ultra_3g / ultra /eval.py
mgalkin's picture
modeling script
b11e84c
import math
import torch
from torch import distributed as dist
from torch.utils import data as torch_data
from torch_geometric.data import Data
from ultra import tasks, util
TRANSDUCTIVE = ("WordNet18RR", "RelLinkPredDataset", "CoDExSmall", "CoDExMedium", "CoDExLarge",
"YAGO310", "NELL995", "ConceptNet100k", "DBpedia100k", "Hetionet", "AristoV4",
"WDsinger", "NELL23k", "FB15k237_10", "FB15k237_20", "FB15k237_50")
def get_filtered_data(dataset, mode):
train_data, valid_data, test_data = dataset[0], dataset[1], dataset[2]
ds_name = dataset.__class__.__name__
if ds_name in TRANSDUCTIVE:
filtered_data = Data(edge_index=dataset._data.target_edge_index, edge_type=dataset._data.target_edge_type, num_nodes=dataset[0].num_nodes)
else:
if "ILPC" in ds_name or "Ingram" in ds_name:
full_inference_edges = torch.cat([valid_data.edge_index, valid_data.target_edge_index, test_data.target_edge_index], dim=1)
full_inference_etypes = torch.cat([valid_data.edge_type, valid_data.target_edge_type, test_data.target_edge_type])
filtered_data = Data(edge_index=full_inference_edges, edge_type=full_inference_etypes, num_nodes=test_data.num_nodes)
else:
# test filtering graph: inference edges + test edges
full_inference_edges = torch.cat([test_data.edge_index, test_data.target_edge_index], dim=1)
full_inference_etypes = torch.cat([test_data.edge_type, test_data.target_edge_type])
if mode == "test":
filtered_data = Data(edge_index=full_inference_edges, edge_type=full_inference_etypes, num_nodes=test_data.num_nodes)
else:
# validation filtering graph: train edges + validation edges
filtered_data = Data(
edge_index=torch.cat([train_data.edge_index, valid_data.target_edge_index], dim=1),
edge_type=torch.cat([train_data.edge_type, valid_data.target_edge_type])
)
return filtered_data
@torch.no_grad()
def test(model, mode, dataset, batch_size=32, eval_metrics=["mrr", "hits@10"], gpus=None, return_metrics=False):
logger = util.get_root_logger()
test_data = dataset[1] if mode == "valid" else dataset[2]
filtered_data = get_filtered_data(dataset, mode)
device = util.get_devices(gpus)
world_size = util.get_world_size()
rank = util.get_rank()
test_triplets = torch.cat([test_data.target_edge_index, test_data.target_edge_type.unsqueeze(0)]).t()
sampler = torch_data.DistributedSampler(test_triplets, world_size, rank)
test_loader = torch_data.DataLoader(test_triplets, batch_size, sampler=sampler)
model.eval()
rankings = []
num_negatives = []
tail_rankings, num_tail_negs = [], [] # for explicit tail-only evaluation needed for 5 datasets
for batch in test_loader:
t_batch, h_batch = tasks.all_negative(test_data, batch)
t_pred = model(test_data, t_batch)
h_pred = model(test_data, h_batch)
if filtered_data is None:
t_mask, h_mask = tasks.strict_negative_mask(test_data, batch)
else:
t_mask, h_mask = tasks.strict_negative_mask(filtered_data, batch)
pos_h_index, pos_t_index, pos_r_index = batch.t()
t_ranking = tasks.compute_ranking(t_pred, pos_t_index, t_mask)
h_ranking = tasks.compute_ranking(h_pred, pos_h_index, h_mask)
num_t_negative = t_mask.sum(dim=-1)
num_h_negative = h_mask.sum(dim=-1)
rankings += [t_ranking, h_ranking]
num_negatives += [num_t_negative, num_h_negative]
tail_rankings += [t_ranking]
num_tail_negs += [num_t_negative]
ranking = torch.cat(rankings)
num_negative = torch.cat(num_negatives)
all_size = torch.zeros(world_size, dtype=torch.long, device=device)
all_size[rank] = len(ranking)
# ugly repetitive code for tail-only ranks processing
tail_ranking = torch.cat(tail_rankings)
num_tail_neg = torch.cat(num_tail_negs)
all_size_t = torch.zeros(world_size, dtype=torch.long, device=device)
all_size_t[rank] = len(tail_ranking)
if world_size > 1:
dist.all_reduce(all_size, op=dist.ReduceOp.SUM)
dist.all_reduce(all_size_t, op=dist.ReduceOp.SUM)
# obtaining all ranks
cum_size = all_size.cumsum(0)
all_ranking = torch.zeros(all_size.sum(), dtype=torch.long, device=device)
all_ranking[cum_size[rank] - all_size[rank]: cum_size[rank]] = ranking
all_num_negative = torch.zeros(all_size.sum(), dtype=torch.long, device=device)
all_num_negative[cum_size[rank] - all_size[rank]: cum_size[rank]] = num_negative
# the same for tails-only ranks
cum_size_t = all_size_t.cumsum(0)
all_ranking_t = torch.zeros(all_size_t.sum(), dtype=torch.long, device=device)
all_ranking_t[cum_size_t[rank] - all_size_t[rank]: cum_size_t[rank]] = tail_ranking
all_num_negative_t = torch.zeros(all_size_t.sum(), dtype=torch.long, device=device)
all_num_negative_t[cum_size_t[rank] - all_size_t[rank]: cum_size_t[rank]] = num_tail_neg
if world_size > 1:
dist.all_reduce(all_ranking, op=dist.ReduceOp.SUM)
dist.all_reduce(all_num_negative, op=dist.ReduceOp.SUM)
dist.all_reduce(all_ranking_t, op=dist.ReduceOp.SUM)
dist.all_reduce(all_num_negative_t, op=dist.ReduceOp.SUM)
metrics = {}
if rank == 0:
for metric in eval_metrics:
if "-tail" in metric:
_metric_name, direction = metric.split("-")
if direction != "tail":
raise ValueError("Only tail metric is supported in this mode")
_ranking = all_ranking_t
_num_neg = all_num_negative_t
else:
_ranking = all_ranking
_num_neg = all_num_negative
_metric_name = metric
if _metric_name == "mr":
score = _ranking.float().mean()
elif _metric_name == "mrr":
score = (1 / _ranking.float()).mean()
elif _metric_name.startswith("hits@"):
values = _metric_name[5:].split("_")
threshold = int(values[0])
if len(values) > 1:
num_sample = int(values[1])
# unbiased estimation
fp_rate = (_ranking - 1).float() / _num_neg
score = 0
for i in range(threshold):
# choose i false positive from num_sample - 1 negatives
num_comb = math.factorial(num_sample - 1) / \
math.factorial(i) / math.factorial(num_sample - i - 1)
score += num_comb * (fp_rate ** i) * ((1 - fp_rate) ** (num_sample - i - 1))
score = score.mean()
else:
score = (_ranking <= threshold).float().mean()
logger.warning("%s: %g" % (metric, score))
metrics[metric] = score
mrr = (1 / all_ranking.float()).mean()
return mrr if not return_metrics else metrics