBmgJaA9DCFuxv+yeLW9AlIaUUpRoFU1UAWgWR0CQv/bm2b5NdX2UKGgGaAloD0MINWCQ9KmXcUCUhpRSlGgVTQ4BaBZHQJDAzcsUZel1fZQoaAZoCWgPQwgxRbk0PslwQJSGlFKUaBVNTAFoFkdAkMEWwA2hqXV9lChoBmgJaA9DCKd0sP5Py25AlIaUUpRoFU1YAWgWR0CQwYM1jy4GdX2UKGgGaAloD0MINL+aA4RGb0CUhpRSlGgVTVwBaBZHQJDBw2n889x1fZQoaAZoCWgPQwiH30237KNtQJSGlFKUaBVNOQFoFkdAkMNGnn+yaHV9lChoBmgJaA9DCIf6XdiaGXJAlIaUUpRoFU0tAWgWR0CQxGtrsSkCdX2UKGgGaAloD0MIjswjf3ARcECUhpRSlGgVTSMBaBZHQJDFEmu1WsB1fZQoaAZoCWgPQwjcLF4szGZxQJSGlFKUaBVNSQFoFkdAkMVt4Z/CqXV9lChoBmgJaA9DCFEujV+4AHBAlIaUUpRoFU1iAWgWR0CQxl3sXzlLdX2UKGgGaAloD0MIkX77OvDZbECUhpRSlGgVTRQBaBZHQJDGfHlwLmZ1fZQoaAZoCWgPQwjpZRTLLeRuQJSGlFKUaBVNMgFoFkdAkMawxnFo+XV9lChoBmgJaA9DCC1b64uEgW9AlIaUUpRoFU0rAWgWR0CQx/SEDhcadX2UKGgGaAloD0MIUADFyJILcUCUhpRSlGgVTTkBaBZHQJDIBSVGCqZ1fZQoaAZoCWgPQwhXQKGevgtzQJSGlFKUaBVNQgFoFkdAkMhOenQ6ZHV9lChoBmgJaA9DCPusMlNa8W9AlIaUUpRoFU13AWgWR0CQyRtxuKoAdX2UKGgGaAloD0MISGx3D1AvcUCUhpRSlGgVTQkBaBZHQJDJ6waBI4F1fZQoaAZoCWgPQwj2CgvuB/9wQJSGlFKUaBVNNQFoFkdAkMrnQ+lj3HV9lChoBmgJaA9DCEbu6eqOSG5AlIaUUpRoFU1LAWgWR0CQy1bNKRMfdX2UKGgGaAloD0MIuFhRg+nqcUCUhpRSlGgVTTUBaBZHQJDLkLQXyiF1fZQoaAZoCWgPQwgdkloo2Q1xQJSGlFKUaBVNlAFoFkdAkMy4eo1k2HV9lChoBmgJaA9DCPZgUnx8a2xAlIaUUpRoFU0cAWgWR0CQzU0Syt3fdX2UKGgGaAloD0MIVhFuMiricECUhpRSlGgVTUkBaBZHQJDNpv73wkR1fZQoaAZoCWgPQwg/OJ861lBvQJSGlFKUaBVNIgFoFkdAkM5radtl7XV9lChoBmgJaA9DCAEXZMvyx2tAlIaUUpRoFU1PAWgWR0CQz5Dq4YrKdX2UKGgGaAloD0MIcJnTZfF/cECUhpRSlGgVTUcBaBZHQJDQuhzvJBB1fZQoaAZoCWgPQwgVcxB0tDduQJSGlFKUaBVNRAFoFkdAkNDZwwTM7nV9lChoBmgJaA9DCCHkvP+PPHFAlIaUUpRoFU0eAWgWR0CQ0QfwqiGndX2UKGgGaAloD0MIVz1gHrIncUCUhpRSlGgVTTIBaBZHQJDRk11nuiN1fZQoaAZoCWgPQwiZnrDEgytuQJSGlFKUaBVNJwFoFkdAkNGbwvxpc3V9lChoBmgJaA9DCBwKn60DpXFAlIaUUpRoFU1yAWgWR0CQ0eymQ8wIdX2UKGgGaAloD0MInmD/dW6bb0CUhpRSlGgVTVwBaBZHQJDVNwS8J2N1fZQoaAZoCWgPQwjSONTvAmtxQJSGlFKUaBVNTgFoFkdAkNXZEx7AtXV9lChoBmgJaA9DCBCwVu2ajXBAlIaUUpRoFU0bAWgWR0CQ1iqZtvXLdX2UKGgGaAloD0MItftVgO+BbkCUhpRSlGgVTT8BaBZHQJDWFWxQizN1fZQoaAZoCWgPQwiISbiQR4ZwQJSGlFKUaBVNDAFoFkdAkNZJCfHxSnV9lChoBmgJaA9DCMO8x5lmi3JAlIaUUpRoFU1iAWgWR0CQ1wEYO2AodWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f83bc298170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f83bc298200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f83bc298290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f83bc298320>", "_build": "<function ActorCriticPolicy._build at 0x7f83bc2983b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f83bc298440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f83bc2984d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f83bc298560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f83bc2985f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f83bc298680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f83bc298710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f83bc2d2db0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1663152484.0370035, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALOQT73T1bs/ask0v5IHjz4Mpg49aHr2OwAAAAAAAAAAM+AaPXsOobpGxN02EYPLMa0z/7lRDwC2AACAPwAAgD+zqV+9jYAcP/plkT2aHJq+f/