zhengqilin commited on
Commit
1976a91
·
1 Parent(s): e000751
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +4 -0
  2. .gitignore +26 -0
  3. .lightning +1 -0
  4. .lightningignore +32 -0
  5. .pylintrc +3 -0
  6. LICENSE.txt +663 -0
  7. README.md +70 -0
  8. app.py +107 -0
  9. cog.yaml +68 -0
  10. config.json +148 -0
  11. configs/alt-diffusion-inference.yaml +72 -0
  12. configs/instruct-pix2pix.yaml +98 -0
  13. configs/v1-inference.yaml +70 -0
  14. configs/v1-inpainting-inference.yaml +70 -0
  15. extensions-builtin/LDSR/ldsr_model_arch.py +253 -0
  16. extensions-builtin/LDSR/preload.py +6 -0
  17. extensions-builtin/LDSR/scripts/ldsr_model.py +69 -0
  18. extensions-builtin/LDSR/sd_hijack_autoencoder.py +286 -0
  19. extensions-builtin/LDSR/sd_hijack_ddpm_v1.py +1449 -0
  20. extensions-builtin/Lora/extra_networks_lora.py +26 -0
  21. extensions-builtin/Lora/lora.py +207 -0
  22. extensions-builtin/Lora/preload.py +6 -0
  23. extensions-builtin/Lora/scripts/lora_script.py +38 -0
  24. extensions-builtin/Lora/ui_extra_networks_lora.py +37 -0
  25. extensions-builtin/ScuNET/preload.py +6 -0
  26. extensions-builtin/ScuNET/scripts/scunet_model.py +87 -0
  27. extensions-builtin/ScuNET/scunet_model_arch.py +265 -0
  28. extensions-builtin/SwinIR/preload.py +6 -0
  29. extensions-builtin/SwinIR/scripts/swinir_model.py +178 -0
  30. extensions-builtin/SwinIR/swinir_model_arch.py +867 -0
  31. extensions-builtin/SwinIR/swinir_model_arch_v2.py +1017 -0
  32. extensions-builtin/prompt-bracket-checker/javascript/prompt-bracket-checker.js +110 -0
  33. handler.py +233 -0
  34. models/Lora/koreanDollLikeness_v10.safetensors +3 -0
  35. models/Lora/stLouisLuxuriousWheels_v1.safetensors +3 -0
  36. models/Lora/taiwanDollLikeness_v10.safetensors +3 -0
  37. models/Stable-diffusion/Put Stable Diffusion checkpoints here.txt +0 -0
  38. models/Stable-diffusion/chilloutmix_NiPrunedFp32Fix.safetensors +3 -0
  39. models/VAE-approx/model.pt +3 -0
  40. models/VAE/Put VAE here.txt +0 -0
  41. models/VAE/vae-ft-mse-840000-ema-pruned.ckpt +3 -0
  42. models/deepbooru/Put your deepbooru release project folder here.txt +0 -0
  43. modules/api/api.py +551 -0
  44. modules/api/models.py +269 -0
  45. modules/call_queue.py +109 -0
  46. modules/codeformer/codeformer_arch.py +278 -0
  47. modules/codeformer/vqgan_arch.py +437 -0
  48. modules/codeformer_model.py +143 -0
  49. modules/deepbooru.py +99 -0
  50. modules/deepbooru_model.py +678 -0
.gitattributes CHANGED
@@ -4,9 +4,12 @@
4
  *.bz2 filter=lfs diff=lfs merge=lfs -text
5
  *.ckpt filter=lfs diff=lfs merge=lfs -text
6
  *.ftz filter=lfs diff=lfs merge=lfs -text
 
7
  *.gz filter=lfs diff=lfs merge=lfs -text
8
  *.h5 filter=lfs diff=lfs merge=lfs -text
9
  *.joblib filter=lfs diff=lfs merge=lfs -text
 
 
10
  *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
  *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
  *.model filter=lfs diff=lfs merge=lfs -text
@@ -19,6 +22,7 @@
19
  *.pb filter=lfs diff=lfs merge=lfs -text
20
  *.pickle filter=lfs diff=lfs merge=lfs -text
21
  *.pkl filter=lfs diff=lfs merge=lfs -text
 
22
  *.pt filter=lfs diff=lfs merge=lfs -text
23
  *.pth filter=lfs diff=lfs merge=lfs -text
24
  *.rar filter=lfs diff=lfs merge=lfs -text
 
4
  *.bz2 filter=lfs diff=lfs merge=lfs -text
5
  *.ckpt filter=lfs diff=lfs merge=lfs -text
6
  *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gif filter=lfs diff=lfs merge=lfs -text
8
  *.gz filter=lfs diff=lfs merge=lfs -text
9
  *.h5 filter=lfs diff=lfs merge=lfs -text
10
  *.joblib filter=lfs diff=lfs merge=lfs -text
11
+ *.jpg filter=lfs diff=lfs merge=lfs -text
