michael-kingston commited on
Commit
dd13799
·
1 Parent(s): 1585f16

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -163.04 +/- 104.28
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -113.67 +/- 12.83
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7da252b9b880>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7da252b9b910>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7da252b9b9a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7da252b9ba30>", "_build": "<function ActorCriticPolicy._build at 0x7da252b9bac0>", "forward": "<function ActorCriticPolicy.forward at 0x7da252b9bb50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7da252b9bbe0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7da252b9bc70>", "_predict": "<function ActorCriticPolicy._predict at 0x7da252b9bd00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7da252b9bd90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7da252b9be20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7da252b9beb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7da2529ac800>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 10, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698203171531400856, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAK05/T6qT8I/04yHP3sVo77kDdm+luthvgAAAAAAAAAAoDRcPgpyPT+ycAM/v8xOvxaJWb51Nuc9AAAAAAAAAABNyii+Nk2/P/Yibr/qR5E9P+O/PuyFAD8AAAAAAAAAALOQG70j1ls/Z4w5vTzjW79mQ6u9AzlYvQAAAAAAAAAAGs7yvUSusj+7rS6/KhpmvrqP7T16vaQ8AAAAAAAAAACguLs+whJjPz+xEz+MD3K/ekNnPo56OT4AAAAAAAAAAAAI/7wQWJ0/UEPqvV0QxL54Zry8VcavPAAAAAAAAAAAQGI9PpWXuz/Yagc/zwejvrGWnL6y3AW+AAAAAAAAAABKgDC/ZMoGvjkgOb/N08C/++zVPtSlSr4AAIA/AACAP0sAtb5bG7U/nWZzvyTGwL6iNhI/9vGUPgAAAAAAAAAAbQYuvpBqvD8yGEu/Z6N8vaJ/WD6r2mw+AAAAAAAAAACzSie9+9PBP3oEQ769X288lMGjvLZRqTwAAAAAAAAAAIBGhj7T9yc/Aio8P/BLm78vZAG/1nDivgAAAAAAAAAAmuYgvbvkrz/IF02/zMbCvtbgSD074l4+AAAAAAAAAACaTYA+XS53PkNu4j4E4LK/Vms5vuSPg74AAAAAAAAAAN3Vkr4DO0E99pJhPR5SW75c3Os9PlmAvwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -1637.4, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFlgy+HrQgOMAWyUSzyMAXSUR0AnN9YOlO45dX2UKGgGR8BgASHTI/7jaAdLQmgIR0AnPCeEqUeNdX2UKGgGR8B4gldUsFt9aAdLXGgIR0AnTTTfBN21dX2UKGgGR8BqiG/5+H8CaAdLSmgIR0AnVmXgLqlhdX2UKGgGR8BZdL1uivgWaAdLRWgIR0AnW4o7V8TjdX2UKGgGR8B8VaTdLxqgaAdLimgIR0AnXrJKaodddX2UKGgGR8BQ3CAhB7eEaAdLR2gIR0AncihWYF7ldX2UKGgGR8B3Itgc94eLaAdLa2gIR0AndpDeCTUzdX2UKGgGR8Bg20a4tpVTaAdLfWgIR0AnnP69CeEqdX2UKGgGR8BT76n3ta6jaAdLb2gIR0AnuvnKW9lFdX2UKGgGR8BniQdbPhQ4aAdLV2gIR0Any2hIvrWzdX2UKGgGR8Bg/RSiudPMaAdLZmgIR0An4/iYLLIQdX2UKGgGR8B68ZVT72tdaAdLZmgIR0AoB4s3AEdOdX2UKGgGR8BaKZSaVlf7aAdLS2gIR0AoNiiItUXIdX2UKGgGR8BpxXCQ9zOpaAdLQWgIR0AoOxzq8lHCdX2UKGgGR8Bz9iq6vq1PaAdLgGgIR0AoYwFC9h7WdX2UKGgGR8BgO1kxyn1naAdLR2gIR0AocbayrxRVdX2UKGgGR8BYVlxKg7HRaAdLUmgIR0Aofurp7kXDdX2UKGgGR0AdZ0FKTSssaAdLTmgIR0Aojs4T9KmLdX2UKGgGR8B5Q1sdkrf+aAdLW2gIR0Aojq0tyxRmdX2UKGgGR8BXyfQ8fV7QaAdLeGgIR0AoxSPU8V59dX2UKGgGR8B4tH0Zm7J5aAdLUmgIR0Ao21Vo6CDmdX2UKGgGR8BFf/Dk2gnMaAdLgWgIR0ApEoo/iYLLdX2UKGgGR8BQl8p1A7gbaAdLhWgIR0ApIANoakyldX2UKGgGR8BwpcOI68xsaAdLe2gIR0ApJZL7GecydX2UKGgGR8BYRtoexOclaAdLO2gIR0ApfUNKAavSdX2UKGgGR8BfveuFHrhSaAdLaWgIR0Aph8aXKKYRdX2UKGgGR8BxEk+4b0e2aAdLcWgIR0ApmuzQeFL4dX2UKGgGR8B9vWT1TR6XaAdLUmgIR0ApoWpIczZZdX2UKGgGR8BIsBltj0+UaAdLQWgIR0Appm8M/hVEdX2UKGgGR8BTMclHBk7PaAdLQGgIR0AptCngpBomdX2UKGgGR8Bj9MwHqu8saAdLXWgIR0ApwdUbT+efdX2UKGgGR8Bc9+xGDtgKaAdLdGgIR0Ap0/bCaZx8dX2UKGgGR8BYqNLlFMIvaAdLQGgIR0Ap2xMWXTmXdX2UKGgGR8BaokdeY2KmaAdLdmgIR0AqBs6aLGaQdX2UKGgGR8B6w8CJXQt0aAdLX2gIR0AqLfcer+5wdX2UKGgGR8Bj7HSpiqhlaAdLYGgIR0AqcoESuhbodX2UKGgGR8BpTb1yvLX+aAdLgGgIR0Aqhi6QNkOJdX2UKGgGR8BVnV6zE74jaAdLQGgIR0AqooG6f8MvdX2UKGgGR8B6L6saKk2xaAdLWmgIR0AqpuXu3MINdX2UKGgGR8Bf+acd5prUaAdLQmgIR0AqzgogFHJ+dX2UKGgGR8Bwm2wqy4WlaAdLV2gIR0Aq3Jnxri2ldX2UKGgGR8BZmqioKlYVaAdLQ2gIR0Aq2xJNCZ4OdX2UKGgGR8Bhu45cTrVwaAdLU2gIR0Aq+6XjU/fPdX2UKGgGR8Bg/4fuCwr2aAdLY2gIR0ArABYmsvIwdX2UKGgGR8BAnUCA+Y+jaAdLgGgIR0ArBn13+uNhdX2UKGgGR8BWHaYAsCkoaAdLYGgIR0ArBU1hsqJ/dX2UKGgGR8Bw/ocHWz4UaAdLfWgIR0ArCS+xnnMddX2UKGgGR8BtMV36hxo7aAdLcGgIR0ArCkTHsC1adX2UKGgGR8Bidth/iHZcaAdLbWgIR0ArD4xDb8FZdX2UKGgGR8Bqf5/y5I6KaAdLbGgIR0ArQfT1CgK4dX2UKGgGR8BjrDPv8ZUDaAdLZWgIR0ArSrWiDdxidX2UKGgGR8BbQV6JIlMRaAdLP2gIR0ArTxgAp8WsdX2UKGgGR8Bp1SYeDFqBaAdLXWgIR0Ardq9Gqgh9dX2UKGgGR8BUMY7ihnJ1aAdLOGgIR0ArdqfOD8LsdX2UKGgGR8BsLRN9H+ZPaAdLYWgIR0ArfGb1AZ88dX2UKGgGR8B2BElt0mtyaAdLb2gIR0ArgQNkOI69dX2UKGgGR8BVdo64lQdkaAdLPWgIR0ArgIInjQzDdX2UKGgGR8BdKO2VmjCYaAdLOWgIR0Arf4fwI+nqdX2UKGgGR8A/zoq0+kgwaAdLS2gIR0ArkwUQCjk/dX2UKGgGR8BaWAvlEJBxaAdLfGgIR0AroudPLxI8dX2UKGgGR8B9l71pTMq0aAdLZGgIR0AroXUH6dlNdX2UKGgGR8BoN59y925haAdLUmgIR0Arpdu5z5oHdX2UKGgGR8Bm+wsZpBX0aAdLamgIR0ArsE7GNrCWdX2UKGgGR8Bl9ifBeokzaAdLXGgIR0ArsGW2PT5PdX2UKGgGR8Bau7OVxCIDaAdLPmgIR0ArxSsr/bTMdX2UKGgGR8BzqgY/FBIGaAdLamgIR0Ar0SteUpuudX2UKGgGR8BtbkUM5OrRaAdLXWgIR0Ar9AGB4D9wdX2UKGgGR8BXbfkiliz+aAdLW2gIR0Ar+PPszEaVdX2UKGgGR8Btx358BuGcaAdLSGgIR0AsAP91loUSdX2UKGgGR8BJ+WCuloDgaAdLRGgIR0AsApsGgSOBdX2UKGgGR8BY/8WCVbA2aAdLRGgIR0AsAN4qwyIpdX2UKGgGR8BYruWOZLIxaAdLRWgIR0AsN8gIQe3hdX2UKGgGR8B6EdusLfDUaAdLUGgIR0AsQSIP9UCJdX2UKGgGR8Bsqu7BfrrxaAdLa2gIR0AsUSmqHXVcdX2UKGgGR8B0VJuP3i71aAdLamgIR0AsUy5Zr56/dX2UKGgGR8BRlMqjJuEVaAdLb2gIR0AsVJoTPBzndX2UKGgGR8BcWbqlgtvoaAdLZGgIR0AsW9X9zfaYdX2UKGgGR8BtIS++M6zWaAdLVmgIR0AsXdoFmnO0dX2UKGgGR8Bg9qUTtb9qaAdLX2gIR0AsYzUqhDgJdX2UKGgGR8BwQaBBiTdMaAdLS2gIR0Asa7KaG5+ZdX2UKGgGR8BmOBFPSDywaAdLP2gIR0AsgvKU3XI2dX2UKGgGR8BbyQqAjIJaaAdLYmgIR0Asi+ueSSvDdX2UKGgGR8BiuiRjjJdTaAdLdmgIR0Ask1FYuCf6dX2UKGgGR8Bjzaxkd3jdaAdLTmgIR0Aslh86V+qjdX2UKGgGR8BUZMyJsO5KaAdLS2gIR0AslOARTS9edX2UKGgGR8Bhst7KJVKgaAdLOWgIR0AsxTKDCgscdX2UKGgGR8BWIH1OCXhPaAdLVGgIR0As6BFuvUz9dX2UKGgGR8BbsNuDSPU8aAdLbmgIR0As6Dyvs7dSdX2UKGgGR8BTQpNXYDkmaAdLSWgIR0As+3azu4PPdX2UKGgGR8BnCFj/dZaFaAdLVWgIR0AtDRZ2ZApsdX2UKGgGR8BZxnPJJXhgaAdLTGgIR0AtC6I3zcyndX2UKGgGR8BaCARbr1M/aAdLYGgIR0AtCzImw7kodX2UKGgGR8BoD2l2vB8AaAdLhWgIR0AtGvMbFS88dX2UKGgGR8BiuW0VrRBvaAdLRmgIR0AtITNdJJ5FdX2UKGgGR8BZZL+98JD3aAdLY2gIR0AtK6I3zcyndX2UKGgGR8BkNXoLXtjTaAdLa2gIR0AtMfdyksSTdX2UKGgGR8BVGCzollbvaAdLTWgIR0AtOddVvMr3dX2UKGgGR8BY/UM5OrQxaAdLUWgIR0AtPtbcGkeqdX2UKGgGR8BthbzZpSJkaAdLW2gIR0AtUrlNlAeJdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1e95547e20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1e95547eb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1e95547f40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1e9555c040>", "_build": "<function ActorCriticPolicy._build at 0x7f1e9555c0d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f1e9555c160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1e9555c1f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1e9555c280>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1e9555c310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1e9555c3a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1e9555c430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1e9555c4c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1e955600c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698204763157552598, "learning_rate": 0.0001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIUUJ78BjFi+RwgLv0RbNb5AnJc+xRtvvQAAgD8AAAAASoDeviusjD+mqA2/an8Sv6jpg75tKti9AAAAAAAAAAAKbII+RvNSPxQhtj2yoRO/468kPvMjiz4AAAAAAAAAAN1T2r5uGMy8ZdLlOuk4bzxZIq++q6lbPQAAgD8AAIA/jSyuPcyCuj+xERU+HvNxvtTHDj5Tkb88AAAAAAAAAACAm3699vIzOyjyWTyHRpm99YTdPMLBCj4AAAAAAAAAADOJRb1VjKE/ZT1Mve9YlL4lRH2+CtnAvgAAAAAAAAAAM70BvuzRk7df8Mg9KkazvTX5J7x2958+AACAPwAAgD8A14G8pD5su0opAj1VzIA85/+RPOY7Xr0AAIA/AACAP2a+vb3+gr4+7gqKPiq2Db+47Ww+sS2cPgAAAAAAAAAAU0AhPoK+/j7ySRU+44TOvgunVL32Ajy9AAAAAAAAAADNcyS9KUBVug41YDo0uwS5gxGbunVqd7kAAIA/AACAP+1MZD4qkEE+7QqsPkfgqL5xBWq+hgSKPgAAAAAAAAAAcz6AvlxaXbyIrqG9n+WBPPQfvD09NlO9AACAPwAAgD8thCK+FFu2O534Kz3Slx67B4lGvTruFDwAAIA/AACAPzN2zTy3Bn8+2vCrPpujzL4kni8+iMxePgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV/wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGGExrSE12uMAWyUTegDjAF0lEdAbbXw7T2FnXV9lChoBkdAMwrg0j1PFmgHS4xoCEdAbbfK9PDYRXV9lChoBkdAFsjGkvboKWgHS7NoCEdAbbuZVn27F3V9lChoBkdAMMjnA6+36WgHS5VoCEdAbb6Xj2i+L3V9lChoBkfAOAwnhKlHjWgHS7JoCEdAbctUVi4J/3V9lChoBkdAU6YBcRlH0GgHTegDaAhHQG3SfyXlbNd1fZQoaAZHQEAHo7FKkEdoB0vPaAhHQG3S+TmnwXt1fZQoaAZHP/e1dPci4axoB0uBaAhHQG3by2QXAM51fZQoaAZHQETNzpX6qKhoB0u3aAhHQG3lCgK4QSV1fZQoaAZHQDMLyiEg4fhoB0ulaAhHQG3oGk30f5l1fZQoaAZHwDAcxgy/KyRoB0vNaAhHQG3opVS4vvl1fZQoaAZHQEte9TxXnyNoB03oA2gIR0Bt7rdSEUTMdX2UKGgGR0BBXLkS26TXaAdLh2gIR0Bt87KDCgscdX2UKGgGR0A1vv9tMwlCaAdLjWgIR0Bt9ayrxRVIdX2UKGgGR8BObB+OOsDGaAdLoGgIR0BuBbJ6po9LdX2UKGgGR0BX0KEOAiFCaAdN6ANoCEdAbgsSlnAZbnV9lChoBkdALpOVxCIDYGgHS7BoCEdAbhdE/jbSJHV9lChoBkdATNS3kPtlZ2gHTegDaAhHQG4Y+C9RJmN1fZQoaAZHQEkEdvsJIDpoB0uvaAhHQG4ksJQcghd1fZQoaAZHQFb3QL/jsD5oB03oA2gIR0BuKGUD+zdDdX2UKGgGR8A9J3l0YCQtaAdL0GgIR0BuMkhmoR7JdX2UKGgGR8Adv3wkPczqaAdLhGgIR0BuPisbNr0rdX2UKGgGR0A7kIfr8iwCaAdLxGgIR0BuQqad+XqrdX2UKGgGR0BOmP8hs67vaAdLq2gIR0BuSYUahpQDdX2UKGgGR8BVx/4h2W6caAdL0GgIR0BuWHVqesgddX2UKGgGR8A7TEuQIUrTaAdLz2gIR0BuXFschkiEdX2UKGgGR8BVXtE1EVnFaAdLtGgIR0BuYaSmqHXVdX2UKGgGR0BQZbs4T9KmaAdN6ANoCEdAbm+JJGvwE3V9lChoBkdAQcNUlzEJjWgHS7NoCEdAbnrVPN3W4HV9lChoBkdARziJwbVBlmgHS6doCEdAbodZamoBJnV9lChoBkfASFG+9Jz1b2gHS7toCEdAbpdk/8l5W3V9lChoBkdAQ4iEvkBCD2gHTegDaAhHQG6c+8PFvQ51fZQoaAZHwEPKGNaQmu1oB0u0aAhHQG6j25Yoy9F1fZQoaAZHQFtxndO6/ZdoB03oA2gIR0Bupx1s+FDfdX2UKGgGR8BqWzcwg1WKaAdNJgNoCEdAbqnai9IwunV9lChoBkdAR0DQZ4wAVGgHS69oCEdAbq302cawU3V9lChoBkdAOJ0MkQf6oGgHS65oCEdAbrlIEr5IpnV9lChoBkdANRsAvL5h0GgHTegDaAhHQG651SOzY291fZQoaAZHQCC3Xd0q6OJoB0uPaAhHQG6+yEL6UJR1fZQoaAZHQFosVUMoc71oB03oA2gIR0BuxA9zOopAdX2UKGgGR0A1Lpb2USqVaAdLo2gIR0Bux/vlU6xPdX2UKGgGR8BYJs8ox59maAdLwmgIR0Bu2TGNrCWNdX2UKGgGR8AItqN6w+t9aAdLu2gIR0Bu3McMmWt2dX2UKGgGR8BFJ0qx1PnCaAdLpWgIR0Bu5uCNCJGfdX2UKGgGR0ATIL7XQMQVaAdLmWgIR0Bu8U1O0svqdX2UKGgGR8BATwfIS13MaAdLtmgIR0Bu8+vStvGZdX2UKGgGR0BGov9kz41xaAdN6ANoCEdAbv3XV9Wp63V9lChoBkdAVAQD3dsSCmgHTegDaAhHQG8Brcj7hvR1fZQoaAZHQDAm8Hv+fiBoB0ukaAhHQG8ISB9Tgl51fZQoaAZHQCgOmvW6K+BoB0ugaAhHQG8LoZydWhh1fZQoaAZHwBR50OmR/3FoB03oA2gIR0BvDfIwM6RydX2UKGgGR0BZrkRBeHBUaAdN6ANoCEdAbx3o/zJ6p3V9lChoBkdARNrdSEUTMGgHS5BoCEdAbyZDXvphW3V9lChoBkfAMkq2fChvi2gHS6BoCEdAbybFy7wrlXV9lChoBkc/8tvYODrZ8WgHS7BoCEdAbzUI3R5TqHV9lChoBkdAT/Wzt1IRRWgHS8VoCEdAb0bnMdLg43V9lChoBkdAVsOv5gw482gHTegDaAhHQG9aKVII4VB1fZQoaAZHwD3XaGpMpPRoB0ujaAhHQG9agUcn3L51fZQoaAZHQF9PHTqjaf1oB03oA2gIR0BvX2AEt/WldX2UKGgGR8Anl446wMYuaAdL12gIR0BvaS9AX2ugdX2UKGgGR8