michael-kingston commited on
Commit
aada704
1 Parent(s): 6b67800

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 280.04 +/- 17.38
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 81.08 +/- 57.43
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7cb1e7eb0670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cb1e7eb0700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cb1e7eb0790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cb1e7eb0820>", "_build": "<function ActorCriticPolicy._build at 0x7cb1e7eb08b0>", "forward": "<function ActorCriticPolicy.forward at 0x7cb1e7eb0940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7cb1e7eb09d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cb1e7eb0a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7cb1e7eb0af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cb1e7eb0b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cb1e7eb0c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7cb1e7eb0ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cb1e7ea9480>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698211267408405571, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADO5LL2NqQU+iVxIPoQ6Ur5hrN09JdbiPAAAAAAAAAAAzdeBvPAPtT/UysO+of/QOYqF9judM9W8AAAAAAAAAABN9gI9Uq3Au7gxLT6j3wi+F2YqvX1B674AAIA/AACAPwA6nbzIeJk/UUm+vdVkEr+6qQ28vqKOvQAAAAAAAAAAAAEFPQmgFz/L3eO99ZrOvplGfD0zkPW9AAAAAAAAAABa9qG9EUUnPvpAID4/NGO+wBogPPsrUL0AAAAAAAAAADPIHL4BQWs+RnyYPpXQSr7LEAI8TU+OPQAAAAAAAAAAGjwEvVJAvrkjcos5IkZQM+TFVrvWP6a4AACAPwAAgD+T4y6+9JnlPrAZfT53WKq+6lkEPLB31rwAAAAAAAAAAJoTi7zDnVu6AIj2tYlRHa+qcgK7Th8fNQAAgD8AAIA/zS7qPVnTlD/2FQg+No8KvxVtID5DUNM9AAAAAAAAAABzJ4I9AZwNP333WL75eN++GvaQOlGjGr4AAAAAAAAAAH3BWL5yKUU/0dEXvjTm0L5oSYW+sY+nPQAAAAAAAAAAms3Du48qcLrSpcq4yUfRswnNFztjle03AACAPwAAgD8Am609uV/uPqprDb6s266+lbSoPKH/Bb4AAAAAAAAAAIDgNr7cDdw+3li8PpHWgb6M0SA9AmYcPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHMwfpUxVQ2MAWyUTQIBjAF0lEdAkGE+7xusLnV9lChoBkdAcrSqMWGh3GgHS/JoCEdAkGHIHHFPznV9lChoBkdAcRZDyvs7dWgHS+VoCEdAkGLxe9i+c3V9lChoBkdAcAlbeMyaeGgHTQoBaAhHQJBjQDFId2h1fZQoaAZHQHBOJ6t1ZDBoB02UAWgIR0CQY2EUj9n9dX2UKGgGR0BzPyzHCGeuaAdNHQFoCEdAkGOk6PsAvXV9lChoBkdAbuKBK+SKWWgHTQ8BaAhHQJBj3b8FY+11fZQoaAZHQHE10YKpkwxoB00QAWgIR0CQZCgbp/wzdX2UKGgGR0BuuW6Ae7tiaAdL5WgIR0CQZRoy9EkTdX2UKGgGR0BykJTl1bJPaAdL7mgIR0CQZaYekpI+dX2UKGgGR0BvjK2Dxsl+aAdNOgFoCEdAkGX5jYqXnnV9lChoBkdAb1eH446wMmgHTQ0BaAhHQJBmIxyn1nN1fZQoaAZHQG6yMySFGodoB00sAWgIR0CQZwuLrHENdX2UKGgGR0BzTUUwi7kGaAdNAwFoCEdAkGcoht+CsnV9lChoBkdAbZHeMQ2/BWgHTRkBaAhHQJBoAAOrhit1fZQoaAZHQHDg9QsPJ7toB0vZaAhHQJBoLV7Qb+91fZQoaAZHQG0q7rTpgThoB00XAWgIR0CQaDZbpu/DdX2UKGgGR0Bu2LFhoduHaAdNBwFoCEdAkGjfsu3+dnV9lChoBkdAcPvmJFb3XmgHS+loCEdAkGpkdeY2KnV9lChoBkdAcFSAlfJFLGgHTRABaAhHQJBq/ZlFtsN1fZQoaAZHQHFgslHBk7RoB00DAWgIR0CQav24/eLvdX2UKGgGR0Bu+EwtapxWaAdNNAFoCEdAkGvSAxzq8nV9lChoBkdAcH2txdY4hmgHTRUBaAhHQJBsH5dnkDJ1fZQoaAZHQHOfb7O3UhFoB00yAWgIR0CQbCXPJJXhdX2UKGgGR0BxqYphF3INaAdNDQFoCEdAkGzlIuoP1HV9lChoBkdAcU8FzdUKiWgHTQUBaAhHQJBtPriVB2R1fZQoaAZHQHCI8wDeTFFoB00DAWgIR0CQbanFo+OfdX2UKGgGR0BwoaXTmW+oaAdNCwFoCEdAkG296ol2NnV9lChoBkdAcL8B0IToMmgHS+poCEdAkG3Ot4iX6nV9lChoBkdAcGBlchTwUmgHS/5oCEdAkG9D+NtIkXV9lChoBkdAcbAaef7Jn2gHS/loCEdAkG9T3IuGsXV9lChoBkdAbmArwvxpc2gHTR8BaAhHQJBvWf8Muvl1fZQoaAZHQG28PBacI7hoB00IAWgIR0CQb6ZIg/1QdX2UKGgGR0ByTUYzi0fHaAdNHQFoCEdAkHDkDQqqfnV9lChoBkdAcYQkuHvc8GgHTQkBaAhHQJBx25/b0vp1fZQoaAZHQHEDdYfW+XZoB00EAWgIR0CQcj19v0iAdX2UKGgGR0BujVGy5Zr6aAdNDQFoCEdAkHJ9lZowmHV9lChoBkdAb8IziS7oS2gHS+poCEdAkHNdv0h/zHV9lChoBkdAcbwAG0NSZWgHTRIBaAhHQJBzfaK1og51fZQoaAZHQHJRkyYXwb5oB0vaaAhHQJBzopjMFEB1fZQoaAZHQHItKtxMnJFoB0vyaAhHQJBz5TFVDKJ1fZQoaAZHQHBUKk690zVoB0vzaAhHQJCJ0BFNL151fZQoaAZHQG4JvMr3CbdoB00QAWgIR0CQiwj7ALy+dX2UKGgGR0ByKYXVLBbfaAdL5GgIR0CQi78UmD15dX2UKGgGR0BwClzgdfb9aAdL/GgIR0CQjNXhfjS5dX2UKGgGR0BxWQHPeHi4aAdNBAFoCEdAkI0ecc2itnV9lChoBkdAcqJa72+PBGgHTQwBaAhHQJCOKCuloDh1fZQoaAZHQHDOjZ+QU6BoB0v/aAhHQJCPwbn5i3J1fZQoaAZHQHLHooRZlnRoB0vyaAhHQJCRHMRpUPx1fZQoaAZHQG6fXYUWVNZoB0v4aAhHQJCRkt7KJVN1fZQoaAZHQHG6zIvJzT5oB00QAWgIR0CQkaO+IuXedX2UKGgGR0Bw2g+kgwGoaAdL7mgIR0CQkmQv6CUYdX2UKGgGR0Bw0R9F4LThaAdL7WgIR0CQk007bL2YdX2UKGgGR0ByyYrSVnmJaAdNFQFoCEdAkJNV05lvqHV9lChoBkdAcC+WNm16V2gHTRoBaAhHQJCTo+W4Vh11fZQoaAZHQHC2XGn4wh5oB00JAWgIR0CQlP0k4WDZdX2UKGgGR0BwV65c1O0taAdNSwFoCEdAkJWWVmjCYXV9lChoBkdAc8hiTt9hJGgHTQABaAhHQJCV4gow22p1fZQoaAZHQHC74EW69TRoB00QAWgIR0CQloSyMUAUdX2UKGgGR0By/nVrhzeXaAdNLQFoCEdAkJaE74i5eHV9lChoBkdAcWoltj0+T2gHTa8CaAhHQJCX2r2g3991fZQoaAZHQHBWV2mpEQZoB00nAWgIR0CQl+YWtU4rdX2UKGgGR0BvPIC8vmHQaAdNBQFoCEdAkJf02cawU3V9lChoBkdAbaTtBOYYzmgHS+toCEdAkJixXjlxO3V9lChoBkdAcTNEmplz2mgHS+1oCEdAkJixsMy8BnV9lChoBkdAcS2abWmP52gHTR8BaAhHQJCZqbSZ0CB1fZQoaAZHQHKvSgkC3gFoB0vwaAhHQJCaWkxh2GJ1fZQoaAZHQHDwCvC/Gl1oB00TAWgIR0CQmoYLLIPtdX2UKGgGR0ByeLEVFhG6aAdNCAFoCEdAkJsESh8IA3V9lChoBkdAc44U4rBj4GgHS9hoCEdAkJsqvq1PWXV9lChoBkdAcPGzyBkI5mgHTRgBaAhHQJCbp5KODJ51fZQoaAZHQHOKemelKsdoB0vpaAhHQJCdGMIeHSF1fZQoaAZHQG70oh6jWTZoB00bAWgIR0CQnabYsd1ddX2UKGgGR0BxZd9Sde6aaAdL4WgIR0CQnlHMEA5rdX2UKGgGR0BxFagRK6FuaAdNFgFoCEdAkJ5xd2PkrHV9lChoBkdAcgkJrLyMDWgHTTUBaAhHQJCetlMAWBV1fZQoaAZHQHKY1PepGWloB0vXaAhHQJCeyJ79hql1fZQoaAZHQHOYHzQNTcZoB0v5aAhHQJCe6imEXch1fZQoaAZHQHAhTB/I8yNoB00GAWgIR0CQoBRaX8fndX2UKGgGR0Bw7aUFB6a9aAdNKQFoCEdAkKBJGWldknV9lChoBkdAcHe+UhV2imgHS+1oCEdAkKBgO8TSLXV9lChoBkdAYmG3RXwLE2gHTegDaAhHQJCgrCtRvWJ1fZQoaAZHQHA2460Y0l9oB0v5aAhHQJChUXdj5Kx1fZQoaAZHQHIXpMcp9Z1oB00GAWgIR0CQodU2kzoEdX2UKGgGR0BursyrPt2LaAdL9GgIR0CQopIDoyKvdX2UKGgGR0ByUnGGVRk3aAdNEgFoCEdAkKK2UB4lhXV9lChoBkdAb0lQ79ycTmgHS9VoCEdAkKOcJ+lTFXV9lChoBkdAc8PByS3b22gHTSwBaAhHQJCjoJQcghd1fZQoaAZHQHLwnZ5AyEdoB00IAWgIR0CQpIlnyup0dX2UKGgGR0ByKnvCuU2UaAdL8GgIR0CQpREbHZK4dX2UKGgGR0BtqHhVENONaAdL+mgIR0CQpeKP4mCzdX2UKGgGR0Bu95QaaTfSaAdNDQFoCEdAkKYxE4Nqg3V9lChoBkdAcLv2g3974WgHS9poCEdAkKa5HVf/m3V9lChoBkdAcpfZaFEiMmgHTQ4BaAhHQJCmucx0uDl1fZQoaAZHQHBRthE0BOpoB00eAWgIR0CQpwsUIsy0dX2UKGgGR0Bv7Q7o0Q9SaAdNAAFoCEdAkKezLjghr3V9lChoBkdAcfXwGW2PUGgHTRcBaAhHQJCoKlSCOFR1fZQoaAZHQHNPsk2P1ctoB00KAWgIR0CQqGKRuCPIdX2UKGgGR0BxuzfrKNhmaAdNDgFoCEdAkKkw6p5u63V9lChoBkdAcsTn5zo2XWgHTQwBaAhHQJCppZr56+p1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe9edcbc700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe9edcbc790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe9edcbc820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe9edcbc8b0>", "_build": "<function ActorCriticPolicy._build at 0x7fe9edcbc940>", "forward": "<function ActorCriticPolicy.forward at 0x7fe9edcbc9d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe9edcbca60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe9edcbcaf0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe9edcbcb80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe9edcbcc10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe9edcbcca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe9edcbcd30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe9edcb6a40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 10027008, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698207186261710007, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABoJfD23zy8/e3RMveYp1r5hyF49/GG8vQAAAAAAAAAAAIiqPEhXpbqMrb06q1litIdQj7o+A9q5AACAPwAAgD/NI/g82uVNP6ItXj07bbW+dOHEPM6JGb0AAAAAAAAAAHvigr576II9Z5Cru0lBV73aK9E8a517PQAAAAAAAAAADjTWvkw6Dj8dweW9JRiNvt1mzL09cps9AAAAAAAAAADSt5S+62quPbhOpruMnxe+FPsOPBvjZr0AAAAAAAAAAAZWAj49rES7S1ovO+MhYbnVoIO8qNk8ugAAgD8AAIA/GqT6vRp3dj9mRii+LZmwvmIRb70AzkS9AAAAAAAAAACaQWE9KSRTuhvieLyA/ow1znL5urPr/7QAAIA/AACAP5patjzsIYm5VCFCu3ad07Y3QBc7RtBjOgAAgD8AAIA/zQm4PKlPuT8T6Fs+BWgxPQY387yz6vO7AAAAAAAAAACajEi9Ys82P0D3UL0S16++RWeqO0yoCLwAAAAAAAAAAE10bD4kzT48Ma+IvRpcfb3Iwrg+HMYcPgAAgD8AAIA/5g0dvkNWPrxS2Ci6Btk/uDwHqD37OWI5AACAPwAAgD8gigk+SMOZuilWjDqCdZa2zRQquoi9u7cAAIA/AACAP5vcmL6EUJU/xxWrvgX8xL5yzPu9kz0UvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGTBsqSX+l2MAWyUTegDjAF0lEdAtuAdtQ9A5nV9lChoBkdAX8Y+3Ytg8mgHTegDaAhHQLbgvqW1MM91fZQoaAZHv+JvLHMlkYpoB0vpaAhHQLbgwSXMQmN1fZQoaAZHQFcvDTjNpudoB03oA2gIR0C24Nar7wazdX2UKGgGR0BvW0zGgi/xaAdNiwFoCEdAtuFf1jAi3XV9lChoBkdAXBjPKMefZmgHTegDaAhHQLbhySR8twt1fZQoaAZHQGUECrcTJyRoB03oA2gIR0C24iTT4L1FdX2UKGgGR0BnDlnf2saLaAdN1wFoCEdAtuN7A6+36XV9lChoBkdAXIgksz2vjmgHTegDaAhHQLbj0rvb48F1fZQoaAZHQGDJFd9lVcVoB00YAmgIR0C25BG1+iJwdX2UKGgGR8A/QNDtw71aaAdL7mgIR0C25ESADq4ZdX2UKGgGR0BpDWMwUQCkaAdNaQFoCEdAtuRhGUfPonV9lChoBkdAYbU/QBxPwmgHTegDaAhHQLbkYZk078x1fZQoaAZHQGmS9EkSmIloB02dAWgIR0C25PMlHBk7dX2UKGgGR0Bw9sBbOeJ6aAdL/GgIR0C25f9xIatLdX2UKGgGR8BCXAsTWXkYaAdL9mgIR0C25umzjWCmdX2UKGgGR0BpGIBikO7QaAdNKwFoCEdAtucrrkbPyHV9lChoBkdAWUKfAbhm5GgHTegDaAhHQLbnVH1OCXh1fZQoaAZHQGACJkwvg3toB03oA2gIR0C26KT8P4EfdX2UKGgGR0Bd/40ygwoLaAdN6ANoCEdAtujCYmb9ZXV9lChoBkdAafB71Iy0r2gHTREBaAhHQLbpI7b+Lm91fZQoaAZHQF5y4G2TgVJoB03oA2gIR0C26U7jPv8ZdX2UKGgGR0BhV5/7SApbaAdN6ANoCEdAtuoUxvegtnV9lChoBkdAW6Ej4YaYNWgHTegDaAhHQLbqnSoOx0N1fZQoaAZHQGe1lh5PdmBoB02EAWgIR0C260TXSSeRdX2UKGgGR0BhkP3rUsnRaAdN6ANoCEdAtutQ03wTd3V9lChoBkdAQo5I1+AmRmgHS/JoCEdAtuvFCUornXV9lChoBkdAYpY1yeZof2gHTegDaAhHQLbsDihFmWd1fZQoaAZHQGuCeiJwbVBoB01sAWgIR0C27JjoZAIIdX2UKGgGR0BsnfvWpZOjaAdNvQJoCEdAtuygyBTXKHV9lChoBkdAVFjvRZ2ZA2gHTegDaAhHQLbs4+qzZ6F1fZQoaAZHQG1hKFAVwgloB012A2gIR0C27bq94/u9dX2UKGgGR0AY4ESuhbnpaAdL9mgIR0C27cfgJkXldX2UKGgGR0BqZZeu3c59aAdNUAFoCEdAtu4TojfNzXV9lChoBkdAWUf+1jRUm2gHTegDaAhHQLbucUH6dlN1fZQoaAZHQGFjbA1vVExoB03oA2gIR0C27vq4H5aedX2UKGgGR0BloLjcVQANaAdNuwFoCEdAtvBLmJWNm3V9lChoBkfAQ2I6wMYuTWgHTQMBaAhHQLbxRQOFxn51fZQoaAZHQFlcbhFVktpoB03oA2gIR0C28hLa/RE4dX2UKGgGR0BdBeLBKtgbaAdN6ANoCEdAtvI+07bL2nV9lChoBkdAYxv8Sf16FGgHTegDaAhHQLbzw0U47zV1fZQoaAZHQGIW6CtihFpoB03oA2gIR0C29GIN3GGVdX2UKGgGR0BaAFx82JizaAdN6ANoCEdAtvVMrVe8f3V9lChoBkdAYHm1/DtPYWgHTegDaAhHQLb2ycXFcY91fZQoaAZHQClvLRrrPdFoB00aAWgIR0C292xtcfNidX2UKGgGR0BhH87U5MlDaAdN6ANoCEdAtvey+fywwHV9lChoBkfAOLySidrftWgHS/9oCEdAtve27J4jbHV9lChoBkdAYPLmPHT7VWgHTegDaAhHQLb4VYb83uN1fZQoaAZHQFmioQ4CIUJoB03oA2gIR0C2+F4jv/ipdX2UKGgGR0Bh2OeQMhHLaAdN6ANoCEdAtvip/YraunV9lChoBkdAY/HKtga3qmgHTegDaAhHQLb5sg8KXv91fZQoaAZHQF+fPfKp1ihoB03oA2gIR0C2+cD4DcM3dX2UKGgGR0Bjdslw97ngaAdN6ANoCEdAtvoPw1BMSXV9lChoBkdAbP92B8QZoGgHTQgBaAhHQLb6q8jAzpJ1fZQoaAZHQFzapCrtE5RoB03oA2gIR0C2+vJnDiwTdX2UKGgGR0BcZcWGh24eaAdN6ANoCEdAtvxIF8ohIXV9lChoBkdAXJ5Fy7wrlWgHTegDaAhHQLb9RBdld1N1fZQoaAZHQFyfnyup0fZoB03oA2gIR0C2/hJDArQPdX2UKGgGR0Bp9EiQkonbaAdNMAFoCEdAtv4vLKV6eHV9lChoBkdAXG/DpC8e0WgHTegDaAhHQLb+PeMyaeB1fZQoaAZHQGqXZSvTw2FoB02JAWgIR0C2/n7sSkCWdX2UKGgGR0Bsng+Sr5qNaAdNegJoCEdAtv+AIAwPAnV9lChoBkdAbj7vQ4S6D2gHTSIBaAhHQLcArGqxTsJ1fZQoaAZHQGHAQZGax5doB03oA2gIR0C3AQwFTvRadX2UKGgGR0BpX7YkE9t/aAdNTANoCEdAtwFas5n14HV9lChoBkdAYTTgUDdP+GgHTegDaAhHQLcCVElVtGd1fZQoaAZHQF7BYWLxZuBoB03oA2gIR0C3At0zoEB9dX2UKGgGR0BuoWWdEsreaAdNpQFoCEdAtwL6dVea8nV9lChoBkdAY5qDU3GXHGgHTegDaAhHQLcDoQb+98J1fZQoaAZHQGXXyzollbxoB03aAWgIR0C3A8m0Z3s5dX2UKGgGR0Bd74TsY2sJaAdN6ANoCEdAtwPlRKpT/HV9lChoBkdAban+1jRUm2gHTQMCaAhHQLcD+BPKuCB1fZQoaAZHwDAM+9rXUYtoB00NAWgIR0C3BCxcu8K5dX2UKGgGR0BrzW+fywwCaAdNRwFoCEdAtwQvEVFhHHV9lChoBkdAblcbLEDQq2gHTTwBaAhHQLcEWlsguAZ1fZQoaAZHQGL3HAh0QshoB03oA2gIR0C3BJ7/S6UadX2UKGgGR0BglURSP2f1aAdN6ANoCEdAtwSpmseXA3V9lChoBkdAWtueoUBXCGgHTegDaAhHQLcFo11W8yx1fZQoaAZHQGyU/ag2609oB01rAWgIR0C3BaXxBmf5dX2UKGgGR0Bp1BlBhQWOaAdNMQFoCEdAtwWqHerMknV9lChoBkfAMSfcBU70WmgHS/1oCEdAtwXBVghKUXV9lChoBkdANRx8YyfthWgHS+9oCEdAtwab/S6UaHV9lChoBkdAXQFvJiiItWgHTegDaAhHQLcGtW1+iJx1fZQoaAZHQGna8U21lXloB01+AWgIR0C3Byd8E3bVdX2UKGgGR0BqPlocrAgxaAdNegFoCEdAtwc3eJpFkXV9lChoBkfAIS80cfeUIWgHS9BoCEdAtweVEDyOJnV9lChoBkdAYyv6Z6Uqx2gHTegDaAhHQLcIJxcVxjt1fZQoaAZHQGEYp0fYBeZoB03oA2gIR0C3CW3EETxodX2UKGgGR0BngssBhhH9aAdN4QFoCEdAtwpyNOuaF3V9lChoBkdAa6RhrnDBM2gHTScBaAhHQLcKsY5DJEJ1fZQoaAZHQGmz7wSamXRoB03dAWgIR0C3DG9tQ9A5dX2UKGgGR0Bc/jebd8AraAdN6ANoCEdAtwz7QiRnvnV9lChoBkfAMuPFFUhmoWgHS91oCEdAtw0stpVS43V9lChoBkfARYb+xW1c+2gHS/hoCEdAtw3BE3KjjHV9lChoBkdAYY9Nu+AVf2gHTegDaAhHQLcOUNQCSzR1fZQoaAZHQGl/lTWGyopoB00cAmgIR0C3DnIz7/GVdX2UKGgGR0BgIw+hXbM5aAdN6ANoCEdAtw6XNW2gF3V9lChoBkdAYQac3EQ5FWgHTegDaAhHQLcOm4Oc2BJ1fZQoaAZHQGBPrOiWVu9oB03oA2gIR0C3DspPhybQdX2UKGgGR0BfArZ39rGjaAdN6ANoCEdAtw8oEB8x9HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1530, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 10240, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV2AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYS9ob21lL25vb25lL2FuYWNvbmRhMy9lbnZzL2RlZXBfUkwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGEvaG9tZS9ub29uZS9hbmFjb25kYTMvZW52cy9kZWVwX1JML2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV2AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYS9ob21lL25vb25lL2FuYWNvbmRhMy9lbnZzL2RlZXBfUkwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGEvaG9tZS9ub29uZS9hbmFjb25kYTMvZW52cy9kZWVwX1JML2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-6.5.6-76060506-generic-x86_64-with-glibc2.35 # 202310061235~1697396945~22.04~9283e32 SMP PREEMPT_DYNAMIC Sun O", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.26.1"}}
ppo-LunarLander-v2-2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:cf24a4b0432430bc22a24ffadcd93ccfc2420c5fb7b72b87f55e23aac51983f1
3
- size 56717
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1bf055ecbc3605aaf4c5437fe55811ee8b90f8bcc4780af363f2b42b6039ced7
3
+ size 148137
ppo-LunarLander-v2-2/data CHANGED
@@ -4,54 +4,54 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f228fb2fe20>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f228fb2feb0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f228fb2ff40>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f228fb48040>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f228fb480d0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f228fb48160>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f228fb481f0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f228fb48280>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7f228fb48310>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f228fb483a0>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f228fb48430>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f228fb484c0>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7f228fb443c0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
- "num_timesteps": 0,
25