12
+ *.ipynb filter=lfs diff=lfs merge=lfs -text
13
  *.lfs.* filter=lfs diff=lfs merge=lfs -text
14
  *.mlmodel filter=lfs diff=lfs merge=lfs -text
15
  *.model filter=lfs diff=lfs merge=lfs -text
 
22
  *.pb filter=lfs diff=lfs merge=lfs -text
23
  *.pickle filter=lfs diff=lfs merge=lfs -text
24
  *.pkl filter=lfs diff=lfs merge=lfs -text
25
+ *.png filter=lfs diff=lfs merge=lfs -text
26
  *.pt filter=lfs diff=lfs merge=lfs -text
27
  *.pth filter=lfs diff=lfs merge=lfs -text
28
  *.rar filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ __pycache__
2
+ /ESRGAN/*
3
+ /SwinIR/*
4
+ /venv
5
+ /tmp
6
+ /GFPGANv1.3.pth
7
+ /gfpgan/weights/*.pth
8
+ /ui-config.json
9
+ /outputs
10
+ /log
11
+ /webui.settings.bat
12
+ /embeddings
13
+ /styles.csv
14
+ /params.txt
15
+ /styles.csv.bak
16
+ /interrogate
17
+ /user.css
18
+ /.idea
19
+ notification.mp3
20
+ /SwinIR
21
+ /textual_inversion
22
+ .vscode
23
+ /extensions
24
+ /test/stdout.txt
25
+ /test/stderr.txt
26
+ /cache.json
.lightning ADDED
@@ -0,0 +1 @@
 
 
1
+ name: famous-carson-8575
.lightningignore ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ __pycache__
2
+ /ESRGAN/*
3
+ /SwinIR/*
4
+ /venv
5
+ /tmp
6
+ /GFPGANv1.3.pth
7
+ /gfpgan/weights/*.pth
8
+ /ui-config.json
9
+ /outputs
10
+ /log
11
+ /webui.settings.bat
12
+ /embeddings
13
+ /styles.csv
14
+ /params.txt
15
+ /styles.csv.bak
16
+ /interrogate
17
+ /user.css
18
+ /.idea
19
+ notification.mp3
20
+ /SwinIR
21
+ /textual_inversion
22
+ .vscode
23
+ /extensions
24
+ /test/stdout.txt
25
+ /test/stderr.txt
26
+ /cache.json
27
+ .git
28
+ */chilloutmix_NiPrunedFp32Fix.safetensors
29
+ */vae-ft-mse-840000-ema-pruned.ckpt
30
+ */stLouisLuxuriousWheels_v1.safetensors
31
+ */taiwanDollLikeness_v10.safetensors
32
+ */koreanDollLikeness_v10.safetensors
.pylintrc ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ # See https://pylint.pycqa.org/en/latest/user_guide/messages/message_control.html
2
+ [MESSAGES CONTROL]
3
+ disable=C,R,W,E,I
LICENSE.txt ADDED
@@ -0,0 +1,663 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU AFFERO GENERAL PUBLIC LICENSE
2
+ Version 3, 19 November 2007
3
+
4
+ Copyright (c) 2023 AUTOMATIC1111
5
+
6
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
7
+ Everyone is permitted to copy and distribute verbatim copies
8
+ of this license document, but changing it is not allowed.
9
+
10
+ Preamble
11
+
12
+ The GNU Affero General Public License is a free, copyleft license for
13
+ software and other kinds of works, specifically designed to ensure
14
+ cooperation with the community in the case of network server software.
15
+
16
+ The licenses for most software and other practical works are designed
17
+ to take away your freedom to share and change the works. By contrast,
18
+ our General Public Licenses are intended to guarantee your freedom to
19
+ share and change all versions of a program--to make sure it remains free
20
+ software for all its users.
21
+
22
+ When we speak of free software, we are referring to freedom, not
23
+ price. Our General Public Licenses are designed to make sure that you
24
+ have the freedom to distribute copies of free software (and charge for
25
+ them if you wish), that you receive source code or can get it if you
26
+ want it, that you can change the software or use pieces of it in new
27
+ free programs, and that you know you can do these things.
28
+
29
+ Developers that use our General Public Licenses protect your rights
30
+ with two steps: (1) assert copyright on the software, and (2) offer
31
+ you this License which gives you legal permission to copy, distribute
32
+ and/or modify the software.