BGyDSXt0FKaAdLrmgIR0BvbT/p+tr9dX2UKGgGR0Ax9m6oVEeAaAdLoWgIR0BvdFXNke6qdX2UKGgGR0BDE8dPtUn5aAdN6ANoCEdAb3mihWYF7nV9lChoBkfAVL7nlnyup2gHS7hoCEdAb5ETtb9qDnV9lChoBkdAI5uMdcSoO2gHS81oCEdAb5HwR5C4SnV9lChoBkfAJALo4dZJTWgHS3xoCEdAb5Y4uK4x13V9lChoBkdAT4rawljVhGgHS6toCEdAb5f0OEug6HV9lChoBkfAQtDD0lJHy2gHS7BoCEdAb52elsP8RHV9lChoBkfAY4sj0L+glGgHTW4CaAhHQG+hpmmLtNV1fZQoaAZHQBWsguAZsKtoB0uyaAhHQG+q7XQMQVd1fZQoaAZHQFUN2h7E5yVoB03oA2gIR0BvwzAJswcpdX2UKGgGR8A8k1LamGdqaAdLoGgIR0BvxwO8TSLJdX2UKGgGR8A96KG+K0laaAdLu2gIR0BvyL/yXlbNdX2UKGgGR0BYMRYRujynaAdN6ANoCEdAb8rWe6I3znV9lChoBkdANvtu1ndwemgHS8loCEdAb9CBz3h4uHV9lChoBkdAQ33fTCtRvWgHS45oCEdAb9SNGViWmnV9lChoBkfAPYCI55qubWgHTegDaAhHQG/WsijcmBx1fZQoaAZHwEnnRgqmTDBoB0u2aAhHQG/WuXVsk6d1fZQoaAZHwE14ivgWJrNoB00VAWgIR0Bv35UT+NtJdX2UKGgGR0BOFQwCbMHKaAdN6ANoCEdAb+Ud0aIeo3V9lChoBkfAT/ShL5AQhGgHTRYBaAhHQG/p4VymygR1fZQoaAZHwEl+vzvqkdpoB0uyaAhHQG/yrJCBwuN1fZQoaAZHwGGAKfvnbItoB0vSaAhHQG/7mtQsPJ91fZQoaAZHwE1iBun/DLtoB0vRaAhHQG/9GDtgKF91fZQoaAZHQFjYp1A7gbZoB03oA2gIR0Bv/VOqNp/PdX2UKGgGR0AFxUBGQSzxaAdLyGgIR0BwAW4Vh1DCdX2UKGgGR0BX53JxNqQBaAdN6ANoCEdAcAKiDdxhlXV9lChoBke/9d90A93bEmgHS+RoCEdAcALxp+MIeHV9lChoBkdANQ8AWBSUDGgHS45oCEdAcASKVII4VHV9lChoBkdAQzfeLvTgEWgHS/doCEdAcAbBAOavzXV9lChoBkdAIp+CK77KrGgHS8toCEdAcAhUMG5c1XV9lChoBkdAP/R3A2ycC2gHS/BoCEdAcAm0aqCHynV9lChoBkdAYMZHOryUcGgHTegDaAhHQHAKzCP6sQx1fZQoaAZHwCLLU1AJLM9oB0u7aAhHQHAR/+OwPiF1fZQoaAZHwEJsveP7vXtoB0ubaAhHQHASk/W1+iJ1fZQoaAZHQFJfVQAMlTpoB03oA2gIR0BwEsYHgP3BdX2UKGgGR0Abj2i+L3sYaAdLmGgIR0BwFAf8uSOjdX2UKGgGR7/1bSy+pOvdaAdLo2gIR0BwGJC8e0XxdX2UKGgGR0AUCZhKDkELaAdLpWgIR0BwGiUeMhoudX2UKGgGR8AlsEdNnGsFaAdNIwFoCEdAcBsx2St/4XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 1024, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV2AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYS9ob21lL25vb25lL2FuYWNvbmRhMy9lbnZzL2RlZXBfUkwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGEvaG9tZS9ub29uZS9hbmFjb25kYTMvZW52cy9kZWVwX1JML2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV2AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYS9ob21lL25vb25lL2FuYWNvbmRhMy9lbnZzL2RlZXBfUkwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGEvaG9tZS9ub29uZS9hbmFjb25kYTMvZW52cy9kZWVwX1JML2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-6.5.6-76060506-generic-x86_64-with-glibc2.35 # 202310061235~1697396945~22.04~9283e32 SMP PREEMPT_DYNAMIC Sun O", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1"}}
ppo-LunarLander-v2-2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56efb8961353ec7eed03fe09d6bb35580d4c5b31ddf7c609124b2c5cc7ae3a39
3