H+u+KKOT0AAAAAAAAAAACRC70K52W74yKDvABvlTxN2J88mEJ/vQAAgD8AAIA/syvkvRhcwD9IFSe/E9JlPdYQPL2+o2G+AAAAAAAAAAAApRU+Ohu/P/iw7D7X/Ye+v5l7PhP6aT4AAAAAAAAAAJqOMj3LUy0/rWl7vcZoib7rTj29l5EtvAAAAAAAAAAAAEisu1wTa7p12ySzKq3yrjHB/DkWUNUzAACAPwAAgD8agTC91wN1uRRwFbTm1KivSEYWO3tEqTMAAIA/AACAP40c0r1HJHE/a/Z5PekVkr7aTim+MbWiPQAAAAAAAAAAmnXDPCncWLqCDUa8QRFoOUwE/bo+xOO5AACAPwAAgD8z9XK89S+pP00ZNb62Qsq+bEWHu27OnL0AAAAAAAAAAGb2tbqu0Za6hW5NOqHAqrcgQkq7mu2ftgAAgD8AAIA/AGCIOh8FmLdDbyg83BQwPVhgxDrtQyU8AACAPwAAgD9GjYi+ibCoP8BQpL5zSJS+klHVvlrEsrwAAAAAAAAAAM2Q1DyPJjK6OPMVuiLqV7NxGig4FrYuOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsTIa+fyrcECUhpRSlIwBbJRNIQGMAXSUR0CdZ7fWtlqbdX2UKGgGaAloD0MIu/HuyNjBcUCUhpRSlGgVTTcBaBZHQJ1nzMyJsO51fZQoaAZoCWgPQwgt0sQ7gBpwQJSGlFKUaBVN5QFoFkdAnWiyaZx7zHV9lChoBmgJaA9DCMxjzchgWnFAlIaUUpRoFU0gAWgWR0CdbP27nPmgdX2UKGgGaAloD0MItMnhk042SkCUhpRSlGgVTegDaBZHQJ1xmT4cm0F1fZQoaAZoCWgPQwi06J0KODVxQJSGlFKUaBVNuQFoFkdAnXLb655JLHV9lChoBmgJaA9DCH0HP3GAA2VAlIaUUpRoFU3oA2gWR0Cdc5JdSl3ydX2UKGgGaAloD0MIoMGmzqPCcUCUhpRSlGgVTUcBaBZHQJ10R6fJ3gV1fZQoaAZoCWgPQwiP/wJBAJ9tQJSGlFKUaBVNUAFoFkdAnXa6fJ3gUHV9lChoBmgJaA9DCM9IhEbwR3BAlIaUUpRoFU1VAWgWR0Cdd4iN83MqdX2UKGgGaAloD0MI/WZiuhDbcUCUhpRSlGgVTdsCaBZHQJ13n/XGwRp1fZQoaAZoCWgPQwgrpPykWrVsQJSGlFKUaBVNWgFoFkdAnXe5V4oqkXV9lChoBmgJaA9DCDANw0fEgW9AlIaUUpRoFU1lAWgWR0CdeWZrYXfqdX2UKGgGaAloD0MIa5kMxzNocECUhpRSlGgVTd4BaBZHQJ15+RU3n6l1fZQoaAZoCWgPQwihhm9h3R1vQJSGlFKUaBVNmAFoFkdAnXpAy6+WW3V9lChoBmgJaA9DCKYMHNDSBHBAlIaUUpRoFU3mAWgWR0CdeppYcNpedX2UKGgGaAloD0MI0CaHT/oDckCUhpRSlGgVTUICaBZHQJ17O9oN/fB1fZQoaAZoCWgPQwiF7LyNTeVxQJSGlFKUaBVNVAFoFkdAnXynjABT43V9lChoBmgJaA9DCLYSukviLmZAlIaUUpRoFU3oA2gWR0CdikdRzijtdX2UKGgGaAloD0MImL7XENzzcECUhpRSlGgVTWYBaBZHQJ2LK6Ymb9Z1fZQoaAZoCWgPQwjtmpDW2ApyQJSGlFKUaBVNEQFoFkdAnYwvJV81GnV9lChoBmgJaA9DCHy6umNxYXBAlIaUUpRoFU3gAmgWR0CdjFFbVz6rdX2UKGgGaAloD0MIVtgMcAFQckCUhpRSlGgVTWsBaBZHQJ2MUvg3tKJ1fZQoaAZoCWgPQwiPUglPaMhtQJSGlFKUaBVNJAFoFkdAnY0TtG/etXV9lChoBmgJaA9DCNklqrfGGHJAlIaUUpRoFU08AWgWR0CdjT/VAiV0dX2UKGgGaAloD0MIGLFPAMXZbkCUhpRSlGgVTQoBaBZHQJ2OBhnanJl1fZQoaAZoCWgPQwjUQzS6wzZwQJSGlFKUaBVNbQFoFkdAnY+dfXwsoXV9lChoBmgJaA9DCInTSbY6Wm5AlIaUUpRoFU0sAWgWR0Cdj/HBk7OndX2UKGgGaAloD0MIic4yi9Dvb0CUhpRSlGgVTWgBaBZHQJ2VGOLiuMd1fZQoaAZoCWgPQwiRC87g75ZsQJSGlFKUaBVNUAJoFkdAnZXhVdX1anV9lChoBmgJaA9DCPhVuVD5SXBAlIaUUpRoFU07AWgWR0Cdl+ppN9H+dX2UKGgGaAloD0MIAaJgxpS3cECUhpRSlGgVTQ4BaBZHQJ2YBnZkCmx1fZQoaAZoCWgPQwgWokPgCLtwQJSGlFKUaBVNYQFoFkdAnZi0hA4XGnV9lChoBmgJaA9DCHgpdck4hm5AlIaUUpRoFU0dAWgWR0CdmO46wMYudX2UKGgGaAloD0MIf0sA/mlmcUCUhpRSlGgVTUkBaBZHQJ2ZqUUwi7l1fZQoaAZoCWgPQwguAmN9AwhwQJSGlFKUaBVNSAFoFkdAnZ0x+jM3ZXV9lChoBmgJaA9DCANeZtioA3JAlIaUUpRoFU3jAWgWR0Cdn/QjUutfdX2UKGgGaAloD0MISSu+oTAqcUCUhpRSlGgVTboCaBZHQJ2gJj2Bas91fZQoaAZoCWgPQwiOlC2SNqhxQJSGlFKUaBVN7QJoFkdAnaF9xuKoAHV9lChoBmgJaA9DCDKqDOPuTnJAlIaUUpRoFU0mAWgWR0CdoaEL6UJOdX2UKGgGaAloD0MIknTN5JvXa0CUhpRSlGgVTTMBaBZHQJ2i4ZbY9Pl1fZQoaAZoCWgPQwg3FhQG5YFyQJSGlFKUaBVL/2gWR0Cdo0p+tr9EdX2UKGgGaAloD0MINQcI5ugFcECUhpRSlGgVTWoBaBZHQJ2m+vTw2EV1fZQoaAZoCWgPQwghHR7CeFpyQJSGlFKUaBVNlgJoFkdAnadiojv/i3V9lChoBmgJaA9DCGqhZHJqxmBAlIaUUpRoFU3oA2gWR0Cdp4rsjVx0dX2UKGgGaAloD0MIXDtREhKWb0CUhpRSlGgVTWEDaBZHQJ2oc/wAlv91fZQoaAZoCWgPQwgHJcy0fVRyQJSGlFKUaBVNvAFoFkdAnapjIq9XcXV9lChoBmgJaA9DCJ+sGK7O3nFAlIaUUpRoFU2qAWgWR0Cdqni+cpb2dX2UKGgGaAloD0MITPxR1JnzbECUhpRSlGgVTb0CaBZHQJ2tJg2Ifr91fZQoaAZoCWgPQwi6n1OQn0tyQJSGlFKUaBVNQQFoFkdAna1J2IO6NHV9lChoBmgJaA9DCD5BYrs7OXFAlIaUUpRoFU0aAWgWR0CdrsXt0FKTdX2UKGgGaAloD0MIqU9yh817cUCUhpRSlGgVTTUBaBZHQJ2veDBdld11fZQoaAZoCWgPQwg2V81zxIZyQJSGlFKUaBVNYgFoFkdAnbAO2/i5u3V9lChoBmgJaA9DCK9BX3r7R25AlIaUUpRoFU20AWgWR0CdvMiEg4ffdX2UKGgGaAloD0MIVI7J4r4oc0CUhpRSlGgVTQUCaBZHQJ29TPZ7HAB1fZQoaAZoCWgPQwj0iqceqehwQJSGlFKUaBVNcgJoFkdAnb4LE5yU93V9lChoBmgJaA9DCBsTYi7pOXJAlIaUUpRoFU0uAWgWR0CdvmjENvwWdX2UKGgGaAloD0MIY5y/CcWVcECUhpRSlGgVTSkBaBZHQJ2/EBEKE391fZQoaAZoCWgPQwjSUQ5mk31xQJSGlFKUaBVNSwFoFkdAnb9OevpyInV9lChoBmgJaA9DCBU6r7HLpm1AlIaUUpRoFU3EA2gWR0Cdv/xkNFz/dX2UKGgGaAloD0MINzP60bAzcECUhpRSlGgVTRgBaBZHQJ3AJFiKBNF1fZQoaAZoCWgPQwiflEkNLatxQJSGlFKUaBVNdAFoFkdAncBUBfa6BnV9lChoBmgJaA9DCBsOSwO/4nFAlIaUUpRoFU0sAWgWR0CdwLNwBHTadX2UKGgGaAloD0MIa5p3nGKpckCUhpRSlGgVTSgBaBZHQJ3EPozN2Tx1fZQoaAZoCWgPQwiDonkAC5NrQJSGlFKUaBVNWQFoFkdAncSX31zySXV9lChoBmgJaA9DCMrd5/goqXFAlIaUUpRoFU0bAWgWR0CdyJbtJFspdX2UKGgGaAloD0MIGt8Xl2pfckCUhpRSlGgVTRABaBZHQJ3JcZqEeyR1fZQoaAZoCWgPQwhozY+/dKZxQJSGlFKUaBVNTgFoFkdAncmQKKHfuXV9lChoBmgJaA9DCKpHGtxW5nFAlIaUUpRoFUv+aBZHQJ3KI1m8M/h1fZQoaAZoCWgPQwg9CtejcJ1vQJSGlFKUaBVNCANoFkdAncsPNzKcNHV9lChoBmgJaA9DCE3YfjJGfXFAlIaUUpRoFU2xAWgWR0Cdyw90ihWYdX2UKGgGaAloD0MILsvXZXhvbECUhpRSlGgVTSEBaBZHQJ3LaTSsr/d1fZQoaAZoCWgPQwhDHVa4ZS1wQJSGlFKUaBVNdgFoFkdAncvMdPtUoHV9lChoBmgJaA9DCMuCiT9Ku3FAlIaUUpRoFU0dAWgWR0CdzB1uzhP1dX2UKGgGaAloD0MIONibGJJ0ckCUhpRSlGgVTdEBaBZHQJ3Mt1s+FDh1fZQoaAZoCWgPQwge+u5WlrFvQJSGlFKUaBVNGwJoFkdAnczrs0HhTHV9lChoBmgJaA9DCECjdOmf1HBAlIaUUpRoFU2iAWgWR0Cdziic5Ke1dX2UKGgGaAloD0MIlIeFWlMEcECUhpRSlGgVTYYBaBZHQJ3PB5le4Td1fZQoaAZoCWgPQwjyCkRPyvdwQJSGlFKUaBVNxAFoFkdAnc/nLq2SdXV9lChoBmgJaA9DCHdlFwxud3NAlIaUUpRoFUv1aBZHQJ3RwN3GGVR1fZQoaAZoCWgPQwhZvi7DPwdyQJSGlFKUaBVNtgFoFkdAndSXCTEBKnV9lChoBmgJaA9DCC3RWWaRLHFAlIaUUpRoFU1TAWgWR0Cd1KhKlHjIdX2UKGgGaAloD0MIaf6Y1ia8b0CUhpRSlGgVTRsBaBZHQJ3U4nYxtYV1fZQoaAZoCWgPQwgmbaruEb1yQJSGlFKUaBVNSgFoFkdAndUHm3fAK3V9lChoBmgJaA9DCH3sLlAS8XFAlIaUUpRoFU1RAWgWR0Cd1b4Pf8/EdX2UKGgGaAloD0MI0LTEyqhRckCUhpRSlGgVTVABaBZHQJ3WePuG9Ht1fZQoaAZoCWgPQwikqgmirnFxQJSGlFKUaBVNXwFoFkdAndb5DJEH+3V9lChoBmgJaA9DCLRzmgXafXJAlIaUUpRoFU31AWgWR0Cd1yKJl8PXdX2UKGgGaAloD0MImGw82OK9cUCUhpRSlGgVTTUBaBZHQJ3XGrilzlt1fZQoaAZoCWgPQwjxf0dUKFxuQJSGlFKUaBVNWAFoFkdAnddaZUkv9XV9lChoBmgJaA9DCFmJeVaSXnJAlIaUUpRoFU0tAWgWR0Cd2BYChew+dX2UKGgGaAloD0MIG2MnvISocUCUhpRSlGgVTXUBaBZHQJ3Y8QVbiZR1fZQoaAZoCWgPQwgROX0934ByQJSGlFKUaBVN+QFoFkdAndylSwW30HV9lChoBmgJaA9DCO4jtyZdNnNAlIaUUpRoFUv7aBZHQJ3cw/eLvTh1fZQoaAZoCWgPQwibdjHN9NNvQJSGlFKUaBVNIAFoFkdAnd7GVZ9uxnV9lChoBmgJaA9DCARY5NePTm1AlIaUUpRoFU08AWgWR0Cd345BC2MLdX2UKGgGaAloD0MIdLM/UO5EcUCUhpRSlGgVTfcBaBZHQJ3geCEpRXR1fZQoaAZoCWgPQwjurx73rZRvQJSGlFKUaBVNGgFoFkdAneEQckt293V9lChoBmgJaA9DCETC9/5GIXJAlIaUUpRoFU3tAWgWR0Cd4WA8jiXIdX2UKGgGaAloD0MIqb7zixLGb0CUhpRSlGgVTTcBaBZHQJ3hgmqo60Z1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "n_steps": 1024, "gamma": 0.9999, "gae_lambda": 0.99, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:870fbbc8c13af3e1b3b5978febd632178ce548476591307976ee75fc2bc19c26