33
+
34
+ A secondary benefit of defending all users' freedom is that
35
+ improvements made in alternate versions of the program, if they
36
+ receive widespread use, become available for other developers to
37
+ incorporate. Many developers of free software are heartened and
38
+ encouraged by the resulting cooperation. However, in the case of
39
+ software used on network servers, this result may fail to come about.
40
+ The GNU General Public License permits making a modified version and
41
+ letting the public access it on a server without ever releasing its
42
+ source code to the public.
43
+
44
+ The GNU Affero General Public License is designed specifically to
45
+ ensure that, in such cases, the modified source code becomes available
46
+ to the community. It requires the operator of a network server to
47
+ provide the source code of the modified version running there to the
48
+ users of that server. Therefore, public use of a modified version, on
49
+ a publicly accessible server, gives the public access to the source
50
+ code of the modified version.
51
+
52
+ An older license, called the Affero General Public License and
53
+ published by Affero, was designed to accomplish similar goals. This is
54
+ a different license, not a version of the Affero GPL, but Affero has
55
+ released a new version of the Affero GPL which permits relicensing under
56
+ this license.
57
+
58
+ The precise terms and conditions for copying, distribution and
59
+ modification follow.
60
+
61
+ TERMS AND CONDITIONS
62
+
63
+ 0. Definitions.
64
+
65
+ "This License" refers to version 3 of the GNU Affero General Public License.
66
+
67
+ "Copyright" also means copyright-like laws that apply to other kinds of
68
+ works, such as semiconductor masks.
69
+
70
+ "The Program" refers to any copyrightable work licensed under this
71
+ License. Each licensee is addressed as "you". "Licensees" and
72
+ "recipients" may be individuals or organizations.
73
+
74
+ To "modify" a work means to copy from or adapt all or part of the work
75
+ in a fashion requiring copyright permission, other than the making of an
76
+ exact copy. The resulting work is called a "modified version" of the
77
+ earlier work or a work "based on" the earlier work.
78
+
79
+ A "covered work" means either the unmodified Program or a work based
80
+ on the Program.
81
+
82
+ To "propagate" a work means to do anything with it that, without
83
+ permission, would make you directly or secondarily liable for
84
+ infringement under applicable copyright law, except executing it on a
85
+ computer or modifying a private copy. Propagation includes copying,
86
+ distribution (with or without modification), making available to the
87
+ public, and in some countries other activities as well.
88
+
89
+ To "convey" a work means any kind of propagation that enables other
90
+ parties to make or receive copies. Mere interaction with a user through
91
+ a computer network, with no transfer of a copy, is not conveying.
92
+
93
+ An interactive user interface displays "Appropriate Legal Notices"
94
+ to the extent that it includes a convenient and prominently visible
95
+ feature that (1) displays an appropriate copyright notice, and (2)
96
+ tells the user that there is no warranty for the work (except to the
97
+ extent that warranties are provided), that licensees may convey the
98
+ work under this License, and how to view a copy of this License. If
99
+ the interface presents a list of user commands or options, such as a
100
+ menu, a prominent item in the list meets this criterion.
101
+
102
+ 1. Source Code.
103
+
104
+ The "source code" for a work means the preferred form of the work
105
+ for making modifications to it. "Object code" means any non-source
106
+ form of a work.
107
+
108
+ A "Standard Interface" means an interface that either is an official
109
+ standard defined by a recognized standards body, or, in the case of
110
+ interfaces specified for a particular programming language, one that
111
+ is widely used among developers working in that language.
112
+
113
+ The "System Libraries" of an executable work include anything, other
114
+ than the work as a whole, that (a) is included in the normal form of
115
+ packaging a Major Component, but which is not part of that Major
116
+ Component, and (b) serves only to enable use of the work with that
117
+ Major Component, or to implement a Standard Interface for which an
118
+ implementation is available to the public in source code form. A
119
+ "Major Component", in this context, means a major essential component
120
+ (kernel, window system, and so on) of the specific operating system
121
+ (if any) on which the executable work runs, or a compiler used to
122
+ produce the work, or an object code interpreter used to run it.
123
+
124
+ The "Corresponding Source" for a work in object code form means all
125
+ the source code needed to generate, install, and (for an executable
126
+ work) run the object code and to modify the work, including scripts to
127
+ control those activities. However, it does not include the work's
128
+ System Libraries, or general-purpose tools or generally available free
129
+ programs which are used unmodified in performing those activities but
130
+ which are not part of the work. For example, Corresponding Source
131
+ includes interface definition files associated with source files for
132
+ the work, and the source code for shared libraries and dynamically
133
+ linked subprograms that the work is specifically designed to require,
134
+ such as by intimate data communication or control flow between those
135
+ subprograms and other parts of the work.