+ size 148035
ppo-LunarLander-v2-2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
ppo-LunarLander-v2-2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1e95547e20>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1e95547eb0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1e95547f40>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1e9555c040>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f1e9555c0d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f1e9555c160>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1e9555c1f0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1e9555c280>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f1e9555c310>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1e9555c3a0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1e9555c430>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1e9555c4c0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f1e955600c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1698204763157552598,
30
+ "learning_rate": 0.0001,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIUUJ78BjFi+RwgLv0RbNb5AnJc+xRtvvQAAgD8AAAAASoDeviusjD+mqA2/an8Sv6jpg75tKti9AAAAAAAAAAAKbII+RvNSPxQhtj2yoRO/468kPvMjiz4AAAAAAAAAAN1T2r5uGMy8ZdLlOuk4bzxZIq++q6lbPQAAgD8AAIA/jSyuPcyCuj+xERU+HvNxvtTHDj5Tkb88AAAAAAAAAACAm3699vIzOyjyWTyHRpm99YTdPMLBCj4AAAAAAAAAADOJRb1VjKE/ZT1Mve9YlL4lRH2+CtnAvgAAAAAAAAAAM70BvuzRk7df8Mg9KkazvTX5J7x2958+AACAPwAAgD8A14G8pD5su0opAj1VzIA85/+RPOY7Xr0AAIA/AACAP2a+vb3+gr4+7gqKPiq2Db+47Ww+sS2cPgAAAAAAAAAAU0AhPoK+/j7ySRU+44TOvgunVL32Ajy9AAAAAAAAAADNcyS9KUBVug41YDo0uwS5gxGbunVqd7kAAIA/AACAP+1MZD4qkEE+7QqsPkfgqL5xBWq+hgSKPgAAAAAAAAAAcz6AvlxaXbyIrqG9n+WBPPQfvD09NlO9AACAPwAAgD8thCK+FFu2O534Kz3Slx67B4lGvTruFDwAAIA/AACAPzN2zTy3Bn8+2vCrPpujzL4kni8+iMxePgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV/wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGGExrSE12uMAWyUTegDjAF0lEdAbbXw7T2FnXV9lChoBkdAMwrg0j1PFmgHS4xoCEdAbbfK9PDYRXV9lChoBkdAFsjGkvboKWgHS7NoCEdAbbuZVn27F3V9lChoBkdAMMjnA6+36WgHS5VoCEdAbb6Xj2i+L3V9lChoBkfAOAwnhKlHjWgHS7JoCEdAbctUVi4J/3V9lChoBkdAU6YBcRlH0GgHTegDaAhHQG3SfyXlbNd1fZQoaAZHQEAHo7FKkEdoB0vPaAhHQG3S+TmnwXt1fZQoaAZHP/e1dPci4axoB0uBaAhHQG3by2QXAM51fZQoaAZHQETNzpX6qKhoB0u3aAhHQG3lCgK4QSV1fZQoaAZHQDMLyiEg4fhoB0ulaAhHQG3oGk30f5l1fZQoaAZHwDAcxgy/KyRoB0vNaAhHQG3opVS4vvl1fZQoaAZHQEte9TxXnyNoB03oA2gIR0Bt7rdSEUTMdX2UKGgGR0BBXLkS26TXaAdLh2gIR0Bt87KDCgscdX2UKGgGR0A1vv9tMwlCaAdLjWgIR0Bt9ayrxRVIdX2UKGgGR8BObB+OOsDGaAdLoGgIR0BuBbJ6po9LdX2UKGgGR0BX0KEOAiFCaAdN6ANoCEdAbgsSlnAZbnV9lChoBkdALpOVxCIDYGgHS7BoCEdAbhdE/jbSJHV9lChoBkdATNS3kPtlZ2gHTegDaAhHQG4Y+C9RJmN1fZQoaAZHQEkEdvsJIDpoB0uvaAhHQG4ksJQcghd1fZQoaAZHQFb3QL/jsD5oB03oA2gIR0BuKGUD+zdDdX2UKGgGR8A9J3l0YCQtaAdL0GgIR0BuMkhmoR7JdX2UKGgGR8Adv3wkPczqaAdLhGgIR0BuPisbNr0rdX2UKGgGR0A7kIfr8iwCaAdLxGgIR0BuQqad+XqrdX2UKGgGR0BOmP8hs67vaAdLq2gIR0BuSYUahpQDdX2UKGgGR8BVx/4h2W6caAdL0GgIR0BuWHVqesgddX2UKGgGR8A7TEuQIUrTaAdLz2gIR0BuXFschkiEdX2UKGgGR8BVXtE1EVnFaAdLtGgIR0BuYaSmqHXVdX2UKGgGR0BQZbs4T9KmaAdN6ANoCEdAbm+JJGvwE3V9lChoBkdAQcNUlzEJjWgHS7NoCEdAbnrVPN3W4HV9lChoBkdARziJwbVBlmgHS6doCEdAbodZamoBJnV9lChoBkfASFG+9Jz1b2gHS7toCEdAbpdk/8l5W3V9lChoBkdAQ4iEvkBCD2gHTegDaAhHQG6c+8PFvQ51fZQoaAZHwEPKGNaQmu1oB0u0aAhHQG6j25Yoy9F1fZQoaAZHQFtxndO6/ZdoB03oA2gIR0Bupx1s+FDfdX2UKGgGR8BqWzcwg1WKaAdNJgNoCEdAbqnai9IwunV9lChoBkdAR0DQZ4wAVGgHS69oCEdAbq302cawU3V9lChoBkdAOJ0MkQf6oGgHS65oCEdAbrlIEr5IpnV9lChoBkdANRsAvL5h0GgHTegDaAhHQG651SOzY291fZQoaAZHQCC3Xd0q6OJoB0uPaAhHQG6+yEL6UJR1fZQoaAZHQFosVUMoc71oB03oA2gIR0BuxA9zOopAdX2UKGgGR0A1Lpb2USqVaAdLo2gIR0Bux/vlU6xPdX2UKGgGR8BYJs8ox59maAdLwmgIR0Bu2TGNrCWNdX2UKGgGR8AItqN6w+t9aAdLu2gIR0Bu3McMmWt2dX2UKGgGR8BFJ0qx1PnCaAdLpWgIR0Bu5uCNCJGfdX2UKGgGR0ATIL7XQMQVaAdLmWgIR0Bu8U1O0svqdX2UKGgGR8BATwfIS13MaAdLtmgIR0Bu8+vStvGZdX2UKGgGR0BGov9kz41xaAdN6ANoCEdAbv3XV9Wp63V9lChoBkdAVAQD3dsSCmgHTegDaAhHQG8Brcj7hvR1fZQoaAZHQDAm8Hv+fiBoB0ukaAhHQG8ISB9Tgl51fZQoaAZHQCgOmvW6K+BoB0ugaAhHQG8LoZydWhh1fZQoaAZHwBR50OmR/3FoB03oA2gIR0BvDfIwM6RydX2UKGgGR0BZrkRBeHBUaAdN6ANoCEdAbx3o/zJ6p3V9lChoBkdARNrdSEUTMGgHS5BoCEdAbyZDXvphW3V9lChoBkfAMkq2fChvi2gHS6BoCEdAbybFy7wrlXV9lChoBkc/8tvYODrZ8WgHS7BoCEdAbzUI3R5TqHV9lChoBkdAT/Wzt1IRRWgHS8VoCEdAb0bnMdLg43V9lChoBkdAVsOv5gw482gHTegDaAhHQG9aKVII4VB1fZQoaAZHwD3XaGpMpPRoB0ujaAhHQG9agUcn3L51fZQoaAZHQF9PHTqjaf1oB03oA2gIR0BvX2AEt/WldX2UKGgGR8Anl446wMYuaAdL12gIR0BvaS9AX2ugdX2UKGgGR8BGyDSXt0FKaAdLrmgIR0BvbT/p+tr9dX2UKGgGR0Ax9m6oVEeAaAdLoWgIR0BvdFXNke6qdX2UKGgGR0BDE8dPtUn5aAdN6ANoCEdAb3mihWYF7nV9lChoBkfAVL7nlnyup2gHS7hoCEdAb5ETtb9qDnV9lChoBkdAI5uMdcSoO2gHS81oCEdAb5HwR5C4SnV9lChoBkfAJALo4dZJTWgHS3xoCEdAb5Y4uK4x13V9lChoBkdAT4rawljVhGgHS6toCEdAb5f0OEug6HV9lChoBkfAQtDD0lJHy2gHS7BoCEdAb52elsP8RHV9lChoBkfAY4sj0L+glGgHTW4CaAhHQG+hpmmLtNV1fZQoaAZHQBWsguAZsKtoB0uyaAhHQG+q7XQMQVd1fZQoaAZHQFUN2h7E5yVoB03oA2gIR0BvwzAJswcpdX2UKGgGR8A8k1LamGdqaAdLoGgIR0BvxwO8TSLJdX2UKGgGR8A96KG+K0laaAdLu2gIR0BvyL/yXlbNdX2UKGgGR0BYMRYRujynaAdN6ANoCEdAb8rWe6I3znV9lChoBkdANvtu1ndwemgHS8loCEdAb9CBz3h4uHV9lChoBkdAQ33fTCtRvWgHS45oCEdAb9SNGViWmnV9lChoBkfAPYCI55qubWgHTegDaAhHQG/WsijcmBx1fZQoaAZHwEnnRgqmTDBoB0u2aAhHQG/WuXVsk6d1fZQoaAZHwE14ivgWJrNoB00VAWgIR0Bv35UT+NtJdX2UKGgGR0BOFQwCbMHKaAdN6ANoCEdAb+Ud0aIeo3V9lChoBkfAT/ShL5AQhGgHTRYBaAhHQG/p4VymygR1fZQoaAZHwEl+vzvqkdpoB0uyaAhHQG/yrJCBwuN1fZQoaAZHwGGAKfvnbItoB0vSaAhHQG/7mtQsPJ91fZQoaAZHwE1iBun/DLtoB0vRaAhHQG/9GDtgKF91fZQoaAZHQFjYp1A7gbZoB03oA2gIR0Bv/VOqNp/PdX2UKGgGR0AFxUBGQSzxaAdLyGgIR0BwAW4Vh1DCdX2UKGgGR0BX53JxNqQBaAdN6ANoCEdAcAKiDdxhlXV9lChoBke/9d90A93bEmgHS+RoCEdAcALxp+MIeHV9lChoBkdANQ8AWBSUDGgHS45oCEdAcASKVII4VHV9lChoBkdAQzfeLvTgEWgHS/doCEdAcAbBAOavzXV9lChoBkdAIp+CK77KrGgHS8toCEdAcAhUMG5c1XV9lChoBkdAP/R3A2ycC2gHS/BoCEdAcAm0aqCHynV9lChoBkdAYMZHOryUcGgHTegDaAhHQHAKzCP6sQx1fZQoaAZHwCLLU1AJLM9oB0u7aAhHQHAR/+OwPiF1fZQoaAZHwEJsveP7vXtoB0ubaAhHQHASk/W1+iJ1fZQoaAZHQFJfVQAMlTpoB03oA2gIR0BwEsYHgP3BdX2UKGgGR0Abj2i+L3sYaAdLmGgIR0BwFAf8uSOjdX2UKGgGR7/1bSy+pOvdaAdLo2gIR0BwGJC8e0XxdX2UKGgGR0AUCZhKDkELaAdLpWgIR0BwGiUeMhoudX2UKGgGR8AlsEdNnGsFaAdNIwFoCEdAcBsx2St/4XVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 310,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 1024,
87
+ "n_epochs": 5,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWV2AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYS9ob21lL25vb25lL2FuYWNvbmRhMy9lbnZzL2RlZXBfUkwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGEvaG9tZS9ub29uZS9hbmFjb25kYTMvZW52cy9kZWVwX1JML2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWV2AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYS9ob21lL25vb25lL2FuYWNvbmRhMy9lbnZzL2RlZXBfUkwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGEvaG9tZS9ub29uZS9hbmFjb25kYTMvZW52cy9kZWVwX1JML2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
98
+ }
99
+ }
ppo-LunarLander-v2-2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6480b56fdb5d46589334259ce6df04b65ed843de2d4cb8717313e7c3f9f9748
3
+ size 88362
ppo-LunarLander-v2-2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:099cff6e3e8938c60664d2d74cef1824a716ced1401775dbba9975eb8360e226
3
+ size 43762
ppo-LunarLander-v2-2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2-2/system_info.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.5.6-76060506-generic-x86_64-with-glibc2.35 # 202310061235~1697396945~22.04~9283e32 SMP PREEMPT_DYNAMIC Sun O
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.1.0
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 3.0.0
8
+ - Gymnasium: 0.28.1
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -163.03661754149942, "std_reward": 104.2771307510438, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-25T03:06:24.975671"}
 
1
+ {"mean_reward": -113.66928549999997, "std_reward": 12.825518606502003, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-25T13:37:19.107250"}