Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- luna-lander-ppo.zip +3 -0
- luna-lander-ppo/_stable_baselines3_version +1 -0
- luna-lander-ppo/data +95 -0
- luna-lander-ppo/policy.optimizer.pth +3 -0
- luna-lander-ppo/policy.pth +3 -0
- luna-lander-ppo/pytorch_variables.pth +3 -0
- luna-lander-ppo/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,37 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            library_name: stable-baselines3
         | 
| 3 | 
            +
            tags:
         | 
| 4 | 
            +
            - LunarLander-v2
         | 
| 5 | 
            +
            - deep-reinforcement-learning
         | 
| 6 | 
            +
            - reinforcement-learning
         | 
| 7 | 
            +
            - stable-baselines3
         | 
| 8 | 
            +
            model-index:
         | 
| 9 | 
            +
            - name: PPO
         | 
| 10 | 
            +
              results:
         | 
| 11 | 
            +
              - task:
         | 
| 12 | 
            +
                  type: reinforcement-learning
         | 
| 13 | 
            +
                  name: reinforcement-learning
         | 
| 14 | 
            +
                dataset:
         | 
| 15 | 
            +
                  name: LunarLander-v2
         | 
| 16 | 
            +
                  type: LunarLander-v2
         | 
| 17 | 
            +
                metrics:
         | 
| 18 | 
            +
                - type: mean_reward
         | 
| 19 | 
            +
                  value: 254.91 +/- 24.88
         | 
| 20 | 
            +
                  name: mean_reward
         | 
| 21 | 
            +
                  verified: false
         | 
| 22 | 
            +
            ---
         | 
| 23 | 
            +
             | 
| 24 | 
            +
            # **PPO** Agent playing **LunarLander-v2**
         | 
| 25 | 
            +
            This is a trained model of a **PPO** agent playing **LunarLander-v2**
         | 
| 26 | 
            +
            using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            ## Usage (with Stable-baselines3)
         | 
| 29 | 
            +
            TODO: Add your code
         | 
| 30 | 
            +
             | 
| 31 | 
            +
             | 
| 32 | 
            +
            ```python
         | 
| 33 | 
            +
            from stable_baselines3 import ...
         | 
| 34 | 
            +
            from huggingface_sb3 import load_from_hub
         | 
| 35 | 
            +
             | 
| 36 | 
            +
            ...
         | 
| 37 | 
            +
            ```
         | 
    	