136
+
137
+ The Corresponding Source need not include anything that users
138
+ can regenerate automatically from other parts of the Corresponding
139
+ Source.
140
+
141
+ The Corresponding Source for a work in source code form is that
142
+ same work.
143
+
144
+ 2. Basic Permissions.
145
+
146
+ All rights granted under this License are granted for the term of
147
+ copyright on the Program, and are irrevocable provided the stated
148
+ conditions are met. This License explicitly affirms your unlimited
149
+ permission to run the unmodified Program. The output from running a
150
+ covered work is covered by this License only if the output, given its
151
+ content, constitutes a covered work. This License acknowledges your
152
+ rights of fair use or other equivalent, as provided by copyright law.
153
+
154
+ You may make, run and propagate covered works that you do not
155
+ convey, without conditions so long as your license otherwise remains
156
+ in force. You may convey covered works to others for the sole purpose
157
+ of having them make modifications exclusively for you, or provide you
158
+ with facilities for running those works, provided that you comply with
159
+ the terms of this License in conveying all material for which you do
160
+ not control copyright. Those thus making or running the covered works
161
+ for you must do so exclusively on your behalf, under your direction
162
+ and control, on terms that prohibit them from making any copies of
163
+ your copyrighted material outside their relationship with you.
164
+
165
+ Conveying under any other circumstances is permitted solely under
166
+ the conditions stated below. Sublicensing is not allowed; section 10
167
+ makes it unnecessary.
168
+
169
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
170
+
171
+ No covered work shall be deemed part of an effective technological
172
+ measure under any applicable law fulfilling obligations under article
173
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
174
+ similar laws prohibiting or restricting circumvention of such
175
+ measures.
176
+
177
+ When you convey a covered work, you waive any legal power to forbid
178
+ circumvention of technological measures to the extent such circumvention
179
+ is effected by exercising rights under this License with respect to
180
+ the covered work, and you disclaim any intention to limit operation or
181
+ modification of the work as a means of enforcing, against the work's
182
+ users, your or third parties' legal rights to forbid circumvention of
183
+ technological measures.
184
+
185
+ 4. Conveying Verbatim Copies.
186
+
187
+ You may convey verbatim copies of the Program's source code as you
188
+ receive it, in any medium, provided that you conspicuously and
189
+ appropriately publish on each copy an appropriate copyright notice;
190
+ keep intact all notices stating that this License and any
191
+ non-permissive terms added in accord with section 7 apply to the code;
192
+ keep intact all notices of the absence of any warranty; and give all
193
+ recipients a copy of this License along with the Program.
194
+
195
+ You may charge any price or no price for each copy that you convey,
196
+ and you may offer support or warranty protection for a fee.
197
+
198
+ 5. Conveying Modified Source Versions.
199
+
200
+ You may convey a work based on the Program, or the modifications to
201
+ produce it from the Program, in the form of source code under the
202
+ terms of section 4, provided that you also meet all of these conditions:
203
+
204
+ a) The work must carry prominent notices stating that you modified
205
+ it, and giving a relevant date.
206
+
207
+ b) The work must carry prominent notices stating that it is
208
+ released under this License and any conditions added under section
209
+ 7. This requirement modifies the requirement in section 4 to
210
+ "keep intact all notices".
211
+
212
+ c) You must license the entire work, as a whole, under this
213
+ License to anyone who comes into possession of a copy. This
214
+ License will therefore apply, along with any applicable section 7
215
+ additional terms, to the whole of the work, and all its parts,
216
+ regardless of how they are packaged. This License gives no
217
+ permission to license the work in any other way, but it does not
218
+ invalidate such permission if you have separately received it.
219
+
220
+ d) If the work has interactive user interfaces, each must display
221
+ Appropriate Legal Notices; however, if the Program has interactive
222
+ interfaces that do not display Appropriate Legal Notices, your
223
+ work need not make them do so.
224
+
225
+ A compilation of a covered work with other separate and independent
226
+ works, which are not by their nature extensions of the covered work,
227
+ and which are not combined with it such as to form a larger program,
228
+ in or on a volume of a storage or distribution medium, is called an
229
+ "aggregate" if the compilation and its resulting copyright are not
230
+ used to limit the access or legal rights of the compilation's users
231
+ beyond what the individual works permit. Inclusion of a covered work
232
+ in an aggregate does not cause this License to apply to the other
233
+ parts of the aggregate.
234
+
235
+ 6. Conveying Non-Source Forms.