3
- size 147147
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a4c7a6524ad540879bb40cbb4abffe584d41be824823e31cc60f9552179f459
3
+ size 147153
ppo-LunarLander-v2/data CHANGED
@@ -42,12 +42,12 @@
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
- "num_timesteps": 1015808,
46
- "_total_timesteps": 1000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1663148279.8506317,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
@@ -56,7 +56,7 @@
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrKoLwlsoY/tnUnPGFE0L4IVl69l7i4vQAAAAAAAAAAAIdPPe/XGD50mq09cgQ1vu6NtT3ElY08AAAAAAAAAABmRnG7GsGaPnH0hrw+RjK+nTIHPWgQfDsAAAAAAAAAADPzo7z28GC69ZAKMU0S5DASQ2+74NwSswAAgD8AAIA/jQmvPRkaNT6/JY29TBk/vjtW5DyUp0I8AAAAAAAAAABmcDQ9FWunP965ej4Gi7W+8IFOPcr+0D0AAAAAAAAAABoiqj1c+bU+Rn7LPJQ9fb4+MXc9tlvOvQAAAAAAAAAAZiKvO0hVgLzE/o+8DWLHPD0G5b3YAJ49AACAPwAAgD/Nz868NHATPqbQBj7CIRy+fcXgPSqscrwAAAAAAAAAABMUCT5QrpA/pauWPo8+or5wCCU+ZtZpPQAAAAAAAAAA/bpfvgM8HD1Jkp46SjYYuV5rsb5DTNm2AAAAAAAAgD9zKu69ZPeUPngNqT6E7WS+ZlKFPQc6sTwAAAAAAAAAAMDRhD2Ty5g/SjyrPW+lu74PdZC7cDVnPAAAAAAAAAAAALNSPgzTZj/hKI09CdWQvmrF5j2LDIa9AAAAAAAAAAAqd3C+a2F5P+NBpr6JeOq+6GqgvgUra7wAAAAAAAAAALNzAj3DSWe6chCUtMSGhC4CKW26AjtuMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
@@ -66,23 +66,23 @@
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
- "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+mAZG/oUcUCUhpRSlIwBbJRNJwGMAXSUR0CQh/H9FWn1dX2UKGgGaAloD0MIxcVRuYn0RUCUhpRSlGgVS9poFkdAkIgxWo3rEHV9lChoBmgJaA9DCIyjchM1tG5AlIaUUpRoFU07AWgWR0CQiGxeb/fgdX2UKGgGaAloD0MI6ZjzjD2vcECUhpRSlGgVTQ8BaBZHQJCIlgWrOqx1fZQoaAZoCWgPQwid2a7QRxlzQJSGlFKUaBVNbAFoFkdAkIjgjD8+A3V9lChoBmgJaA9DCERrRZujV3BAlIaUUpRoFU0iAWgWR0CQiVdX1anrdX2UKGgGaAloD0MIFCNL5lg4QkCUhpRSlGgVS8poFkdAkIuO85CF9XV9lChoBmgJaA9DCKTk1TkGLExAlIaUUpRoFUvmaBZHQJCLzL0SRKZ1fZQoaAZoCWgPQwi4k4jw7ylxQJSGlFKUaBVNIgFoFkdAkIxRHLA573V9lChoBmgJaA9DCJEpH4Kqbm5AlIaUUpRoFU0cAWgWR0CQjSlOoHcDdX2UKGgGaAloD0MI2ln0TgXmcUCUhpRSlGgVTT8BaBZHQJCN1nBciW51fZQoaAZoCWgPQwiesS/ZeABsQJSGlFKUaBVNKAFoFkdAkI5ODnNgSnV9lChoBmgJaA9DCLKfxVKkgHBAlIaUUpRoFU01AWgWR0CQjplgc94edX2UKGgGaAloD0MIP1QaMTN1bkCUhpRSlGgVTSIBaBZHQJCOzjLjght1fZQoaAZoCWgPQwgL0oxFUzBxQJSGlFKUaBVNKAFoFkdAkI9kYKpkw3V9lChoBmgJaA9DCMjRHFl5lm9AlIaUUpRoFU0TAWgWR0CQj4k5IYm+dX2UKGgGaAloD0MIyERKszmqcUCUhpRSlGgVTScBaBZHQJCP1nEl3Ql1fZQoaAZoCWgPQwjM7zSZMSJxQJSGlFKUaBVNHgFoFkdAkJB+HzpX63V9lChoBmgJaA9DCAlwehevUXBAlIaUUpRoFU1FAWgWR0CQkXilBQendX2UKGgGaAloD0MIRG0bRoH3cECUhpRSlGgVTTEBaBZHQJCReEsasIV1fZQoaAZoCWgPQwgrM6X1N2hyQJSGlFKUaBVNJQFoFkdAkJGi3gDRt3V9lChoBmgJaA9DCKhUibL3o3FAlIaUUpRoFU0WAWgWR0CQlJQ04zacdX2UKGgGaAloD0MIwY9q2G/db0CUhpRSlGgVTcIBaBZHQJCVC5e7cwh1fZQoaAZoCWgPQwhh304igjFwQJSGlFKUaBVNVgFoFkdAkJYQazeGf3V9lChoBmgJaA9DCALzkCkfgWpAlIaUUpRoFU1dAWgWR0CQlqO/L1VYdX2UKGgGaAloD0MIgSBAhs7wcUCUhpRSlGgVTTkBaBZHQJCW8dIXj2