        config.json
    ADDED
    
    | @@ -0,0 +1 @@ | |
|  | 
|  | |
| 1 | 
            +
            {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f59dc671550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f59dc6715e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f59dc671670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f59dc671700>", "_build": "<function ActorCriticPolicy._build at 0x7f59dc671790>", "forward": "<function ActorCriticPolicy.forward at 0x7f59dc671820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f59dc6718b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f59dc671940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f59dc6719d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f59dc671a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f59dc671af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f59dc671b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f59dc673040>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680202073324062009, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOZ/HL2uuaK6PXzit2+mxrIiu9G5pi0CNwAAgD8AAIA/uixQPmEmmbwspwo7clNAueKpCL7OJS26AACAPwAAgD8zX288SK2RuuOe2DliRI20MwrrumsB+7gAAIA/AACAP81g8jzDJS66U9NSO6b37TcW2Qo7kAwTugAAgD8AAIA/5gN5PY9aWLrsKEe754a2ttEMfrvuvGo6AACAPwAAgD/mmJS90HGtPsb5qD3sk3O+5gBZvV6l7jwAAAAAAAAAACatiD1c01y6jkXfOvxwlzXvZea5XmgDugAAgD8AAIA/mvGKvPb8V7pOFm86uf2WNaCMX7rg4Yy5AACAPwAAgD8zOhE9e1aeuohElTo14ow1aPWiupItrLkAAIA/AACAP7P/zD3DeV66uyFdupXNHLUBfzI6zlWBOQAAgD8AAAAAzSMIPZwJrD8nxMg+04bcvt0bRTx+VxY+AAAAAAAAAABNwWg99kyMP7rkDj7h9dW+J3w5PY94qT0AAAAAAAAAALNvFD1c13y6hSVROWXAxzS/pTI7kkxwuAAAgD8AAIA/Mxd2vSuBjz5+YQk+s4RTvnd0jLz2gYK9AAAAAAAAAACzgJA9eyyPusU61TrCYLk1cM0PO/pw97kAAIA/AACAP5rxXryuMaO6+EmUurValLVJMUy61X+qOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQx1WuOUeZECUhpRSlIwBbJRN6AOMAXSUR0Cb1sdI5HVgdX2UKGgGaAloD0MIVHQkl//sXUCUhpRSlGgVTegDaBZHQJvhBCHARCh1fZQoaAZoCWgPQwis/gjDgBFgQJSGlFKUaBVN6ANoFkdAm/C/LxI8Q3V9lChoBmgJaA9DCHKmCdtPA2ZAlIaUUpRoFU3oA2gWR0Cb8ztHQQcxdX2UKGgGaAloD0MIEtkHWZYwY0CUhpRSlGgVTegDaBZHQJv4fQID5j91fZQoaAZoCWgPQwh1BkZeVlRlQJSGlFKUaBVN6ANoFkdAnAzFxCIDYHV9lChoBmgJaA9DCAnCFVAou2FAlIaUUpRoFU3oA2gWR0CcGIVR1oxpdX2UKGgGaAloD0MInZ53Y8FCZ0CUhpRSlGgVTegDaBZHQJwZIsNDtw91fZQoaAZoCWgPQwjjiLX4FN9jQJSGlFKUaBVN6ANoFkdAnBxzxPO6d3V9lChoBmgJaA9DCM3MzMxMAmdAlIaUUpRoFU3oA2gWR0CcJPSPluFYdX2UKGgGaAloD0MIAIxn0FC7YECUhpRSlGgVTegDaBZHQJwn3DCP6sR1fZQoaAZoCWgPQwiCVIodDaVjQJSGlFKUaBVN6ANoFkdAnCqSrtE5Q3V9lChoBmgJaA9DCLA9syRAAGJAlIaUUpRoFU3oA2gWR0CcLHmf5DZ2dX2UKGgGaAloD0MIqgzjbpD7YUCUhpRSlGgVTegDaBZHQJwxODsdDIB1fZQoaAZoCWgPQwgmyAiocLZfQJSGlFKUaBVN6ANoFkdAnEatgKF7D3V9lChoBmgJaA9DCNV6v9EOVGBAlIaUUpRoFU3oA2gWR0CcTzOWSlnAdX2UKGgGaAloD0MIPnjt0gbhYUCUhpRSlGgVTegDaBZHQJxXjbcoH9p1fZQoaAZoCWgPQwjHndLB+mBkQJSGlFKUaBVN6ANoFkdAnGLdOdoWYXV9lChoBmgJaA9DCHCwNzEkAGBAlIaUUpRoFU3oA2gWR0CcdL2WY4Q0dX2UKGgGaAloD0MISL99HTi1X0CUhpRSlGgVTegDaBZHQJx3XCcf/3p1fZQoaAZoCWgPQwiqDONuEKRkQJSGlFKUaBVN6ANoFkdAnHzn3xnWa3V9lChoBmgJaA9DCJ6Xio35cWFAlIaUUpRoFU3oA2gWR0Ccjxv7m+0xdX2UKGgGaAloD0MI8uzyrQ8dTECUhpRSlGgVS+1oFkdAnJGrO3UhFHV9lChoBmgJaA9DCOyIQzaQh15AlIaUUpRoFU3oA2gWR0CcmHt3wCr+dX2UKGgGaAloD0MIysFsAgz3WkCUhpRSlGgVTegDaBZHQJyY914gRsd1fZQoaAZoCWgPQwi5+xwfLbRiQJSGlFKUaBVN6ANoFkdAnJuOxnnMdXV9lChoBmgJaA9DCILEdvcAxGBAlIaUUpRoFU3oA2gWR0Cco4GEPDpDdX2UKGgGaAloD0MIjZjZ5zEKZ0CUhpRSlGgVTegDaBZHQJymHicXm/51fZQoaAZoCWgPQwiNCpxsg/tgQJSGlFKUaBVN6ANoFkdAnKhPDLr5ZnV9lChoBmgJaA9DCHRgOUIGImNAlIaUUpRoFU3oA2gWR0CcqhM5wOvudX2UKGgGaAloD0MIHa1qSUdXXkCUhpRSlGgVTegDaBZHQJyubuVopQV1fZQoaAZoCWgPQwiz74rgfxtoQJSGlFKUaBVN6ANoFkdAnMMhffGdZ3V9lChoBmgJaA9DCIcZGk8E22ZAlIaUUpRoFU3oA2gWR0CcyuJLdvbXdX2UKGgGaAloD0MIacTMPo/eYUCUhpRSlGgVTegDaBZHQJzSTHPu5SZ1fZQoaAZoCWgPQwh4CyQoftFjQJSGlFKUaBVN6ANoFkdAnN08PWhAW3V9lChoBmgJaA9DCLkZbsBnmGNAlIaUUpRoFU3oA2gWR0Cc7anzxwyZdX2UKGgGaAloD0MIvqWcL/bJYECUhpRSlGgVTegDaBZHQJz2bTMJQch1fZQoaAZoCWgPQwgjumddo3ZiQJSGlFKUaBVN6ANoFkdAnQtHqNZNf3V9lChoBmgJaA9DCA8Ni1HXgWBAlIaUUpRoFU3oA2gWR0CdDqB6a9bpdX2UKGgGaAloD0MIknTN5Bs8ZECUhpRSlGgVTegDaBZHQJ0VzyXlbNd1fZQoaAZoCWgPQwi14EVfQY9gQJSGlFKUaBVN6ANoFkdAnRZPFR51NnV9lChoBmgJaA9DCJhsPNji7WBAlIaUUpRoFU3oA2gWR0CdGPsKb8WLdX2UKGgGaAloD0MI0VrR5riJYkCUhpRSlGgVTegDaBZHQJ0g3ZuhsZZ1fZQoaAZoCWgPQwhfmiLA6ZBkQJSGlFKUaBVN6ANoFkdAnSOLvb48EHV9lChoBmgJaA9DCLA9syRAS2RAlIaUUpRoFU3oA2gWR0CdJb+QlruZdX2UKGgGaAloD0MIbJOKxtpwYkCUhpRSlGgVTegDaBZHQJ0ni9Jz1bt1fZQoaAZoCWgPQwgRqP5BJNxnQJSGlFKUaBVN6ANoFkdAnSviqU/wAnV9lChoBmgJaA9DCM10r5N6KGRAlIaUUpRoFU3oA2gWR0CdM4qPfbbldX2UKGgGaAloD0MICK7yBMLUYkCUhpRSlGgVTegDaBZHQJ1KYUUO/cp1fZQoaAZoCWgPQwh2bATi9RRiQJSGlFKUaBVN6ANoFkdAnVJbFCLMtHV9lChoBmgJaA9DCILEdveADm9AlIaUUpRoFU16AWgWR0CdV7z/IbOvdX2UKGgGaAloD0MI+cCO/wKRXECUhpRSlGgVTegDaBZHQJ1efl/6O5t1fZQoaAZoCWgPQwj35cx2BepvQJSGlFKUaBVNsgFoFkdAnWGz5oGpuXV9lChoBmgJaA9DCBbB/1ayVl9AlIaUUpRoFU3oA2gWR0Cdb4L8rI5pdX2UKGgGaAloD0MIPMCTFi6SYUCUhpRSlGgVTegDaBZHQJ13mGBWge11fZQoaAZoCWgPQwi0PA/uTrxhQJSGlFKUaBVN6ANoFkdAnYrc4HX2/XV9lChoBmgJaA9DCEKTxJJyeF5AlIaUUpRoFU3oA2gWR0CdjbMUAT7EdX2UKGgGaAloD0MII0xRLg1CZkCUhpRSlGgVTegDaBZHQJ2VApobn5l1fZQoaAZoCWgPQwhjCtY4GzFmQJSGlFKUaBVN6ANoFkdAnZWAmZ3LWHV9lChoBmgJaA9DCM5V8xyRkGRAlIaUUpRoFU3oA2gWR0CdmDx1gYxddX2UKGgGaAloD0MIfEj43t/6ZkCUhpRSlGgVTegDaBZHQJ2me9rXUYt1fZQoaAZoCWgPQwg1Y9F09p1lQJSGlFKUaBVN6ANoFkdAnaiRJNCZ4XV9lChoBmgJaA9DCBLBOLh0umRAlIaUUpRoFU3oA2gWR0CdrWVfu1F6dX2UKGgGaAloD0MIn5RJDW34I0CUhpRSlGgVS+hoFkdAnbGurdWQwXV9lChoBmgJaA9DCKypLAq7eGRAlIaUUpRoFU3oA2gWR0CdtDHEMspYdX2UKGgGaAloD0MIRrOyfciyZkCUhpRSlGgVTegDaBZHQJ3K2otL+P11fZQoaAZoCWgPQwhI3c6+ckplQJSGlFKUaBVN6ANoFkdAndICsjmjkHV9lChoBmgJaA9DCHsUrkdh9GNAlIaUUpRoFU3oA2gWR0Cd1gmMfigkdX2UKGgGaAloD0MIomKcvwnGX0CUhpRSlGgVTegDaBZHQJ3b1qYZ2p11fZQoaAZoCWgPQwjrrYGtEo1nQJSGlFKUaBVN6ANoFkdAnd5PFR51NnV9lChoBmgJaA9DCKq1MAttyGNAlIaUUpRoFU3oA2gWR0Cd6RMdcSoPdX2UKGgGaAloD0MIcvxQacQqcECUhpRSlGgVTRADaBZHQJ3q9gVoHs11fZQoaAZoCWgPQwi5bkp5behxQJSGlFKUaBVNrwFoFkdAnezw3tKIznV9lChoBmgJaA9DCI0pWOPsB2NAlIaUUpRoFU3oA2gWR0Cd79IjW07bdX2UKGgGaAloD0MIiV+xhov5bkCUhpRSlGgVTRsCaBZHQJ30O2Yv38J1fZQoaAZoCWgPQwjjVGthlpRkQJSGlFKUaBVN6ANoFkdAngGTKs+3Y3V9lChoBmgJaA9DCE33Oqmvc2RAlIaUUpRoFU3oA2gWR0CeCJlpoK2KdX2UKGgGaAloD0MIv4HJjSKqYECUhpRSlGgVTegDaBZHQJ4JEswtapx1fZQoaAZoCWgPQwi+pDFaR9k3QJSGlFKUaBVL62gWR0CeDHKpT/ACdX2UKGgGaAloD0MIhqktdZAOYECUhpRSlGgVTegDaBZHQJ4YowUQCjl1fZQoaAZoCWgPQwiwBFJiV6ViQJSGlFKUaBVN6ANoFkdAnhp6SLZSN3V9lChoBmgJaA9DCJuqe2TzaWRAlIaUUpRoFU3oA2gWR0CeHvJFb3XadX2UKGgGaAloD0MIEcgljrxBbkCUhpRSlGgVTVACaBZHQJ4r/4/NZ/11fZQoaAZoCWgPQwi5bkp5rYdmQJSGlFKUaBVN6ANoFkdAnj0ANPP9k3V9lChoBmgJaA9DCNI5P8Xx+WlAlIaUUpRoFU3oA2gWR0CeRJDSw4bTdX2UKGgGaAloD0MIATW1bC32ZECUhpRSlGgVTegDaBZHQJ5Izsu3+dd1fZQoaAZoCWgPQwgkRPmCFsdkQJSGlFKUaBVN6ANoFkdAnk5EvXbudHV9lChoBmgJaA9DCLTJ4ZNON15AlIaUUpRoFU3oA2gWR0CeUNu/1xsEdX2UKGgGaAloD0MI5j45ChA/YUCUhpRSlGgVTegDaBZHQJ5cF4oqkM11fZQoaAZoCWgPQwiv7ILBNYdiQJSGlFKUaBVN6ANoFkdAnl4bMxGlRHV9lChoBmgJaA9DCC/ej9uvmmJAlIaUUpRoFU3oA2gWR0CeYBORT0g9dX2UKGgGaAloD0MIcCamC7E5Z0CUhpRSlGgVTegDaBZHQJ53Zy2hIvt1fZQoaAZoCWgPQwiymxn96MdkQJSGlFKUaBVN6ANoFkdAnn6DqrzXjHV9lChoBmgJaA9DCJ9x4UDIx2RAlIaUUpRoFU3oA2gWR0CefwCdSVGDdX2UKGgGaAloD0MIDAHAsSfWcUCUhpRSlGgVTWgDaBZHQJ6BE29+PR11fZQoaAZoCWgPQwi86gHzkO5gQJSGlFKUaBVN6ANoFkdAnoIo6wMYuXV9lChoBmgJaA9DCIrHRbWIhWZAlIaUUpRoFU3oA2gWR0Cej8GOuJUHdX2UKGgGaAloD0MIuB6F61HXYECUhpRSlGgVTegDaBZHQJ6Uq68QI2R1fZQoaAZoCWgPQwg7GLFPgMJiQJSGlFKUaBVN6ANoFkdAnqH8gU1yenV9lChoBmgJaA9DCP5hS4+mo2BAlIaUUpRoFU3oA2gWR0CepLd9Ujs2dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-122-generic-x86_64-with-glibc2.31 # 138~18.04.1-Ubuntu SMP Fri Jun 24 14:14:03 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.12.1+cu116", "GPU Enabled": "True", "Numpy": "1.23.4", "Gym": "0.21.0"}}
         | 
    	