236
+
237
+ You may convey a covered work in object code form under the terms
238
+ of sections 4 and 5, provided that you also convey the
239
+ machine-readable Corresponding Source under the terms of this License,
240
+ in one of these ways:
241
+
242
+ a) Convey the object code in, or embodied in, a physical product
243
+ (including a physical distribution medium), accompanied by the
244
+ Corresponding Source fixed on a durable physical medium
245
+ customarily used for software interchange.
246
+
247
+ b) Convey the object code in, or embodied in, a physical product
248
+ (including a physical distribution medium), accompanied by a
249
+ written offer, valid for at least three years and valid for as
250
+ long as you offer spare parts or customer support for that product
251
+ model, to give anyone who possesses the object code either (1) a
252
+ copy of the Corresponding Source for all the software in the
253
+ product that is covered by this License, on a durable physical
254
+ medium customarily used for software interchange, for a price no
255
+ more than your reasonable cost of physically performing this
256
+ conveying of source, or (2) access to copy the
257
+ Corresponding Source from a network server at no charge.
258
+
259
+ c) Convey individual copies of the object code with a copy of the
260
+ written offer to provide the Corresponding Source. This
261
+ alternative is allowed only occasionally and noncommercially, and
262
+ only if you received the object code with such an offer, in accord
263
+ with subsection 6b.
264
+
265
+ d) Convey the object code by offering access from a designated
266
+ place (gratis or for a charge), and offer equivalent access to the
267
+ Corresponding Source in the same way through the same place at no
268
+ further charge. You need not require recipients to copy the
269
+ Corresponding Source along with the object code. If the place to
270
+ copy the object code is a network server, the Corresponding Source
271
+ may be on a different server (operated by you or a third party)
272
+ that supports equivalent copying facilities, provided you maintain
273
+ clear directions next to the object code saying where to find the
274
+ Corresponding Source. Regardless of what server hosts the
275
+ Corresponding Source, you remain obligated to ensure that it is
276
+ available for as long as needed to satisfy these requirements.
277
+
278
+ e) Convey the object code using peer-to-peer transmission, provided
279
+ you inform other peers where the object code and Corresponding
280
+ Source of the work are being offered to the general public at no
281
+ charge under subsection 6d.
282
+
283
+ A separable portion of the object code, whose source code is excluded
284
+ from the Corresponding Source as a System Library, need not be
285
+ included in conveying the object code work.
286
+
287
+ A "User Product" is either (1) a "consumer product", which means any
288
+ tangible personal property which is normally used for personal, family,
289
+ or household purposes, or (2) anything designed or sold for incorporation
290
+ into a dwelling. In determining whether a product is a consumer product,
291
+ doubtful cases shall be resolved in favor of coverage. For a particular
292
+ product received by a particular user, "normally used" refers to a
293
+ typical or common use of that class of product, regardless of the status
294
+ of the particular user or of the way in which the particular user
295
+ actually uses, or expects or is expected to use, the product. A product
296
+ is a consumer product regardless of whether the product has substantial
297
+ commercial, industrial or non-consumer uses, unless such uses represent
298
+ the only significant mode of use of the product.
299
+
300
+ "Installation Information" for a User Product means any methods,
301
+ procedures, authorization keys, or other information required to install
302
+ and execute modified versions of a covered work in that User Product from
303
+ a modified version of its Corresponding Source. The information must
304
+ suffice to ensure that the continued functioning of the modified object
305
+ code is in no case prevented or interfered with solely because
306
+ modification has been made.
307
+
308
+ If you convey an object code work under this section in, or with, or
309
+ specifically for use in, a User Product, and the conveying occurs as
310
+ part of a transaction in which the right of possession and use of the
311
+ User Product is transferred to the recipient in perpetuity or for a
312
+ fixed term (regardless of how the transaction is characterized), the
313
+ Corresponding Source conveyed under this section must be accompanied
314
+ by the Installation Information. But this requirement does not apply
315
+ if neither you nor any third party retains the ability to install
316
+ modified object code on the User Product (for example, the work has
317
+ been installed in ROM).
318
+
319
+ The requirement to provide Installation Information does not include a
320
+ requirement to continue to provide support service, warranty, or updates
321
+ for a work that has been modified or installed by the recipient, or for
322
+ the User Product in which it has been modified or installed. Access to a
323
+ network may be denied when the modification itself materially and
324
+ adversely affects the operation of the network or violates the rules and
325
+ protocols for communication across the network.
326
+
327
+ Corresponding Source conveyed, and Installation Information provided,
328
+ in accord with this section must be in a format that is publicly
329
+ documented (and with an implementation available to the public in
330
+ source code form), and must require no special password or key for
331
+ unpacking, reading or copying.
332
+
333
+ 7. Additional Terms.
334
+
335
+ "Additional permissions" are terms that supplement the terms of this
336
+ License by making exceptions from one or more of its conditions.
