mgfrantz's picture
Trained LunarLander-v2-PPO-0 with a reduced learning rate by a factor of 10
daa1865
raw
history blame
14.6 kB
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe16a6b8830>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe16a6b88c0>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe16a6b8950>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe16a6b89e0>",
"_build": "<function ActorCriticPolicy._build at 0x7fe16a6b8a70>",
"forward": "<function ActorCriticPolicy.forward at 0x7fe16a6b8b00>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe16a6b8b90>",
"_predict": "<function ActorCriticPolicy._predict at 0x7fe16a6b8c20>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe16a6b8cb0>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe16a6b8d40>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe16a6b8dd0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7fe16a691240>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 5013504,
"_total_timesteps": 5000000.0,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1652290054.8845882,
"learning_rate": 2.9999999999999997e-05,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIAMOL4sADg/Mv3iPPftPb/uete+yVwFPgAAAAAAAAAAzX6FvOEGk7qWIj0zSYIGsB3UGjtOmsezAACAPwAAgD9AC7G9jnIlP8VRnrzp9FW/d2ONvvk1uz0AAAAAAAAAAADxnzwL+L49J8o9viXKFr9QVym9LtIYvgAAAAAAAAAAM/N2uxTIk7qiXgU8kyv5uK5ZijoyEuu3AACAPwAAgD8AwSu+MeslP1LPd7wdzUG/B6nXvizapj0AAAAAAAAAAAA0iLxcm3+62qBmOhVRvLUIcL06z6CGuQAAgD8AAIA/jbXXvdKDwz8tHQW/NLEEPTk8ibwbHxu+AAAAAAAAAADmRCS9fdO/P8beOr51TKa9HghuvEa/N70AAAAAAAAAAM1kw7sUOa4/IgTyvL9Dr77m9yg9Mi2CPAAAAAAAAAAAcyOWPeE8nLoimgm72TAxs72p4brb1lMzAACAPwAAgD+mCI+9LuS4P/q8sb7HLCW+kn3/vNqx3L0AAAAAAAAAAObOCb3mi68/fgzovh4rqb5i6Tg7k6PUvQAAAAAAAAAAGmopPWKxsD/RHSs/lHaVvgMPnbxQpAk9AAAAAAAAAADNrCA6rpmMupx9JDnzrho0iQcZut/gPrgAAIA/AACAP4BxFr3c1BG854I8Pq5prrv3UgO9d2YhPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.0027007999999999477,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3nNgOQLEcUCUhpRSlIwBbJRLoowBdJRHQKcXOZJCjUN1fZQoaAZoCWgPQwiy2CYVDZRxQJSGlFKUaBVLqmgWR0CnIDAi3XqadX2UKGgGaAloD0MInl2+9SFBckCUhpRSlGgVS8NoFkdApyAvo9s7+3V9lChoBmgJaA9DCPsgy4LJwHBAlIaUUpRoFUuUaBZHQKcgMFV1fVt1fZQoaAZoCWgPQwi5qBYRhQdyQJSGlFKUaBVLr2gWR0CnIEZa/yoXdX2UKGgGaAloD0MIURToE/kncUCUhpRSlGgVS6doFkdApyCylJpWWHV9lChoBmgJaA9DCG+8OzJWh3NAlIaUUpRoFUuraBZHQKcgumu1WsB1fZQoaAZoCWgPQwgpIVhVbwZxQJSGlFKUaBVLi2gWR0CnIMSvs7dSdX2UKGgGaAloD0MIHEC/71/OckCUhpRSlGgVS7RoFkdApyDZTjvNNnV9lChoBmgJaA9DCHcujPRiJ3RAlIaUUpRoFUukaBZHQKchA3974SJ1fZQoaAZoCWgPQwjvrrMh/2RxQJSGlFKUaBVLoWgWR0CnIRvP1L8KdX2UKGgGaAloD0MILEoJwWrUcECUhpRSlGgVS5NoFkdApyElNxlxwXV9lChoBmgJaA9DCAIrhxZZo3FAlIaUUpRoFUupaBZHQKchJ+xW1dB1fZQoaAZoCWgPQwgJ/reSXXZyQJSGlFKUaBVLq2gWR0CnIT4W+GoKdX2UKGgGaAloD0MIOMDMdzAidECUhpRSlGgVS7hoFkdApyFANkOI7HV9lChoBmgJaA9DCPKYgcp4L3FAlIaUUpRoFUuLaBZHQKchYNIbwSd1fZQoaAZoCWgPQwiA7zZvHMRwQJSGlFKUaBVLq2gWR0CnIWpjlPrOdX2UKGgGaAloD0MI2CyXjc6cckCUhpRSlGgVS6FoFkdApyGLtZ3cHnV9lChoBmgJaA9DCIHMzqK393BAlIaUUpRoFUuZaBZHQKchkRnvlU91fZQoaAZoCWgPQwg+IxEaAZ9zQJSGlFKUaBVLu2gWR0CnIZ5paibldX2UKGgGaAloD0MI32sIjosddECUhpRSlGgVS61oFkdApyGluvUz9HV9lChoBmgJaA9DCD1i9NwCWHJAlIaUUpRoFUt7aBZHQKchtviLl3h1fZQoaAZoCWgPQwjPaKuSiGRxQJSGlFKUaBVLi2gWR0CnIedFnZkDdX2UKGgGaAloD0MIDoelgR8sc0CUhpRSlGgVS6doFkdApyIbIHTqjnV9lChoBmgJaA9DCEInhA46IXRAlIaUUpRoFUueaBZHQKciJsoDxLF1fZQoaAZoCWgPQwjs3/WZs6tvQJSGlFKUaBVLjWgWR0CnIk+kxh2GdX2UKGgGaAloD0MIgVmhSHf6cUCUhpRSlGgVS4toFkdApyJkKb8WK3V9lChoBmgJaA9DCMzriEO2lHJAlIaUUpRoFUu1aBZHQKcih95yEL91fZQoaAZoCWgPQwgn9WVp58FwQJSGlFKUaBVLqGgWR0CnIoyKNyYHdX2UKGgGaAloD0MIw2Fp4IfzckCUhpRSlGgVS6VoFkdApyKkT+NtInV9lChoBmgJaA9DCCx96II6rHNAlIaUUpRoFUvIaBZHQKcizF9a2Wp1fZQoaAZoCWgPQwgv+Z/8Hc1yQJSGlFKUaBVLsmgWR0CnIuW+fywwdX2UKGgGaAloD0MIZaiKqXRAc0CUhpRSlGgVS7hoFkdApyL/zFuNxXV9lChoBmgJaA9DCKKXUSx3V3NAlIaUUpRoFUulaBZHQKcjDbN8ma91fZQoaAZoCWgPQwiv6xfsxn1zQJSGlFKUaBVLrGgWR0CnIyU3fhuPdX2UKGgGaAloD0MId4Noreilc0CUhpRSlGgVS6VoFkdApyMpJAdGRXV9lChoBmgJaA9DCNPaNLYXkHJAlIaUUpRoFUu/aBZHQKcjM/zreIl1fZQoaAZoCWgPQwg0K9uHfI9zQJSGlFKUaBVLvWgWR0CnIzUALiMpdX2UKGgGaAloD0MI5gZDHZY6c0CUhpRSlGgVS4poFkdApyNcAxSHd3V9lChoBmgJaA9DCCx+U1ipb3NAlIaUUpRoFUuyaBZHQKcjdBnBciZ1fZQoaAZoCWgPQwhrgNJQoyVxQJSGlFKUaBVLhmgWR0CnI6xAB1cMdX2UKGgGaAloD0MIQdXo1QCkc0CUhpRSlGgVS7hoFkdApyOzaqS5iHV9lChoBmgJaA9DCI81I4McS3JAlIaUUpRoFUukaBZHQKcjub6xgRd1fZQoaAZoCWgPQwiTUzvD1KRyQJSGlFKUaBVLnWgWR0CnI70nG828dX2UKGgGaAloD0MIFcRA1z6zcUCUhpRSlGgVS6JoFkdApyPqi7Ciy3V9lChoBmgJaA9DCISbjCoDBnJAlIaUUpRoFUuEaBZHQKcj/YRujyp1fZQoaAZoCWgPQwgU7Sqk/GByQJSGlFKUaBVLrWgWR0CnJBT2exwAdX2UKGgGaAloD0MIiL1QwLaYcUCUhpRSlGgVS6JoFkdApyQkTURWcXV9lChoBmgJaA9DCOVFJuBXJHJAlIaUUpRoFUuGaBZHQKckJiZOSGJ1fZQoaAZoCWgPQwguAI3SJetxQJSGlFKUaBVLoGgWR0CnJFG6GxlhdX2UKGgGaAloD0MIduCcEeWeckCUhpRSlGgVS5loFkdApyRrqt5lfHV9lChoBmgJaA9DCMpOP6iLoXFAlIaUUpRoFUueaBZHQKckgXhwVCZ1fZQoaAZoCWgPQwjwGYnQCHhRQJSGlFKUaBVLcWgWR0CnJK9CeEqUdX2UKGgGaAloD0MIZi0FpD3Vc0CUhpRSlGgVS7VoFkdApyS1sguAZ3V9lChoBmgJaA9DCFYo0v0cEHRAlIaUUpRoFUvBaBZHQKckv7v5P/J1fZQoaAZoCWgPQwgkSKXY0fhyQJSGlFKUaBVLpmgWR0CnJNhzvJA/dX2UKGgGaAloD0MILEme63u3cUCUhpRSlGgVS49oFkdApyTlwrDqGHV9lChoBmgJaA9DCBGo/kHkJHRAlIaUUpRoFUu9aBZHQKck79bX6Ip1fZQoaAZoCWgPQwhAL9y58L9xQJSGlFKUaBVLh2gWR0CnJQtvXK8tdX2UKGgGaAloD0MIGY9SCQ+RcUCUhpRSlGgVS6ZoFkdApyUacf/3nXV9lChoBmgJaA9DCDtWKT0T4nNAlIaUUpRoFUu/aBZHQKclR8lXzUZ1fZQoaAZoCWgPQwjww0FCFCRyQJSGlFKUaBVLpGgWR0CnJX5wn6VMdX2UKGgGaAloD0MIje+LS5WQckCUhpRSlGgVS6RoFkdApyWOMl1KXnV9lChoBmgJaA9DCMu/llcuf3NAlIaUUpRoFUu4aBZHQKclkljVhCt1fZQoaAZoCWgPQwgqU8xBUOdwQJSGlFKUaBVLoGgWR0CnJbMZHd43dX2UKGgGaAloD0MIjnVxG00ScUCUhpRSlGgVS6RoFkdApyXUHdGiH3V9lChoBmgJaA9DCIDTu3h/9HRAlIaUUpRoFUvHaBZHQKcl2274BWB1fZQoaAZoCWgPQwidgvxs5CRwQJSGlFKUaBVLkWgWR0CnJfLWiDdydX2UKGgGaAloD0MIxD9s6ZFsckCUhpRSlGgVS5VoFkdApyX19jPOZHV9lChoBmgJaA9DCPOPvkmT0XNAlIaUUpRoFUu0aBZHQKcmCoegctJ1fZQoaAZoCWgPQwiDMLd7OehvQJSGlFKUaBVLm2gWR0CnJhDXe3x4dX2UKGgGaAloD0MIouwt5TwxcUCUhpRSlGgVS5FoFkdApyYhRAKOUHV9lChoBmgJaA9DCP8j06HTTnJAlIaUUpRoFUunaBZHQKcmQWepXIV1fZQoaAZoCWgPQwgmj6flxwxyQJSGlFKUaBVLpGgWR0CnJlJIDoyLdX2UKGgGaAloD0MI5wEs8uuRckCUhpRSlGgVS7BoFkdApyaLg62fCnV9lChoBmgJaA9DCHXlszwP+HJAlIaUUpRoFUu2aBZHQKcmqXaakRB1fZQoaAZoCWgPQwisAN9tnlRyQJSGlFKUaBVLrmgWR0CnJsJ40Mw2dX2UKGgGaAloD0MIUYTU7WyZcUCUhpRSlGgVS5RoFkdApybQb2lEZ3V9lChoBmgJaA9DCN0/FqLDf3JAlIaUUpRoFUu2aBZHQKcnBxb0OEx1fZQoaAZoCWgPQwhLBKp/EDFzQJSGlFKUaBVLuWgWR0CnJxyP+4smdX2UKGgGaAloD0MIMsozL0cFcECUhpRSlGgVS49oFkdApycrblA/s3V9lChoBmgJaA9DCJlJ1At+7nFAlIaUUpRoFUu1aBZHQKcnOhRqGlB1fZQoaAZoCWgPQwhkkLsIE11zQJSGlFKUaBVLkGgWR0CnJ0qISDh+dX2UKGgGaAloD0MIbxEY6xspcUCUhpRSlGgVS6BoFkdApydNo8IRiHV9lChoBmgJaA9DCFr0TgUc0HNAlIaUUpRoFUusaBZHQKcnT8QZn+R1fZQoaAZoCWgPQwhDHsGNFMVzQJSGlFKUaBVLuWgWR0CnJ2LFOwgUdX2UKGgGaAloD0MIzZVBtcE4cECUhpRSlGgVS5ZoFkdApydnGVAzHnV9lChoBmgJaA9DCJjcKLLW73JAlIaUUpRoFUuwaBZHQKcng0l7dBV1fZQoaAZoCWgPQwgsflNYqaJxQJSGlFKUaBVLkGgWR0CnJ4i9AX2vdX2UKGgGaAloD0MI1XWopqSfc0CUhpRSlGgVS7VoFkdApyfCyY5T63V9lChoBmgJaA9DCAXhCiiUBXBAlIaUUpRoFUuKaBZHQKcny12q1gJ1fZQoaAZoCWgPQwjOjekJC/FyQJSGlFKUaBVLvmgWR0CnKCCNjslcdX2UKGgGaAloD0MIDp90IkE1cECUhpRSlGgVS6JoFkdApygnNu+AVnV9lChoBmgJaA9DCG8RGOubInNAlIaUUpRoFUu8aBZHQKcoWml67d11fZQoaAZoCWgPQwgXYYpy6VVyQJSGlFKUaBVLtGgWR0CnKJA/9pAVdX2UKGgGaAloD0MILuQR3IhzckCUhpRSlGgVS6ZoFkdApyiVEkSmInV9lChoBmgJaA9DCA9G7BOAP3JAlIaUUpRoFUuVaBZHQKcolIoVmBh1fZQoaAZoCWgPQwjgZvFi4WRyQJSGlFKUaBVLrmgWR0CnKJlbeMyadX2UKGgGaAloD0MI+WUwRuQ+cECUhpRSlGgVS5VoFkdApyitOoHcDnV9lChoBmgJaA9DCGxblNlgzXFAlIaUUpRoFUukaBZHQKcor0FKTSt1ZS4="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 8896,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}