        luna-lander-ppo.zip
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:04de47098cc3951ded3206e9d582ea82a5fe0a551280acf27b8b486d5ed20b34
         | 
| 3 | 
            +
            size 147386
         | 
    	
        luna-lander-ppo/_stable_baselines3_version
    ADDED
    
    | @@ -0,0 +1 @@ | |
|  | 
|  | |
| 1 | 
            +
            1.7.0
         | 
    	
        luna-lander-ppo/data
    ADDED
    
    | @@ -0,0 +1,95 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
                "policy_class": {
         | 
| 3 | 
            +
                    ":type:": "<class 'abc.ABCMeta'>",
         | 
| 4 | 
            +
                    ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
         | 
| 5 | 
            +
                    "__module__": "stable_baselines3.common.policies",
         | 
| 6 | 
            +
                    "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ",
         | 
| 7 | 
            +
                    "__init__": "<function ActorCriticPolicy.__init__ at 0x7f59dc671550>",
         | 
| 8 | 
            +
                    "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f59dc6715e0>",
         | 
| 9 | 
            +
                    "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f59dc671670>",
         | 
| 10 | 
            +
                    "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f59dc671700>",
         | 
| 11 | 
            +
                    "_build": "<function ActorCriticPolicy._build at 0x7f59dc671790>",
         | 
| 12 | 
            +
                    "forward": "<function ActorCriticPolicy.forward at 0x7f59dc671820>",
         | 
| 13 | 
            +
                    "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f59dc6718b0>",
         | 
| 14 | 
            +
                    "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f59dc671940>",
         | 
| 15 | 
            +
                    "_predict": "<function ActorCriticPolicy._predict at 0x7f59dc6719d0>",
         | 
| 16 | 
            +
                    "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f59dc671a60>",
         | 
| 17 | 
            +
                    "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f59dc671af0>",
         | 
| 18 | 
            +
                    "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f59dc671b80>",
         | 
| 19 | 
            +
                    "__abstractmethods__": "frozenset()",
         | 
| 20 | 
            +
                    "_abc_impl": "<_abc._abc_data object at 0x7f59dc673040>"
         | 
| 21 | 
            +
                },
         | 
| 22 | 
            +
                "verbose": 1,
         | 
| 23 | 
            +
                "policy_kwargs": {},
         | 
| 24 | 
            +
                "observation_space": {
         | 
| 25 | 
            +
                    ":type:": "<class 'gym.spaces.box.Box'>",
         | 
| 26 | 
            +
                    ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
         | 
| 27 | 
            +
                    "dtype": "float32",
         | 
| 28 | 
            +
                    "_shape": [
         | 
| 29 | 
            +
                        8
         | 
| 30 | 
            +
                    ],
         | 
| 31 | 
            +
                    "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
         | 
| 32 | 
            +
                    "high": "[inf inf inf inf inf inf inf inf]",
         | 
| 33 | 
            +
                    "bounded_below": "[False False False False False False False False]",
