mgigena commited on
Commit
2ddd274
1 Parent(s): 4ada9ab

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +148 -0
README.md CHANGED
@@ -1,3 +1,151 @@
1
  ---
 
 
2
  license: cc-by-4.0
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
  license: cc-by-4.0
5
+ datasets:
6
+ - cuad
7
+ pipeline_tag: question-answering
8
+ tags:
9
+ - legal-contract-review
10
+ - roberta
11
+ - cuad
12
+ library_name: transformers
13
  ---
14
+ # Model Card for cuad-roberta-base
15
+
16
+ # Model Details
17
+
18
+ ## Model Description
19
+
20
+ - **Developed by:** Hendrycks et al.
21
+ - **Shared by [Optional]:** More information needed
22
+ - **Model type:** Question Answering
23
+ - **Language(s) (NLP):** en
24
+ - **License:** cc-by-4.0
25
+ - **Related Models:**
26
+ - **Parent Model:** RoBERTa
27
+ - **Resources for more information:**
28
+ - GitHub Repo: [TheAtticusProject](https://github.com/TheAtticusProject/cuad)
29
+ - Associated Paper: [CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review](https://arxiv.org/abs/2103.06268)
30
+ - Project website: [Contract Understanding Atticus Dataset (CUAD)](https://www.atticusprojectai.org/cuad)
31
+
32
+
33
+
34
+
35
+ # Uses
36
+
37
+
38
+ ## Direct Use
39
+
40
+ This model can be used for the task of Question Answering on Legal Documents.
41
+
42
+ # Training Details
43
+
44
+ Read: [CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review](https://arxiv.org/abs/2103.06268)
45
+ for detailed information on training procedure, dataset preprocessing and evaluation.
46
+
47
+ ## Training Data
48
+
49
+ See [CUAD dataset card](https://huggingface.co/datasets/cuad) for more information.
50
+
51
+ ## Training Procedure
52
+
53
+ More information needed
54
+
55
+ ### Preprocessing
56
+
57
+ More information needed
58
+
59
+ ### Speeds, Sizes, Times
60
+
61
+ More information needed
62
+
63
+ # Evaluation
64
+
65
+
66
+ ## Testing Data, Factors & Metrics
67
+
68
+ ### Testing Data
69
+
70
+ See [CUAD dataset card](https://huggingface.co/datasets/cuad) for more information.
71
+
72
+ ### Factors
73
+ More information needed
74
+
75
+ ### Metrics
76
+ More information needed
77
+
78
+ ## Results
79
+ More information needed
80
+
81
+ # Model Examination
82
+ More information needed
83
+
84
+ - **Hardware Type:** More information needed
85
+ - **Hours used:** More information needed
86
+ - **Cloud Provider:** More information needed
87
+ - **Compute Region:** More information needed
88
+ - **Carbon Emitted:** More information needed
89
+
90
+ # Technical Specifications [optional]
91
+
92
+ ## Model Architecture and Objective
93
+
94
+ More information needed
95
+
96
+ ## Compute Infrastructure
97
+
98
+ More information needed
99
+
100
+ ### Hardware
101
+
102
+ Used V100/P100 from Google Colab Pro
103
+
104
+ ### Software
105
+
106
+ Python, Transformers
107
+
108
+ # Citation
109
+
110
+
111
+ **BibTeX:**
112
+ ```
113
+ @article{hendrycks2021cuad,
114
+ title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},
115
+ author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},
116
+ journal={NeurIPS},
117
+ year={2021}
118
+ }
119
+ ```
120
+
121
+
122
+ # Glossary [optional]
123
+ More information needed
124
+
125
+ # More Information [optional]
126
+
127
+ More information needed
128
+
129
+ # Model Card Authors [optional]
130
+
131
+ Mohammed Rakib in collaboration with Ezi Ozoani and the Hugging Face team
132
+
133
+ # Model Card Contact
134
+
135
+ More information needed
136
+
137
+ # How to Get Started with the Model
138
+
139
+ Use the code below to get started with the model.
140
+
141
+ <details>
142
+ <summary> Click to expand </summary>
143
+
144
+ ```python
145
+ from transformers import AutoTokenizer, AutoModelForQuestionAnswering
146
+
147
+ tokenizer = AutoTokenizer.from_pretrained("mgigena/cuad-roberta-base")
148
+
149
+ model = AutoModelForQuestionAnswering.from_pretrained("mgigena/cuad-roberta-base")
150
+ ```
151
+ </details>