  "_total_timesteps": 10000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1698207138287156101,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAAYTtMGbM/3gqyPos+Bb+aI4K7NlGhvQAAAAAAAAAAZiZGOt5mtD+XwZw9rVSLvQXPY7rQB468AAAAAAAAAABmoqs7LlOzPxbQBz/0SeK+VajGu/Ub9r0AAAAAAAAAAAB8qDv2ILU/RlIFP8zHPD4/AsO7IJjxvQAAAAAAAAAAM9fZu4Itsz/2Yiy/0XX8vlql/DtOMRw+AAAAAAAAAAAA4MU65oSzP4aRHD6rwr++X2bkukncDb0AAAAAAAAAAJpZhrrKm7M/qqzUvXTcr750k5w6HLLAPAAAAAAAAAAAMw+Cu++Xsz+t2M2+soqyvt/tljtJgro9AAAAAAAAAACamXw7xM20P23ixz6Bf5I9XyGSu2kbtb0AAAAAAAAAAJpZTLuE17M/Xrihvi5ihr5MPm07HoeSPQAAAAAAAAAAAGTgu4FjtT/HkTG/D5iMPiseAjxv4yA+AAAAAAAAAAAAoF+7MmG1Pyz3sL40AIs+2ciBO2VXoD0AAAAAAAAAAABknDtL8rQ/SID3PvLx9z2a/rS7QEDgvQAAAAAAAAAAM/fRuwkNtT/IJya/UhkhPluF8zvvixY+AAAAAAAAAACaXaM7/fe0P/dEAT+m4AM+VRO9u2hA6r0AAAAAAAAAAJppMbvPRbM/u2WMvouR675JBU47qGp+PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
- ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
  },
40
  "_last_original_obs": null,
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
- "_current_progress_remaining": 1.0,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 0,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe9edcbc700>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe9edcbc790>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe9edcbc820>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe9edcbc8b0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fe9edcbc940>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fe9edcbc9d0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe9edcbca60>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe9edcbcaf0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fe9edcbcb80>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe9edcbcc10>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe9edcbcca0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe9edcbcd30>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fe9edcb6a40>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 10027008,
25
  "_total_timesteps": 10000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1698207186261710007,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABoJfD23zy8/e3RMveYp1r5hyF49/GG8vQAAAAAAAAAAAIiqPEhXpbqMrb06q1litIdQj7o+A9q5AACAPwAAgD/NI/g82uVNP6ItXj07bbW+dOHEPM6JGb0AAAAAAAAAAHvigr576II9Z5Cru0lBV73aK9E8a517PQAAAAAAAAAADjTWvkw6Dj8dweW9JRiNvt1mzL09cps9AAAAAAAAAADSt5S+62quPbhOpruMnxe+FPsOPBvjZr0AAAAAAAAAAAZWAj49rES7S1ovO+MhYbnVoIO8qNk8ugAAgD8AAIA/GqT6vRp3dj9mRii+LZmwvmIRb70AzkS9AAAAAAAAAACaQWE9KSRTuhvieLyA/ow1znL5urPr/7QAAIA/AACAP5patjzsIYm5VCFCu3ad07Y3QBc7RtBjOgAAgD8AAIA/zQm4PKlPuT8T6Fs+BWgxPQY387yz6vO7AAAAAAAAAACajEi9Ys82P0D3UL0S16++RWeqO0yoCLwAAAAAAAAAAE10bD4kzT48Ma+IvRpcfb3Iwrg+HMYcPgAAgD8AAIA/5g0dvkNWPrxS2Ci6Btk/uDwHqD37OWI5AACAPwAAgD8gigk+SMOZuilWjDqCdZa2zRQquoi9u7cAAIA/AACAP5vcmL6EUJU/xxWrvgX8xL5yzPu9kz0UvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