         | 
| 34 | 
            +
                    "bounded_above": "[False False False False False False False False]",
         | 
| 35 | 
            +
                    "_np_random": null
         | 
| 36 | 
            +
                },
         | 
| 37 | 
            +
                "action_space": {
         | 
| 38 | 
            +
                    ":type:": "<class 'gym.spaces.discrete.Discrete'>",
         | 
| 39 | 
            +
                    ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
         | 
| 40 | 
            +
                    "n": 4,
         | 
| 41 | 
            +
                    "_shape": [],
         | 
| 42 | 
            +
                    "dtype": "int64",
         | 
| 43 | 
            +
                    "_np_random": null
         | 
| 44 | 
            +
                },
         | 
| 45 | 
            +
                "n_envs": 16,
         | 
| 46 | 
            +
                "num_timesteps": 1015808,
         | 
| 47 | 
            +
                "_total_timesteps": 1000000,
         | 
| 48 | 
            +
                "_num_timesteps_at_start": 0,
         | 
| 49 | 
            +
                "seed": null,
         | 
| 50 | 
            +
                "action_noise": null,
         | 
| 51 | 
            +
                "start_time": 1680202073324062009,
         | 
| 52 | 
            +
                "learning_rate": 0.0003,
         | 
| 53 | 
            +
                "tensorboard_log": null,
         | 
| 54 | 
            +
                "lr_schedule": {
         | 
| 55 | 
            +
                    ":type:": "<class 'function'>",
         | 
| 56 | 
            +
                    ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
         | 
| 57 | 
            +
                },
         | 
| 58 | 
            +
                "_last_obs": {
         | 
| 59 | 
            +
                    ":type:": "<class 'numpy.ndarray'>",
         | 
| 60 | 
            +
                    ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOZ/HL2uuaK6PXzit2+mxrIiu9G5pi0CNwAAgD8AAIA/uixQPmEmmbwspwo7clNAueKpCL7OJS26AACAPwAAgD8zX288SK2RuuOe2DliRI20MwrrumsB+7gAAIA/AACAP81g8jzDJS66U9NSO6b37TcW2Qo7kAwTugAAgD8AAIA/5gN5PY9aWLrsKEe754a2ttEMfrvuvGo6AACAPwAAgD/mmJS90HGtPsb5qD3sk3O+5gBZvV6l7jwAAAAAAAAAACatiD1c01y6jkXfOvxwlzXvZea5XmgDugAAgD8AAIA/mvGKvPb8V7pOFm86uf2WNaCMX7rg4Yy5AACAPwAAgD8zOhE9e1aeuohElTo14ow1aPWiupItrLkAAIA/AACAP7P/zD3DeV66uyFdupXNHLUBfzI6zlWBOQAAgD8AAAAAzSMIPZwJrD8nxMg+04bcvt0bRTx+VxY+AAAAAAAAAABNwWg99kyMP7rkDj7h9dW+J3w5PY94qT0AAAAAAAAAALNvFD1c13y6hSVROWXAxzS/pTI7kkxwuAAAgD8AAIA/Mxd2vSuBjz5+YQk+s4RTvnd0jLz2gYK9AAAAAAAAAACzgJA9eyyPusU61TrCYLk1cM0PO/pw97kAAIA/AACAP5rxXryuMaO6+EmUurValLVJMUy61X+qOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
         | 
| 61 | 
            +
                },
         | 
| 62 | 
            +
                "_last_episode_starts": {
         | 
| 63 | 
            +
                    ":type:": "<class 'numpy.ndarray'>",
         | 
| 64 | 
            +
                    ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
         | 
| 65 | 
            +
                },
         | 
| 66 | 
            +
                "_last_original_obs": null,
         | 
| 67 | 
            +
                "_episode_num": 0,
         | 
| 68 | 
            +
                "use_sde": false,
         | 
| 69 | 
            +
                "sde_sample_freq": -1,
         | 
| 70 | 
            +
                "_current_progress_remaining": -0.015808000000000044,
         | 
| 71 | 