337
+ Additional permissions that are applicable to the entire Program shall
338
+ be treated as though they were included in this License, to the extent
339
+ that they are valid under applicable law. If additional permissions
340
+ apply only to part of the Program, that part may be used separately
341
+ under those permissions, but the entire Program remains governed by
342
+ this License without regard to the additional permissions.
343
+
344
+ When you convey a copy of a covered work, you may at your option
345
+ remove any additional permissions from that copy, or from any part of
346
+ it. (Additional permissions may be written to require their own
347
+ removal in certain cases when you modify the work.) You may place
348
+ additional permissions on material, added by you to a covered work,
349
+ for which you have or can give appropriate copyright permission.
350
+
351
+ Notwithstanding any other provision of this License, for material you
352
+ add to a covered work, you may (if authorized by the copyright holders of
353
+ that material) supplement the terms of this License with terms:
354
+
355
+ a) Disclaiming warranty or limiting liability differently from the
356
+ terms of sections 15 and 16 of this License; or
357
+
358
+ b) Requiring preservation of specified reasonable legal notices or
359
+ author attributions in that material or in the Appropriate Legal
360
+ Notices displayed by works containing it; or
361
+
362
+ c) Prohibiting misrepresentation of the origin of that material, or
363
+ requiring that modified versions of such material be marked in
364
+ reasonable ways as different from the original version; or
365
+
366
+ d) Limiting the use for publicity purposes of names of licensors or
367
+ authors of the material; or
368
+
369
+ e) Declining to grant rights under trademark law for use of some
370
+ trade names, trademarks, or service marks; or
371
+
372
+ f) Requiring indemnification of licensors and authors of that
373
+ material by anyone who conveys the material (or modified versions of
374
+ it) with contractual assumptions of liability to the recipient, for
375
+ any liability that these contractual assumptions directly impose on
376
+ those licensors and authors.
377
+
378
+ All other non-permissive additional terms are considered "further
379
+ restrictions" within the meaning of section 10. If the Program as you
380
+ received it, or any part of it, contains a notice stating that it is
381
+ governed by this License along with a term that is a further
382
+ restriction, you may remove that term. If a license document contains
383
+ a further restriction but permits relicensing or conveying under this
384
+ License, you may add to a covered work material governed by the terms
385
+ of that license document, provided that the further restriction does
386
+ not survive such relicensing or conveying.
387
+
388
+ If you add terms to a covered work in accord with this section, you
389
+ must place, in the relevant source files, a statement of the
390
+ additional terms that apply to those files, or a notice indicating
391
+ where to find the applicable terms.
392
+
393
+ Additional terms, permissive or non-permissive, may be stated in the
394
+ form of a separately written license, or stated as exceptions;
395
+ the above requirements apply either way.
396
+
397
+ 8. Termination.
398
+
399
+ You may not propagate or modify a covered work except as expressly
400
+ provided under this License. Any attempt otherwise to propagate or
401
+ modify it is void, and will automatically terminate your rights under
402
+ this License (including any patent licenses granted under the third
403
+ paragraph of section 11).
404
+
405
+ However, if you cease all violation of this License, then your
406
+ license from a particular copyright holder is reinstated (a)
407
+ provisionally, unless and until the copyright holder explicitly and
408
+ finally terminates your license, and (b) permanently, if the copyright
409
+ holder fails to notify you of the violation by some reasonable means
410
+ prior to 60 days after the cessation.
411
+
412
+ Moreover, your license from a particular copyright holder is
413
+ reinstated permanently if the copyright holder notifies you of the
414
+ violation by some reasonable means, this is the first time you have
415
+ received notice of violation of this License (for any work) from that
416
+ copyright holder, and you cure the violation prior to 30 days after
417
+ your receipt of the notice.
418
+
419
+ Termination of your rights under this section does not terminate the
420
+ licenses of parties who have received copies or rights from you under
421
+ this License. If your rights have been terminated and not permanently
422
+ reinstated, you do not qualify to receive new licenses for the same
423
+ material under section 10.
424
+
425
+ 9. Acceptance Not Required for Having Copies.
426
+
427
+ You are not required to accept this License in order to receive or
428
+ run a copy of the Program. Ancillary propagation of a covered work
429
+ occurring solely as a consequence of using peer-to-peer transmission
430
+ to receive a copy likewise does not require acceptance. However,
431
+ nothing other than this License grants you permission to propagate or
432
+ modify any covered work. These actions infringe copyright if you do
433
+ not accept this License. Therefore, by modifying or propagating a
434
+ covered work, you indicate your acceptance of this License to do so.