l1fZQoaAZoCWgPQwhXlX1XxJNwQJSGlFKUaBVNDgFoFkdAkJdGuX/o7nV9lChoBmgJaA9DCAuYwK27VnFAlIaUUpRoFU1AAWgWR0CQmHOo5xR3dX2UKGgGaAloD0MISWb1DrdhbECUhpRSlGgVTScBaBZHQJCY4fwI+nt1fZQoaAZoCWgPQwjGFKxxNthwQJSGlFKUaBVNSQFoFkdAkJkc0k4WDnV9lChoBmgJaA9DCEQWaeJd0HFAlIaUUpRoFU0ZAWgWR0CQmb97ngYQdX2UKGgGaAloD0MIETY8vVJMcECUhpRSlGgVTTwBaBZHQJCaIcn3L3d1fZQoaAZoCWgPQwgs1nCRe1xMQJSGlFKUaBVNBwFoFkdAkJo4nSfDk3V9lChoBmgJaA9DCNF5jV0iQ3BAlIaUUpRoFU2NAWgWR0CQmoSDyvs7dX2UKGgGaAloD0MIem02VqKicECUhpRSlGgVTXMBaBZHQJCbXU6PsAx1fZQoaAZoCWgPQwhZFeEmo/huQJSGlFKUaBVNNAFoFkdAkJt8EzO5a3V9lChoBmgJaA9DCOepDrkZtHFAlIaUUpRoFU00AWgWR0CQm6THsC1adX2UKGgGaAloD0MI/YLdsG35M0CUhpRSlGgVS/BoFkdAkJ32TxG2C3V9lChoBmgJaA9DCCF4fHuXPHJAlIaUUpRoFU06AWgWR0CQnp4xk/bCdX2UKGgGaAloD0MI/wWCAJkkcUCUhpRSlGgVTUMBaBZHQJCfV/WlMyt1fZQoaAZoCWgPQwgV5dL4BcxwQJSGlFKUaBVNPgFoFkdAkKASTlkpZ3V9lChoBmgJaA9DCI50Bkae1nJAlIaUUpRoFU02AWgWR0CQoJkuYhMbdX2UKGgGaAloD0MIFXDP82c8cECUhpRSlGgVTTUBaBZHQJCg4GwA2ht1fZQoaAZoCWgPQwhUq6+uSkhyQJSGlFKUaBVNDAFoFkdAkKEJVGTcI3V9lChoBmgJaA9DCAwCK4dWYnFAlIaUUpRoFU0RAWgWR0CQogEofCAMdX2UKGgGaAloD0MIH7sLlBQbcECUhpRSlGgVTS4BaBZHQJCiWfdyksV1fZQoaAZoCWgPQwiQMAxYchpxQJSGlFKUaBVNDgFoFkdAkKK5Y1YQrnV9lChoBmgJaA9DCDF9ryH4E3FAlIaUUpRoFU1MAWgWR0CQordz4k/sdX2UKGgGaAloD0MITfT5KCMvcUCUhpRSlGgVTUYBaBZHQJC2pefI0ZZ1fZQoaAZoCWgPQwjMfXIU4DdzQJSGlFKUaBVNRAFoFkdAkLauFg2If3V9lChoBmgJaA9DCP5/nDDhc25AlIaUUpRoFU0fAWgWR0CQtskka/ATdX2UKGgGaAloD0MIFY+LahF/bkCUhpRSlGgVTUYBaBZHQJC4Bqh11W91fZQoaAZoCWgPQwjtSPWdX5xCQJSGlFKUaBVL6mgWR0CQuQpkPMB7dX2UKGgGaAloD0MIFCUhkbbxSUCUhpRSlGgVS/NoFkdAkLqjaTOgQHV9lChoBmgJaA9DCEvMs5LWRHJAlIaUUpRoFU2cAWgWR0CQuqYvnKW+dX2UKGgGaAloD0MI3szoR8M0cECUhpRSlGgVTUQBaBZHQJC6wzj3mFJ1fZQoaAZoCWgPQwhLOV/svYJvQJSGlFKUaBVNSQFoFkdAkLugc94eLnV9lChoBmgJaA9DCI7O+SkOkGxAlIaUUpRoFU0/AWgWR0CQvMNoakyldX2UKGgGaAloD0MIdhw/VJpkcUCUhpRSlGgVTTMBaBZHQJC9LwKBuoB1fZQoaAZoCWgPQwivsOB+QIVuQJSGlFKUaBVNOgFoFkdAkL2T4+KTCHV9lChoBmgJaA9DCALzkCnfUXBAlIaUUpRoFU0pAWgWR0CQvgElE7W/dX2UKGgGaAloD0MIJF8JpMQ5cUCUhpRSlGgVTSABaBZHQJC+FHkLhJl1fZQoaAZoCWgPQwgzpIrilZdwQJSGlFKUaBVNHwFoFkdAkL5ntWuHOHV9lChoBmgJaA9DCFuxv+yeLW9AlIaUUpRoFU1UAWgWR0CQv/bm2b5NdX2UKGgGaAloD0MINWCQ9KmXcUCUhpRSlGgVTQ4BaBZHQJDAzcsUZel1fZQoaAZoCWgPQwgxRbk0PslwQJSGlFKUaBVNTAFoFkdAkMEWwA2hqXV9lChoBmgJaA9DCKd0sP5Py25AlIaUUpRoFU1YAWgWR0CQwYM1jy4GdX2UKGgGaAloD0MINL+aA4RGb0CUhpRSlGgVTVwBaBZHQJDBw2n889x1fZQoaAZoCWgPQwiH30237KNtQJSGlFKUaBVNOQFoFkdAkMNGnn+yaHV9lChoBmgJaA9DCIf6XdiaGXJAlIaUUpRoFU0tAWgWR0CQxGtrsSkCdX2UKGgGaAloD0MIjswjf3ARcECUhpRSlGgVTSMBaBZHQJDFEmu1WsB1fZQoaAZoCWgPQwjcLF4szGZxQJSGlFKUaBVNSQFoFkdAkMVt4Z/CqXV9lChoBmgJaA9DCFEujV+4AHBAlIaUUpRoFU1iAWgWR0CQxl3sXzlLdX2UKGgGaAloD0MIkX77OvDZbECUhpRSlGgVTRQBaBZHQJDGfHlwLmZ1fZQoaAZoCWgPQwjpZRTLLeRuQJSGlFKUaBVNMgFoFkdAkMawxnFo+XV9lChoBmgJaA9DCC1b64uEgW9AlIaUUpRoFU0rAWgWR0CQx/SEDhcadX2UKGgGaAloD0MIUADFyJILcUCUhpRSlGgVTTkBaBZHQJDIBSVGCqZ1fZQoaAZoCWgPQwhXQKGevgtzQJSGlFKUaBVNQgFoFkdAkMhOenQ6ZHV9lChoBmgJaA9DCPusMlNa8W9AlIaUUpRoFU13AWgWR0CQyRtxuKoAdX2UKGgGaAloD0MISGx3D1AvcUCUhpRSlGgVTQkBaBZHQJDJ6waBI4F1fZQoaAZoCWgPQwj2CgvuB/9wQJSGlFKUaBVNNQFoFkdAkMrnQ+lj3HV9lChoBmgJaA9DCEbu6eqOSG5AlIaUUpRoFU1LAWgWR0CQy1bNKRMfdX2UKGgGaAloD0MIuFhRg+nqcUCUhpRSlGgVTTUBaBZHQJDLkLQXyiF1fZQoaAZoCWgPQwgdkloo2Q1xQJSGlFKUaBVNlAFoFkdAkMy4eo1k2HV9lChoBmgJaA9DCPZgUnx8a2xAlIaUUpRoFU0cAWgWR0CQzU0Syt3fdX2UKGgGaAloD0MIVhFuMiricECUhpRSlGgVTUkBaBZHQJDNpv73wkR1fZQoaAZoCWgPQwg/OJ861lBvQJSGlFKUaBVNIgFoFkdAkM5radtl7XV9lChoBmgJaA9DCAEXZMvyx2tAlIaUUpRoFU1PAWgWR0CQz5Dq4YrKdX2UKGgGaAloD0MIcJnTZfF/cECUhpRSlGgVTUcBaBZHQJDQuhzvJBB1fZQoaAZoCWgPQwgVcxB0tDduQJSGlFKUaBVNRAFoFkdAkNDZwwTM7nV9lChoBmgJaA9DCCHkvP+PPHFAlIaUUpRoFU0eAWgWR0CQ0QfwqiGndX2UKGgGaAloD0MIVz1gHrIncUCUhpRSlGgVTTIBaBZHQJDRk11nuiN1fZQoaAZoCWgPQwiZnrDEgytuQJSGlFKUaBVNJwFoFkdAkNGbwvxpc3V9lChoBmgJaA9DCBwKn60DpXFAlIaUUpRoFU1yAWgWR0CQ0eymQ8wIdX2UKGgGaAloD0MInmD/dW6bb0CUhpRSlGgVTVwBaBZHQJDVNwS8J2N1fZQoaAZoCWgPQwjSONTvAmtxQJSGlFKUaBVNTgFoFkdAkNXZEx7AtXV9lChoBmgJaA9DCBCwVu2ajXBAlIaUUpRoFU0bAWgWR0CQ1iqZtvXLdX2UKGgGaAloD0MItftVgO+BbkCUhpRSlGgVTT8BaBZHQJDWFWxQizN1fZQoaAZoCWgPQwiISbiQR4ZwQJSGlFKUaBVNDAFoFkdAkNZJCfHxSnV9lChoBmgJaA9DCMO8x5lmi3JAlIaUUpRoFU1iAWgWR0CQ1wEYO2AodWUu"
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 248,
79
  "n_steps": 1024,
80
- "gamma": 0.999,
81
- "gae_lambda": 0.98,
82
  "ent_coef": 0.01,
83
  "vf_coef": 0.5,
84
  "max_grad_norm": 0.5,
85
- "batch_size": 64,
86
  "n_epochs": 4,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
 
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
+ "num_timesteps": 2015232,
46
+ "_total_timesteps": 2000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
+ "start_time": 1663152484.0370035,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
 
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALOQT73T1bs/ask0v5IHjz4Mpg49aHr2OwAAAAAAAAAAM+AaPXsOobpGxN02EYPLMa0z/7lRDwC2AACAPwAAgD+zqV+9jYAcP/plkT2aHJq+f/H+u+KKOT0AAAAAAAAAAACRC70K52W74yKDvABvlTxN2J88mEJ/vQAAgD8AAIA/syvkvRhcwD9IFSe/E9JlPdYQPL2+o2G+AAAAAAAAAAAApRU+Ohu/P/iw7D7X/Ye+v5l7PhP6aT4AAAAAAAAAAJqOMj3LUy0/rWl7vcZoib7rTj29l5EtvAAAAAAAAAAAAEisu1wTa7p12ySzKq3yrjHB/DkWUNUzAACAPwAAgD8agTC91wN1uRRwFbTm1KivSEYWO3tEqTMAAIA/AACAP40c0r1HJHE/a/Z5PekVkr7aTim+MbWiPQAAAAAAAAAAmnXDPCncWLqCDUa8QRFoOUwE/bo+xOO5AACAPwAAgD8z9XK89S+pP00ZNb62Qsq+bEWHu27OnL0AAAAAAAAAAGb2tbqu0Za6hW5NOqHAqrcgQkq7mu2ftgAAgD8AAIA/AGCIOh8FmLdDbyg83BQwPVhgxDrtQyU8AACAPwAAgD9GjYi+ibCoP8BQpL5zSJS+klHVvlrEsrwAAAAAAAAAAM2Q1DyPJjK6OPMVuiLqV7NxGig4FrYuOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
 
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.007616000000000067,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsTIa+fyrcECUhpRSlIwBbJRNIQGMAXSUR0CdZ7fWtlqbdX2UKGgGaAloD0MIu/HuyNjBcUCUhpRSlGgVTTcBaBZHQJ1nzMyJsO51fZQoaAZoCWgPQwgt0sQ7gBpwQJSGlFKUaBVN5QFoFkdAnWiyaZx7zHV9lChoBmgJaA9DCMxjzchgWnFAlIaUUpRoFU0gAWgWR0CdbP27nPmgdX2UKGgGaAloD0MItMnhk042SkCUhpRSlGgVTegDaBZHQJ1xmT4cm0F1fZQoaAZoCWgPQwi06J0KODVxQJSGlFKUaBVNuQFoFkdAnXLb655JLHV9lChoBmgJaA9DCH0HP3GAA2VAlIaUUpRoFU3oA2gWR0Cdc5JdSl3ydX2UKGgGaAloD0MIoMGmzqPCcUCUhpRSlGgVTUcBaBZHQJ10R6fJ3gV1fZQoaAZoCWgPQwiP/wJBAJ9tQJSGlFKUaBVNUAFoFkdAnXa6fJ3gUHV9lChoBmgJaA9DCM9IhEbwR3BAlIaUUpRoFU1VAWgWR0Cdd4iN83