            +
                "ep_info_buffer": {
         | 
| 72 | 
            +
                    ":type:": "<class 'collections.deque'>",
         | 
| 73 | 
            +
                    ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQx1WuOUeZECUhpRSlIwBbJRN6AOMAXSUR0Cb1sdI5HVgdX2UKGgGaAloD0MIVHQkl//sXUCUhpRSlGgVTegDaBZHQJvhBCHARCh1fZQoaAZoCWgPQwis/gjDgBFgQJSGlFKUaBVN6ANoFkdAm/C/LxI8Q3V9lChoBmgJaA9DCHKmCdtPA2ZAlIaUUpRoFU3oA2gWR0Cb8ztHQQcxdX2UKGgGaAloD0MIEtkHWZYwY0CUhpRSlGgVTegDaBZHQJv4fQID5j91fZQoaAZoCWgPQwh1BkZeVlRlQJSGlFKUaBVN6ANoFkdAnAzFxCIDYHV9lChoBmgJaA9DCAnCFVAou2FAlIaUUpRoFU3oA2gWR0CcGIVR1oxpdX2UKGgGaAloD0MInZ53Y8FCZ0CUhpRSlGgVTegDaBZHQJwZIsNDtw91fZQoaAZoCWgPQwjjiLX4FN9jQJSGlFKUaBVN6ANoFkdAnBxzxPO6d3V9lChoBmgJaA9DCM3MzMxMAmdAlIaUUpRoFU3oA2gWR0CcJPSPluFYdX2UKGgGaAloD0MIAIxn0FC7YECUhpRSlGgVTegDaBZHQJwn3DCP6sR1fZQoaAZoCWgPQwiCVIodDaVjQJSGlFKUaBVN6ANoFkdAnCqSrtE5Q3V9lChoBmgJaA9DCLA9syRAAGJAlIaUUpRoFU3oA2gWR0CcLHmf5DZ2dX2UKGgGaAloD0MIqgzjbpD7YUCUhpRSlGgVTegDaBZHQJwxODsdDIB1fZQoaAZoCWgPQwgmyAiocLZfQJSGlFKUaBVN6ANoFkdAnEatgKF7D3V9lChoBmgJaA9DCNV6v9EOVGBAlIaUUpRoFU3oA2gWR0CcTzOWSlnAdX2UKGgGaAloD0MIPnjt0gbhYUCUhpRSlGgVTegDaBZHQJxXjbcoH9p1fZQoaAZoCWgPQwjHndLB+mBkQJSGlFKUaBVN6ANoFkdAnGLdOdoWYXV9lChoBmgJaA9DCHCwNzEkAGBAlIaUUpRoFU3oA2gWR0CcdL2WY4Q0dX2UKGgGaAloD0MISL99HTi1X0CUhpRSlGgVTegDaBZHQJx3XCcf/3p1fZQoaAZoCWgPQwiqDONuEKRkQJSGlFKUaBVN6ANoFkdAnHzn3xnWa3V9lChoBmgJaA9DCJ6Xio35cWFAlIaUUpRoFU3oA2gWR0Ccjxv7m+0xdX2UKGgGaAloD0MI8uzyrQ8dTECUhpRSlGgVS+1oFkdAnJGrO3UhFHV9lChoBmgJaA9DCOyIQzaQh15AlIaUUpRoFU3oA2gWR0CcmHt3wCr+dX2UKGgGaAloD0MIysFsAgz3WkCUhpRSlGgVTegDaBZHQJyY914gRsd1fZQoaAZoCWgPQwi5+xwfLbRiQJSGlFKUaBVN6ANoFkdAnJuOxnnMdXV9lChoBmgJaA9DCILEdvcAxGBAlIaUUpRoFU3oA2gWR0Cco4GEPDpDdX2UKGgGaAloD0MIjZjZ5zEKZ0CUhpRSlGgVTegDaBZHQJymHicXm/51fZQoaAZoCWgPQwiNCpxsg/tgQJSGlFKUaBVN6ANoFkdAnKhPDLr5ZnV9lChoBmgJaA9DCHRgOUIGImNAlIaUUpRoFU3oA2gWR0CcqhM5wOvudX2UKGgGaAloD0MIHa1qSUdXXkCUhpRSlGgVTegDaBZHQJyubuVopQV1fZQoaAZoCWgPQwiz74rgfxtoQJSGlFKUaBVN6ANoFkdAnMMhffGdZ3V9lChoBmgJaA9DCIcZGk8E22ZAlIaUUpRoFU3oA2gWR0CcyuJLdvbXdX2UKGgGaAloD0MIacTMPo/eYUCUhpRSlGgVTegDaBZHQJzSTHPu5SZ1fZQoaAZoCWgPQwh4CyQoftFjQJSGlFKUaBVN6ANoFkdAnN08PWhAW3V9lChoBmgJaA9DCLkZbsBnmGNAlIaUUpRoFU3oA2gWR0Cc7anzxwyZdX2UKGgGaAloD0MIvqWcL/bJYECUhpRSlGgVTegDaBZHQJz2bTMJQch1fZQoaAZoCWgPQwgjumddo3ZiQJSGlFKUaBVN6ANoFkdAnQtHqNZNf3V9lChoBmgJaA9DCA8Ni1HXgWBAlIaUUpRoFU3oA2gWR0CdDqB6a9bpdX2UKGgGaAloD0MIknTN5Bs8ZECUhpRSlGgVTegDaBZHQJ0VzyXlbNd1fZQoaAZoCWgPQwi14EVfQY9gQJSGlFKUaBVN6ANoFkdAnRZPFR51NnV9lChoBmgJaA9DCJhsPNji7WBAlIaUUpRoFU3oA2gWR0CdGPsKb8WLdX2UKGgGaAloD0MI0VrR5riJYkCUhpRSlGgVTegDaBZHQJ0g3ZuhsZZ1fZQoaAZoCWgPQwhfmiLA6ZBkQJSGlFKUaBVN6ANoFkdAnSOLvb48EHV9lChoBmgJaA9DCLA9syRAS2RAlIaUUpRoFU3oA2gWR0CdJb+QlruZdX2UKGgGaAloD0MIbJOKxtpwYkCUhpRSlGgVTegDaBZHQJ0ni9Jz1bt1fZQoaAZoCWgPQwgRqP5BJNxnQJSGlFKUaBVN6ANoFkdAnSviqU/wAnV9lChoBmgJaA9DCM10r5N6KGRAlIaUUpRoFU3oA2gWR0CdM4qPfbbldX2UKGgGaAloD0MICK7yBMLUYkCUhpRSlGgVTegDaBZHQJ1KYUUO/cp1fZQoaAZoCWgPQwh2bATi9RRiQJSGlFKUaBVN6ANoFkdAnVJbFCLMtHV9lChoBmgJaA9DCILEdveADm9AlIaUUpRoFU16AWgWR0CdV7z/IbOvdX2UKGgGaAloD0MI+cCO/wKRXECUhpRSlGgVTegDaBZHQJ1efl/6O5t1fZQoaAZoCWgPQwj35cx2BepvQJSGlFKUaBVNsgFoFkdAnWGz5oGpuXV9lChoBmgJaA9DCBbB/1ayVl9AlIaUUpRoFU3oA2gWR0Cdb4L8rI5pdX2UKGgGaAloD0MIPMCTFi6SYUCUhpRSlGgVTegDaBZHQJ13mGBWge11fZQoaAZoCWgPQwi0PA/uTrxhQJSGlFKUaBVN6ANoFkdAnYrc4HX2/XV9lChoBmgJaA9DCEKTxJJyeF5AlIaUUpRoFU3oA2gWR0CdjbMUAT7EdX2UKGgGaAloD0MII0xRLg1CZkCUhpRSlGgVTegDaBZHQJ2VApobn5l1fZQoaAZoCWgPQwhjCtY4GzFmQJSGlFKUaBVN6ANoFkdAnZWAmZ3LWHV9lChoBmgJaA9DCM5V8xyRkGRAlIaUUpRoFU3oA2gWR0CdmDx1gYxddX2UKGgGaAloD0MIfEj43t/6ZkCUhpRSlGgVTegDaBZHQJ2me9rXUYt1fZQoaAZoCWgPQwg1Y9F09p1lQJSGlFKUaBVN6ANoFkdAnaiRJNCZ4XV9lChoBmgJaA9DCBLBOLh