Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
```python
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
from transformers import AutoTokenizer
|
5 |
+
|
6 |
+
from llmcompressor.modifiers.quantization import QuantizationModifier
|
7 |
+
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot
|
8 |
+
from llmcompressor.transformers.compression.helpers import calculate_offload_device_map
|
9 |
+
|
10 |
+
MODEL_ID = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
11 |
+
NUM_GPUS = 2
|
12 |
+
|
13 |
+
# Adjust based off number of desired GPUs
|
14 |
+
device_map = calculate_offload_device_map(
|
15 |
+
MODEL_ID, reserve_for_hessians=True, num_gpus=NUM_GPUS, torch_dtype="auto"
|
16 |
+
)
|
17 |
+
|
18 |
+
model = SparseAutoModelForCausalLM.from_pretrained(
|
19 |
+
MODEL_ID, device_map=device_map, torch_dtype="auto"
|
20 |
+
)
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
22 |
+
|
23 |
+
|
24 |
+
# Dataset config parameters
|
25 |
+
DATASET_ID = "open_platypus"
|
26 |
+
MAX_SEQ_LENGTH = 2048
|
27 |
+
NUM_CALIBRATION_SAMPLES = 512
|
28 |
+
|
29 |
+
# Save location of quantized model
|
30 |
+
OUTPUT_DIR = f"{MODEL_ID.split('/')[-1]}-FP8"
|
31 |
+
SAVE_COMPRESSED = True
|
32 |
+
|
33 |
+
layers_to_ignore: List[str] = [
|
34 |
+
"lm_head",
|
35 |
+
"re:.*block_sparse_moe.gate", # does not quantize well
|
36 |
+
]
|
37 |
+
|
38 |
+
recipe = QuantizationModifier(
|
39 |
+
scheme="FP8", targets="Linear", ignore=layers_to_ignore
|
40 |
+
)
|
41 |
+
|
42 |
+
|
43 |
+
oneshot(
|
44 |
+
model=model,
|
45 |
+
tokenizer=tokenizer,
|
46 |
+
dataset=DATASET_ID,
|
47 |
+
recipe=recipe,
|
48 |
+
max_seq_length=MAX_SEQ_LENGTH,
|
49 |
+
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
|
50 |
+
save_compressed=SAVE_COMPRESSED,
|
51 |
+
overwrite_output_dir=True,
|
52 |
+
output_dir=OUTPUT_DIR,
|
53 |
+
)
|
54 |
+
|
55 |
+
# Confirm generations of the quantized model look sane.
|
56 |
+
print("========== SAMPLE GENERATION ==============")
|
57 |
+
input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda")
|
58 |
+
output = model.generate(input_ids, max_new_tokens=20)
|
59 |
+
print(tokenizer.decode(output[0]))
|
60 |
+
print("==========================================")
|
61 |
+
```
|