MqdX2UKGgGaAloD0MI/WZiuhDbcUCUhpRSlGgVTdsCaBZHQJ13n/XGwRp1fZQoaAZoCWgPQwgrpPykWrVsQJSGlFKUaBVNWgFoFkdAnXe5V4oqkXV9lChoBmgJaA9DCDANw0fEgW9AlIaUUpRoFU1lAWgWR0CdeWZrYXfqdX2UKGgGaAloD0MIa5kMxzNocECUhpRSlGgVTd4BaBZHQJ15+RU3n6l1fZQoaAZoCWgPQwihhm9h3R1vQJSGlFKUaBVNmAFoFkdAnXpAy6+WW3V9lChoBmgJaA9DCKYMHNDSBHBAlIaUUpRoFU3mAWgWR0CdeppYcNpedX2UKGgGaAloD0MI0CaHT/oDckCUhpRSlGgVTUICaBZHQJ17O9oN/fB1fZQoaAZoCWgPQwiF7LyNTeVxQJSGlFKUaBVNVAFoFkdAnXynjABT43V9lChoBmgJaA9DCLYSukviLmZAlIaUUpRoFU3oA2gWR0CdikdRzijtdX2UKGgGaAloD0MImL7XENzzcECUhpRSlGgVTWYBaBZHQJ2LK6Ymb9Z1fZQoaAZoCWgPQwjtmpDW2ApyQJSGlFKUaBVNEQFoFkdAnYwvJV81GnV9lChoBmgJaA9DCHy6umNxYXBAlIaUUpRoFU3gAmgWR0CdjFFbVz6rdX2UKGgGaAloD0MIVtgMcAFQckCUhpRSlGgVTWsBaBZHQJ2MUvg3tKJ1fZQoaAZoCWgPQwiPUglPaMhtQJSGlFKUaBVNJAFoFkdAnY0TtG/etXV9lChoBmgJaA9DCNklqrfGGHJAlIaUUpRoFU08AWgWR0CdjT/VAiV0dX2UKGgGaAloD0MIGLFPAMXZbkCUhpRSlGgVTQoBaBZHQJ2OBhnanJl1fZQoaAZoCWgPQwjUQzS6wzZwQJSGlFKUaBVNbQFoFkdAnY+dfXwsoXV9lChoBmgJaA9DCInTSbY6Wm5AlIaUUpRoFU0sAWgWR0Cdj/HBk7OndX2UKGgGaAloD0MIic4yi9Dvb0CUhpRSlGgVTWgBaBZHQJ2VGOLiuMd1fZQoaAZoCWgPQwiRC87g75ZsQJSGlFKUaBVNUAJoFkdAnZXhVdX1anV9lChoBmgJaA9DCPhVuVD5SXBAlIaUUpRoFU07AWgWR0Cdl+ppN9H+dX2UKGgGaAloD0MIAaJgxpS3cECUhpRSlGgVTQ4BaBZHQJ2YBnZkCmx1fZQoaAZoCWgPQwgWokPgCLtwQJSGlFKUaBVNYQFoFkdAnZi0hA4XGnV9lChoBmgJaA9DCHgpdck4hm5AlIaUUpRoFU0dAWgWR0CdmO46wMYudX2UKGgGaAloD0MIf0sA/mlmcUCUhpRSlGgVTUkBaBZHQJ2ZqUUwi7l1fZQoaAZoCWgPQwguAmN9AwhwQJSGlFKUaBVNSAFoFkdAnZ0x+jM3ZXV9lChoBmgJaA9DCANeZtioA3JAlIaUUpRoFU3jAWgWR0Cdn/QjUutfdX2UKGgGaAloD0MISSu+oTAqcUCUhpRSlGgVTboCaBZHQJ2gJj2Bas91fZQoaAZoCWgPQwiOlC2SNqhxQJSGlFKUaBVN7QJoFkdAnaF9xuKoAHV9lChoBmgJaA9DCDKqDOPuTnJAlIaUUpRoFU0mAWgWR0CdoaEL6UJOdX2UKGgGaAloD0MIknTN5JvXa0CUhpRSlGgVTTMBaBZHQJ2i4ZbY9Pl1fZQoaAZoCWgPQwg3FhQG5YFyQJSGlFKUaBVL/2gWR0Cdo0p+tr9EdX2UKGgGaAloD0MINQcI5ugFcECUhpRSlGgVTWoBaBZHQJ2m+vTw2EV1fZQoaAZoCWgPQwghHR7CeFpyQJSGlFKUaBVNlgJoFkdAnadiojv/i3V9lChoBmgJaA9DCGqhZHJqxmBAlIaUUpRoFU3oA2gWR0Cdp4rsjVx0dX2UKGgGaAloD0MIXDtREhKWb0CUhpRSlGgVTWEDaBZHQJ2oc/wAlv91fZQoaAZoCWgPQwgHJcy0fVRyQJSGlFKUaBVNvAFoFkdAnapjIq9XcXV9lChoBmgJaA9DCJ+sGK7O3nFAlIaUUpRoFU2qAWgWR0Cdqni+cpb2dX2UKGgGaAloD0MITPxR1JnzbECUhpRSlGgVTb0CaBZHQJ2tJg2Ifr91fZQoaAZoCWgPQwi6n1OQn0tyQJSGlFKUaBVNQQFoFkdAna1J2IO6NHV9lChoBmgJaA9DCD5BYrs7OXFAlIaUUpRoFU0aAWgWR0CdrsXt0FKTdX2UKGgGaAloD0MIqU9yh817cUCUhpRSlGgVTTUBaBZHQJ2veDBdld11fZQoaAZoCWgPQwg2V81zxIZyQJSGlFKUaBVNYgFoFkdAnbAO2/i5u3V9lChoBmgJaA9DCK9BX3r7R25AlIaUUpRoFU20AWgWR0CdvMiEg4ffdX2UKGgGaAloD0MIVI7J4r4oc0CUhpRSlGgVTQUCaBZHQJ29TPZ7HAB1fZQoaAZoCWgPQwj0iqceqehwQJSGlFKUaBVNcgJoFkdAnb4LE5yU93V9lChoBmgJaA9DCBsTYi7pOXJAlIaUUpRoFU0uAWgWR0CdvmjENvwWdX2UKGgGaAloD0MIY5y/CcWVcECUhpRSlGgVTSkBaBZHQJ2/EBEKE391fZQoaAZoCWgPQwjSUQ5mk31xQJSGlFKUaBVNSwFoFkdAnb9OevpyInV9lChoBmgJaA9DCBU6r7HLpm1AlIaUUpRoFU3EA2gWR0Cdv/xkNFz/dX2UKGgGaAloD0MINzP60bAzcECUhpRSlGgVTRgBaBZHQJ3AJFiKBNF1fZQoaAZoCWgPQwiflEkNLatxQJSGlFKUaBVNdAFoFkdAncBUBfa6BnV9lChoBmgJaA9DCBsOSwO/4nFAlIaUUpRoFU0sAWgWR0CdwLNwBHTadX2UKGgGaAloD0MIa5p3nGKpckCUhpRSlGgVTSgBaBZHQJ3EPozN2Tx1fZQoaAZoCWgPQwiDonkAC5NrQJSGlFKUaBVNWQFoFkdAncSX31zySXV9lChoBmgJaA