0umRAlIaUUpRoFU3oA2gWR0CdrWVfu1F6dX2UKGgGaAloD0MIn5RJDW34I0CUhpRSlGgVS+hoFkdAnbGurdWQwXV9lChoBmgJaA9DCKypLAq7eGRAlIaUUpRoFU3oA2gWR0CdtDHEMspYdX2UKGgGaAloD0MIRrOyfciyZkCUhpRSlGgVTegDaBZHQJ3K2otL+P11fZQoaAZoCWgPQwhI3c6+ckplQJSGlFKUaBVN6ANoFkdAndICsjmjkHV9lChoBmgJaA9DCHsUrkdh9GNAlIaUUpRoFU3oA2gWR0Cd1gmMfigkdX2UKGgGaAloD0MIomKcvwnGX0CUhpRSlGgVTegDaBZHQJ3b1qYZ2p11fZQoaAZoCWgPQwjrrYGtEo1nQJSGlFKUaBVN6ANoFkdAnd5PFR51NnV9lChoBmgJaA9DCKq1MAttyGNAlIaUUpRoFU3oA2gWR0Cd6RMdcSoPdX2UKGgGaAloD0MIcvxQacQqcECUhpRSlGgVTRADaBZHQJ3q9gVoHs11fZQoaAZoCWgPQwi5bkp5behxQJSGlFKUaBVNrwFoFkdAnezw3tKIznV9lChoBmgJaA9DCI0pWOPsB2NAlIaUUpRoFU3oA2gWR0Cd79IjW07bdX2UKGgGaAloD0MIiV+xhov5bkCUhpRSlGgVTRsCaBZHQJ30O2Yv38J1fZQoaAZoCWgPQwjjVGthlpRkQJSGlFKUaBVN6ANoFkdAngGTKs+3Y3V9lChoBmgJaA9DCE33Oqmvc2RAlIaUUpRoFU3oA2gWR0CeCJlpoK2KdX2UKGgGaAloD0MIv4HJjSKqYECUhpRSlGgVTegDaBZHQJ4JEswtapx1fZQoaAZoCWgPQwi+pDFaR9k3QJSGlFKUaBVL62gWR0CeDHKpT/ACdX2UKGgGaAloD0MIhqktdZAOYECUhpRSlGgVTegDaBZHQJ4YowUQCjl1fZQoaAZoCWgPQwiwBFJiV6ViQJSGlFKUaBVN6ANoFkdAnhp6SLZSN3V9lChoBmgJaA9DCJuqe2TzaWRAlIaUUpRoFU3oA2gWR0CeHvJFb3XadX2UKGgGaAloD0MIEcgljrxBbkCUhpRSlGgVTVACaBZHQJ4r/4/NZ/11fZQoaAZoCWgPQwi5bkp5rYdmQJSGlFKUaBVN6ANoFkdAnj0ANPP9k3V9lChoBmgJaA9DCNI5P8Xx+WlAlIaUUpRoFU3oA2gWR0CeRJDSw4bTdX2UKGgGaAloD0MIATW1bC32ZECUhpRSlGgVTegDaBZHQJ5Izsu3+dd1fZQoaAZoCWgPQwgkRPmCFsdkQJSGlFKUaBVN6ANoFkdAnk5EvXbudHV9lChoBmgJaA9DCLTJ4ZNON15AlIaUUpRoFU3oA2gWR0CeUNu/1xsEdX2UKGgGaAloD0MI5j45ChA/YUCUhpRSlGgVTegDaBZHQJ5cF4oqkM11fZQoaAZoCWgPQwiv7ILBNYdiQJSGlFKUaBVN6ANoFkdAnl4bMxGlRHV9lChoBmgJaA9DCC/ej9uvmmJAlIaUUpRoFU3oA2gWR0CeYBORT0g9dX2UKGgGaAloD0MIcCamC7E5Z0CUhpRSlGgVTegDaBZHQJ53Zy2hIvt1fZQoaAZoCWgPQwiymxn96MdkQJSGlFKUaBVN6ANoFkdAnn6DqrzXjHV9lChoBmgJaA9DCJ9x4UDIx2RAlIaUUpRoFU3oA2gWR0CefwCdSVGDdX2UKGgGaAloD0MIDAHAsSfWcUCUhpRSlGgVTWgDaBZHQJ6BE29+PR11fZQoaAZoCWgPQwi86gHzkO5gQJSGlFKUaBVN6ANoFkdAnoIo6wMYuXV9lChoBmgJaA9DCIrHRbWIhWZAlIaUUpRoFU3oA2gWR0Cej8GOuJUHdX2UKGgGaAloD0MIuB6F61HXYECUhpRSlGgVTegDaBZHQJ6Uq68QI2R1fZQoaAZoCWgPQwg7GLFPgMJiQJSGlFKUaBVN6ANoFkdAnqH8gU1yenV9lChoBmgJaA9DCP5hS4+mo2BAlIaUUpRoFU3oA2gWR0CepLd9Ujs2dWUu"
         | 
| 74 | 
            +
                },
         | 
| 75 | 
            +
                "ep_success_buffer": {
         | 
| 76 | 
            +
                    ":type:": "<class 'collections.deque'>",
         | 
| 77 | 
            +
                    ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
         | 
| 78 | 
            +
                },
         | 
| 79 | 
            +
                "_n_updates": 248,
         | 
| 80 | 
            +
                "n_steps": 1024,
         | 
| 81 | 
            +
                "gamma": 0.999,
         | 
| 82 | 
            +
                "gae_lambda": 0.98,
         | 
| 83 | 
            +
                "ent_coef": 0.01,
         | 
| 84 | 
            +
                "vf_coef": 0.5,
         | 
| 85 | 
            +
                "max_grad_norm": 0.5,
         | 
| 86 | 
            +
                "batch_size": 64,
         | 
| 87 | 
            +
                "n_epochs": 4,
         | 
| 88 | 
            +
                "clip_range": {
         | 
| 89 | 
            +
                    ":type:": "<class 'function'>",
         | 
| 90 | 
            +
                    ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
         | 
| 91 | 
            +
                },
         | 
| 92 | 
            +
                "clip_range_vf": null,
         | 
| 93 | 
            +
                "normalize_advantage": true,
         | 
| 94 | 
            +
                "target_kl": null
         | 
| 95 | 
            +
            }
         | 
    	