435
+
436
+ 10. Automatic Licensing of Downstream Recipients.
437
+
438
+ Each time you convey a covered work, the recipient automatically
439
+ receives a license from the original licensors, to run, modify and
440
+ propagate that work, subject to this License. You are not responsible
441
+ for enforcing compliance by third parties with this License.
442
+
443
+ An "entity transaction" is a transaction transferring control of an
444
+ organization, or substantially all assets of one, or subdividing an
445
+ organization, or merging organizations. If propagation of a covered
446
+ work results from an entity transaction, each party to that
447
+ transaction who receives a copy of the work also receives whatever
448
+ licenses to the work the party's predecessor in interest had or could
449
+ give under the previous paragraph, plus a right to possession of the
450
+ Corresponding Source of the work from the predecessor in interest, if
451
+ the predecessor has it or can get it with reasonable efforts.
452
+
453
+ You may not impose any further restrictions on the exercise of the
454
+ rights granted or affirmed under this License. For example, you may
455
+ not impose a license fee, royalty, or other charge for exercise of
456
+ rights granted under this License, and you may not initiate litigation
457
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
458
+ any patent claim is infringed by making, using, selling, offering for
459
+ sale, or importing the Program or any portion of it.
460
+
461
+ 11. Patents.
462
+
463
+ A "contributor" is a copyright holder who authorizes use under this
464
+ License of the Program or a work on which the Program is based. The
465
+ work thus licensed is called the contributor's "contributor version".
466
+
467
+ A contributor's "essential patent claims" are all patent claims
468
+ owned or controlled by the contributor, whether already acquired or
469
+ hereafter acquired, that would be infringed by some manner, permitted
470
+ by this License, of making, using, or selling its contributor version,
471
+ but do not include claims that would be infringed only as a
472
+ consequence of further modification of the contributor version. For
473
+ purposes of this definition, "control" includes the right to grant
474
+ patent sublicenses in a manner consistent with the requirements of
475
+ this License.
476
+
477
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
478
+ patent license under the contributor's essential patent claims, to
479
+ make, use, sell, offer for sale, import and otherwise run, modify and
480
+ propagate the contents of its contributor version.
481
+
482
+ In the following three paragraphs, a "patent license" is any express
483
+ agreement or commitment, however denominated, not to enforce a patent
484
+ (such as an express permission to practice a patent or covenant not to
485
+ sue for patent infringement). To "grant" such a patent license to a
486
+ party means to make such an agreement or commitment not to enforce a
487
+ patent against the party.
488
+
489
+ If you convey a covered work, knowingly relying on a patent license,
490
+ and the Corresponding Source of the work is not available for anyone
491
+ to copy, free of charge and under the terms of this License, through a
492
+ publicly available network server or other readily accessible means,
493
+ then you must either (1) cause the Corresponding Source to be so
494
+ available, or (2) arrange to deprive yourself of the benefit of the
495
+ patent license for this particular work, or (3) arrange, in a manner
496
+ consistent with the requirements of this License, to extend the patent
497
+ license to downstream recipients. "Knowingly relying" means you have
498
+ actual knowledge that, but for the patent license, your conveying the
499
+ covered work in a country, or your recipient's use of the covered work
500
+ in a country, would infringe one or more identifiable patents in that
501
+ country that you have reason to believe are valid.
502
+
503
+ If, pursuant to or in connection with a single transaction or
504
+ arrangement, you convey, or propagate by procuring conveyance of, a
505
+ covered work, and grant a patent license to some of the parties
506
+ receiving the covered work authorizing them to use, propagate, modify
507
+ or convey a specific copy of the covered work, then the patent license
508
+ you grant is automatically extended to all recipients of the covered
509
+ work and works based on it.
510
+
511
+ A patent license is "discriminatory" if it does not include within
512
+ the scope of its coverage, prohibits the exercise of, or is
513
+ conditioned on the non-exercise of one or more of the rights that are
514
+ specifically granted under this License. You may not convey a covered
515
+ work if you are a party to an arrangement with a third party that is
516
+ in the business of distributing software, under which you make payment
517
+ to the third party based on the extent of your activity of conveying
518
+ the work, and under which the third party grants, to any of the
519
+ parties who would receive the covered work from you, a discriminatory
520
+ patent license (a) in connection with copies of the covered work
521
+ conveyed by you (or copies made from those copies), or (b) primarily
522
+ for and in connection with specific products or compilations that
523
+ contain the covered work, unless you entered into that arrangement,
524
+ or that patent license was granted, prior to 28 March 2007.
525
+
526
+ Nothing in this License shall be construed as excluding or limiting
527
+ any implied license or other defenses to infringement that may
528
+ otherwise be available to you under applicable patent law.