  },
40
  "_last_original_obs": null,
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.0027007999999999477,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVOAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGTBsqSX+l2MAWyUTegDjAF0lEdAtuAdtQ9A5nV9lChoBkdAX8Y+3Ytg8mgHTegDaAhHQLbgvqW1MM91fZQoaAZHv+JvLHMlkYpoB0vpaAhHQLbgwSXMQmN1fZQoaAZHQFcvDTjNpudoB03oA2gIR0C24Nar7wazdX2UKGgGR0BvW0zGgi/xaAdNiwFoCEdAtuFf1jAi3XV9lChoBkdAXBjPKMefZmgHTegDaAhHQLbhySR8twt1fZQoaAZHQGUECrcTJyRoB03oA2gIR0C24iTT4L1FdX2UKGgGR0BnDlnf2saLaAdN1wFoCEdAtuN7A6+36XV9lChoBkdAXIgksz2vjmgHTegDaAhHQLbj0rvb48F1fZQoaAZHQGDJFd9lVcVoB00YAmgIR0C25BG1+iJwdX2UKGgGR8A/QNDtw71aaAdL7mgIR0C25ESADq4ZdX2UKGgGR0BpDWMwUQCkaAdNaQFoCEdAtuRhGUfPonV9lChoBkdAYbU/QBxPwmgHTegDaAhHQLbkYZk078x1fZQoaAZHQGmS9EkSmIloB02dAWgIR0C25PMlHBk7dX2UKGgGR0Bw9sBbOeJ6aAdL/GgIR0C25f9xIatLdX2UKGgGR8BCXAsTWXkYaAdL9mgIR0C25umzjWCmdX2UKGgGR0BpGIBikO7QaAdNKwFoCEdAtucrrkbPyHV9lChoBkdAWUKfAbhm5GgHTegDaAhHQLbnVH1OCXh1fZQoaAZHQGACJkwvg3toB03oA2gIR0C26KT8P4EfdX2UKGgGR0Bd/40ygwoLaAdN6ANoCEdAtujCYmb9ZXV9lChoBkdAafB71Iy0r2gHTREBaAhHQLbpI7b+Lm91fZQoaAZHQF5y4G2TgVJoB03oA2gIR0C26U7jPv8ZdX2UKGgGR0BhV5/7SApbaAdN6ANoCEdAtuoUxvegtnV9lChoBkdAW6Ej4YaYNWgHTegDaAhHQLbqnSoOx0N1fZQoaAZHQGe1lh5PdmBoB02EAWgIR0C260TXSSeRdX2UKGgGR0BhkP3rUsnRaAdN6ANoCEdAtutQ03wTd3V9lChoBkdAQo5I1+AmRmgHS/JoCEdAtuvFCUornXV9lChoBkdAYpY1yeZof2gHTegDaAhHQLbsDihFmWd1fZQoaAZHQGuCeiJwbVBoB01sAWgIR0C27JjoZAIIdX2UKGgGR0BsnfvWpZOjaAdNvQJoCEdAtuygyBTXKHV9lChoBkdAVFjvRZ2ZA2gHTegDaAhHQLbs4+qzZ6F1fZQoaAZHQG1hKFAVwgloB012A2gIR0C27bq94/u9dX2UKGgGR0AY4ESuhbnpaAdL9mgIR0C27cfgJkXldX2UKGgGR0BqZZeu3c59aAdNUAFoCEdAtu4TojfNzXV9lChoBkdAWUf+1jRUm2gHTegDaAhHQLbucUH6dlN1fZQoaAZHQGFjbA1vVExoB03oA2gIR0C27vq4H5aedX2UKGgGR0BloLjcVQANaAdNuwFoCEdAtvBLmJWNm3V9lChoBkfAQ2I6wMYuTWgHTQMBaAhHQLbxRQOFxn51fZQoaAZHQFlcbhFVktpoB03oA2gIR0C28hLa/RE4dX2UKGgGR0BdBeLBKtgbaAdN6ANoCEdAtvI+07bL2nV9lChoBkdAYxv8Sf16FGgHTegDaAhHQLbzw0U47zV1fZQoaAZHQGIW6CtihFpoB03oA2gIR0C29GIN3GGVdX2UKGgGR0BaAFx82JizaAdN6ANoCEdAtvVMrVe8f3V9lChoBkdAYHm1/DtPYWgHTegDaAhHQLb2ycXFcY91fZQoaAZHQClvLRrrPdFoB00aAWgIR0C292xtcfNidX2UKGgGR0BhH87U5MlDaAdN6ANoCEdAtvey+fywwHV9lChoBkfAOLySidrftWgHS/9oCEdAtve27J4jbHV9lChoBkdAYPLmPHT7VWgHTegDaAhHQLb4VYb83uN1fZQoaAZHQFmioQ4CIUJoB03oA2gIR0C2+F4jv/ipdX2UKGgGR0Bh2OeQMhHLaAdN6ANoCEdAtvip/YraunV9lChoBkdAY/HKtga3qmgHTegDaAhHQLb5sg8KXv91fZQoaAZHQF+fPfKp1ihoB03oA2gIR0C2+cD4DcM3dX2UKGgGR0Bjdslw97ngaAdN6ANoCEdAtvoPw1BMSXV9lChoBkdAbP92B8QZoGgHTQgBaAhHQLb6q8jAzpJ1fZQoaAZHQFzapCrtE5RoB03oA2gIR0C2+vJnDiwTdX2UKGgGR0BcZcWGh24eaAdN6ANoCEdAtvxIF8ohIXV9lChoBkdAXJ5Fy7wrlWgHTegDaAhHQLb9RBdld1N1fZQoaAZHQFyfnyup0fZoB03oA2gIR0C2/hJDArQPdX2UKGgGR0Bp9EiQkonbaAdNMAFoCEdAtv4vLKV6eHV9lChoBkdAXG/DpC8e0WgHTegDaAhHQLb+PeMyaeB1fZQoaAZHQGqXZSvTw2FoB02JAWgIR0C2/n7sSkCWdX2UKGgGR0Bsng+Sr5qNaAdNegJoCEdAtv+AIAwPAnV9lChoBkdAbj7vQ4S6D2gHTSIBaAhHQLcArGqxTsJ1fZQoaAZHQGHAQZGax5doB03oA2gIR0C3AQwFTvRadX2UKGgGR0BpX7YkE9t/aAdNTANoCEdAtwFas5n14HV9lChoBkdAYTTgUDdP+GgHTegDaAhHQLcCVElVtGd1fZQoaAZHQF7BYWLxZuBoB03oA2gIR0C3At0zoEB9dX2UKGgGR0BuoWWdEsreaAdNpQFoCEdAtwL6dVea8nV9lChoBkdAY5qDU3GXHGgHTegDaAhHQLcDoQb+98J1fZQoaAZHQGXXyzollbxoB03aAWgIR0C3A8m0Z3s5dX2UKGgGR0Bd74TsY2sJaAdN6ANoCEdAtwPlRKpT/HV9lChoBkdAban+1jRUm2gHTQMCaAhHQLcD+BPKuCB1fZQoaAZHwDAM+9rXUYtoB00NAWgIR0C3BCxcu8K5dX2UKGgGR0BrzW+fywwCaAdNRwFoCEdAtwQvEVFhHHV9lChoBkdAblcbLEDQq2gHTTwBaAhHQLcEWlsguAZ1fZQoaAZHQGL3HAh0QshoB03oA2gIR0C3BJ7/S6UadX2UKGgGR0BglURSP2f1aAdN6ANoCEdAtwSpmseXA3V9lChoBkdAWtueoUBXCGgHTegDaAhHQLcFo11W8yx1fZQoaAZHQGyU/ag2609oB01rAWgIR0C3BaXxBmf5dX2UKGgGR0Bp1BlBhQWOaAdNMQFoCEdAtwWqHerMknV9lChoBkfAMSfcBU70WmgHS/1oCEdAtwXBVghKUXV9lChoBkdANRx8YyfthWgHS+9oCEdAtwab/S6UaHV9lChoBkdAXQFvJiiItWgHTegDaAhHQLcGtW1+iJx1fZQoaAZHQGna8U21lXloB01+AWgIR0C3Byd8E3bVdX2UKGgGR0BqPlocrAgxaAdNegFoCEdAtwc3eJpFkXV9lChoBkfAIS80cfeUIWgHS9BoCEdAtweVEDyOJnV9lChoBkdAYyv6Z6Uqx2gHTegDaAhHQLcIJxcVxjt1fZQoaAZHQGEYp0fYBeZoB03oA2gIR0C3CW3EETxodX2UKGgGR0BngssBhhH9aAdN4QFoCEdAtwpyNOuaF3V9lChoBkdAa6RhrnDBM2gHTScBaAhHQLcKsY5DJEJ1fZQoaAZHQGmz7wSamXRoB03dAWgIR0C3DG9tQ9A5dX2UKGgGR0Bc/jebd8AraAdN6ANoCEdAtwz7QiRnvnV9lChoBkfAMuPFFUhmoWgHS91oCEdAtw0stpVS43V9lChoBkfARYb+xW1c+2gHS/hoCEdAtw3BE3KjjHV9lChoBkdAYY9Nu+AVf2gHTegDaAhHQLcOUNQCSzR1fZQoaAZHQGl/lTWGyopoB00cAmgIR0C3DnIz7/GVdX2UKGgGR0BgIw+hXbM5aAdN6ANoCEdAtw6XNW2gF3V9lChoBkdAYQac3EQ5FWgHTegDaAhHQLcOm4Oc2BJ1fZQoaAZHQGBPrOiWVu9oB03oA2gIR0C3DspPhybQdX2UKGgGR0BfArZ39rGjaAdN6ANoCEdAtw8oEB8x9HVlLg=="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 1530,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
ppo-LunarLander-v2-2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:13dbf41e305d3a0b52e13b973ece0bb28ffca5bcf57636bcf9b68102feec544e
3
- size 1120
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:785bd5645aa2c4e14c8f82f72312d4a27ce4cd5ff15b5f20670558817f8783ab
3
+ size 88362
ppo-LunarLander-v2-2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:eb141585f919e5264fb79a8034c5d8de2a548c49e09457ed7418cf94bc7e6705
3
  size 43762
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d16d66651452e7f08b8b93ef5d2d8771c20aa3d437b2757c53d31ef5c962c9d4
3
  size 43762
ppo-LunarLander-v2-2/system_info.txt CHANGED
@@ -6,3 +6,4 @@
6
  - Numpy: 1.22.4
7
  - Cloudpickle: 3.0.0
8
  - Gymnasium: 0.28.1
 
 
6
  - Numpy: 1.22.4
7
  - Cloudpickle: 3.0.0
8
  - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.26.1
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 280.04105, "std_reward": 17.38200150831363, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-25T05:40:42.518363"}
 
1
+ {"mean_reward": 81.0780556, "std_reward": 57.43337353420962, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-25T15:51:45.297712"}