        luna-lander-ppo/policy.optimizer.pth
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:31b3e8039bb5d3f828f671d274141d60a6a820a280268c89439831aa1f23e912
         | 
| 3 | 
            +
            size 87865
         | 
    	
        luna-lander-ppo/policy.pth
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:922876f8836285bb4b97fdb816bca81ff70f9d361adedcdd6195ba0a18ba8f36
         | 
| 3 | 
            +
            size 43393
         | 
    	
        luna-lander-ppo/pytorch_variables.pth
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
         | 
| 3 | 
            +
            size 431
         | 
    	
        luna-lander-ppo/system_info.txt
    ADDED
    
    | @@ -0,0 +1,7 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            - OS: Linux-5.4.0-122-generic-x86_64-with-glibc2.31 # 138~18.04.1-Ubuntu SMP Fri Jun 24 14:14:03 UTC 2022
         | 
| 2 | 
            +
            - Python: 3.9.16
         | 
| 3 | 
            +
            - Stable-Baselines3: 1.7.0
         | 
| 4 | 
            +
            - PyTorch: 1.12.1+cu116
         | 
| 5 | 
            +
            - GPU Enabled: True
         | 
| 6 | 
            +
            - Numpy: 1.23.4
         | 
| 7 | 
            +
            - Gym: 0.21.0
         | 
    	
        replay.mp4
    ADDED
    
    | Binary file (218 kB). View file | 
|  | 
    	
        results.json
    ADDED
    
    | @@ -0,0 +1 @@ | |
|  | 
|  | |
| 1 | 
            +
            {"mean_reward": 254.9101467579057, "std_reward": 24.876901314914775, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-30T19:24:48.705703"}
         | 