9DCMrd5/goqXFAlIaUUpRoFU0bAWgWR0CdyJbtJFspdX2UKGgGaAloD0MIGt8Xl2pfckCUhpRSlGgVTRABaBZHQJ3JcZqEeyR1fZQoaAZoCWgPQwhozY+/dKZxQJSGlFKUaBVNTgFoFkdAncmQKKHfuXV9lChoBmgJaA9DCKpHGtxW5nFAlIaUUpRoFUv+aBZHQJ3KI1m8M/h1fZQoaAZoCWgPQwg9CtejcJ1vQJSGlFKUaBVNCANoFkdAncsPNzKcNHV9lChoBmgJaA9DCE3YfjJGfXFAlIaUUpRoFU2xAWgWR0Cdyw90ihWYdX2UKGgGaAloD0MILsvXZXhvbECUhpRSlGgVTSEBaBZHQJ3LaTSsr/d1fZQoaAZoCWgPQwhDHVa4ZS1wQJSGlFKUaBVNdgFoFkdAncvMdPtUoHV9lChoBmgJaA9DCMuCiT9Ku3FAlIaUUpRoFU0dAWgWR0CdzB1uzhP1dX2UKGgGaAloD0MIONibGJJ0ckCUhpRSlGgVTdEBaBZHQJ3Mt1s+FDh1fZQoaAZoCWgPQwge+u5WlrFvQJSGlFKUaBVNGwJoFkdAnczrs0HhTHV9lChoBmgJaA9DCECjdOmf1HBAlIaUUpRoFU2iAWgWR0Cdziic5Ke1dX2UKGgGaAloD0MIlIeFWlMEcECUhpRSlGgVTYYBaBZHQJ3PB5le4Td1fZQoaAZoCWgPQwjyCkRPyvdwQJSGlFKUaBVNxAFoFkdAnc/nLq2SdXV9lChoBmgJaA9DCHdlFwxud3NAlIaUUpRoFUv1aBZHQJ3RwN3GGVR1fZQoaAZoCWgPQwhZvi7DPwdyQJSGlFKUaBVNtgFoFkdAndSXCTEBKnV9lChoBmgJaA9DCC3RWWaRLHFAlIaUUpRoFU1TAWgWR0Cd1KhKlHjIdX2UKGgGaAloD0MIaf6Y1ia8b0CUhpRSlGgVTRsBaBZHQJ3U4nYxtYV1fZQoaAZoCWgPQwgmbaruEb1yQJSGlFKUaBVNSgFoFkdAndUHm3fAK3V9lChoBmgJaA9DCH3sLlAS8XFAlIaUUpRoFU1RAWgWR0Cd1b4Pf8/EdX2UKGgGaAloD0MI0LTEyqhRckCUhpRSlGgVTVABaBZHQJ3WePuG9Ht1fZQoaAZoCWgPQwikqgmirnFxQJSGlFKUaBVNXwFoFkdAndb5DJEH+3V9lChoBmgJaA9DCLRzmgXafXJAlIaUUpRoFU31AWgWR0Cd1yKJl8PXdX2UKGgGaAloD0MImGw82OK9cUCUhpRSlGgVTTUBaBZHQJ3XGrilzlt1fZQoaAZoCWgPQwjxf0dUKFxuQJSGlFKUaBVNWAFoFkdAnddaZUkv9XV9lChoBmgJaA9DCFmJeVaSXnJAlIaUUpRoFU0tAWgWR0Cd2BYChew+dX2UKGgGaAloD0MIG2MnvISocUCUhpRSlGgVTXUBaBZHQJ3Y8QVbiZR1fZQoaAZoCWgPQwgROX0934ByQJSGlFKUaBVN+QFoFkdAndylSwW30HV9lChoBmgJaA9DCO4jtyZdNnNAlIaUUpRoFUv7aBZHQJ3cw/eLvTh1fZQoaAZoCWgPQwibdjHN9NNvQJSGlFKUaBVNIAFoFkdAnd7GVZ9uxnV9lChoBmgJaA9DCARY5NePTm1AlIaUUpRoFU08AWgWR0Cd345BC2MLdX2UKGgGaAloD0MIdLM/UO5EcUCUhpRSlGgVTfcBaBZHQJ3geCEpRXR1fZQoaAZoCWgPQwjurx73rZRvQJSGlFKUaBVNGgFoFkdAneEQckt293V9lChoBmgJaA9DCETC9/5GIXJAlIaUUpRoFU3tAWgWR0Cd4WA8jiXIdX2UKGgGaAloD0MIqb7zixLGb0CUhpRSlGgVTTcBaBZHQJ3hgmqo60Z1ZS4="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
+ "_n_updates": 492,
79
  "n_steps": 1024,
80
+ "gamma": 0.9999,
81
+ "gae_lambda": 0.99,
82
  "ent_coef": 0.01,
83
  "vf_coef": 0.5,
84
  "max_grad_norm": 0.5,
85
+ "batch_size": 128,
86
  "n_epochs": 4,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:db65f1cd06a09491005ca90c3cbf5e3eee5872a65efa390b621268472c1f5eb6
3
  size 87865
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4031612d771329df21da82c7d33c398b5058d9accebdf7ff1013e10ccdfda5bc
3
  size 87865
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ff6b390b259f2eb6ea206b0b8c640b42b8d022537ebeee67c4b50efed9b82fe0
3
  size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0500a75f228e847f3f06427162c5093767ba7ddc72d5fc1187a87eb99ca4e1dc
3
  size 43201
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 250.3742724084269, "std_reward": 22.20360602766575, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-09-14T10:17:04.689055"}
 
1
+ {"mean_reward": 269.1068071324118, "std_reward": 14.542901114826432, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-09-14T11:20:11.227684"}