mfleck commited on
Commit
f0f0733
·
1 Parent(s): 1acd0c9

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: wav2vec2-large-xls-r-300m-slowenian-with-lm
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # wav2vec2-large-xls-r-300m-slowenian-with-lm
14
+
15
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.3935
18
+ - Wer: 0.3480
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 0.0001
38
+ - train_batch_size: 32
39
+ - eval_batch_size: 8
40
+ - seed: 42
41
+ - gradient_accumulation_steps: 2
42
+ - total_train_batch_size: 64
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - lr_scheduler_warmup_steps: 50
46
+ - num_epochs: 30
47
+ - mixed_precision_training: Native AMP
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
52
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
53
+ | 7.9937 | 2.5 | 100 | 3.1565 | 1.0 |
54
+ | 3.0466 | 5.0 | 200 | 3.0009 | 0.9992 |
55
+ | 2.9708 | 7.5 | 300 | 2.9494 | 0.9992 |
56
+ | 2.0519 | 10.0 | 400 | 0.8874 | 0.7290 |
57
+ | 0.5773 | 12.5 | 500 | 0.5258 | 0.5037 |
58
+ | 0.3427 | 15.0 | 600 | 0.4767 | 0.4649 |
59
+ | 0.2612 | 17.5 | 700 | 0.4549 | 0.4209 |
60
+ | 0.212 | 20.0 | 800 | 0.4294 | 0.3860 |
61
+ | 0.1748 | 22.5 | 900 | 0.4085 | 0.3769 |
62
+ | 0.1587 | 25.0 | 1000 | 0.4017 | 0.3673 |
63
+ | 0.1435 | 27.5 | 1100 | 0.3927 | 0.3538 |
64
+ | 0.1314 | 30.0 | 1200 | 0.3935 | 0.3480 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.17.0
70
+ - Pytorch 1.9.0+cu111
71
+ - Datasets 1.18.4
72
+ - Tokenizers 0.11.6