529
+
530
+ 12. No Surrender of Others' Freedom.
531
+
532
+ If conditions are imposed on you (whether by court order, agreement or
533
+ otherwise) that contradict the conditions of this License, they do not
534
+ excuse you from the conditions of this License. If you cannot convey a
535
+ covered work so as to satisfy simultaneously your obligations under this
536
+ License and any other pertinent obligations, then as a consequence you may
537
+ not convey it at all. For example, if you agree to terms that obligate you
538
+ to collect a royalty for further conveying from those to whom you convey
539
+ the Program, the only way you could satisfy both those terms and this
540
+ License would be to refrain entirely from conveying the Program.
541
+
542
+ 13. Remote Network Interaction; Use with the GNU General Public License.
543
+
544
+ Notwithstanding any other provision of this License, if you modify the
545
+ Program, your modified version must prominently offer all users
546
+ interacting with it remotely through a computer network (if your version
547
+ supports such interaction) an opportunity to receive the Corresponding
548
+ Source of your version by providing access to the Corresponding Source
549
+ from a network server at no charge, through some standard or customary
550
+ means of facilitating copying of software. This Corresponding Source
551
+ shall include the Corresponding Source for any work covered by version 3
552
+ of the GNU General Public License that is incorporated pursuant to the
553
+ following paragraph.
554
+
555
+ Notwithstanding any other provision of this License, you have
556
+ permission to link or combine any covered work with a work licensed
557
+ under version 3 of the GNU General Public License into a single
558
+ combined work, and to convey the resulting work. The terms of this
559
+ License will continue to apply to the part which is the covered work,
560
+ but the work with which it is combined will remain governed by version
561
+ 3 of the GNU General Public License.
562
+
563
+ 14. Revised Versions of this License.
564
+
565
+ The Free Software Foundation may publish revised and/or new versions of
566
+ the GNU Affero General Public License from time to time. Such new versions
567
+ will be similar in spirit to the present version, but may differ in detail to
568
+ address new problems or concerns.
569
+
570
+ Each version is given a distinguishing version number. If the
571
+ Program specifies that a certain numbered version of the GNU Affero General
572
+ Public License "or any later version" applies to it, you have the
573
+ option of following the terms and conditions either of that numbered
574
+ version or of any later version published by the Free Software
575
+ Foundation. If the Program does not specify a version number of the
576
+ GNU Affero General Public License, you may choose any version ever published
577
+ by the Free Software Foundation.
578
+
579
+ If the Program specifies that a proxy can decide which future
580
+ versions of the GNU Affero General Public License can be used, that proxy's
581
+ public statement of acceptance of a version permanently authorizes you
582
+ to choose that version for the Program.
583
+
584
+ Later license versions may give you additional or different
585
+ permissions. However, no additional obligations are imposed on any
586
+ author or copyright holder as a result of your choosing to follow a
587
+ later version.
588
+
589
+ 15. Disclaimer of Warranty.
590
+
591
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599
+
600
+ 16. Limitation of Liability.
601
+
602
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610
+ SUCH DAMAGES.
611
+
612
+ 17. Interpretation of Sections 15 and 16.
613
+
614
+ If the disclaimer of warranty and limitation of liability provided
615
+ above cannot be given local legal effect according to their terms,
616
+ reviewing courts shall apply local law that most closely approximates
617
+ an absolute waiver of all civil liability in connection with the
618
+ Program, unless a warranty or assumption of liability accompanies a
619
+ copy of the Program in return for a fee.
620
+
621
+ END OF TERMS AND CONDITIONS
622
+
623
+ How to Apply These Terms to Your New Programs
624
+
625
+ If you develop a new program, and you want it to be of the greatest
626
+ possible use to the public, the best way to achieve this is to make it
627
+ free software which everyone can redistribute and change under these terms.
628
+
629
+ To do so, attach the following notices to the program. It is safest
630
+ to attach them to the start of each source file to most effectively
631
+ state the exclusion of warranty; and each file should have at least
632
+ the "copyright" line and a pointer to where the full notice is found.
633
+
634
+ <one line to give the program's name and a brief idea of what it does.>
635
+ Copyright (C) <year> <name of author>
636
+
637
+ This program is free software: you can redistribute it and/or modify
638
+ it under the terms of the GNU Affero General Public License as published by
639
+ the Free Software Foundation, either version 3 of the License, or
640
+ (at your option) any later version.
641
+
642
+ This program is distributed in the hope that it will be useful,
643
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
644
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645
+ GNU Affero General Public License for more details.
646
+
647
+ You should have received a copy of the GNU Affero General Public License
648
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
649
+
650
+ Also add information on how to contact you by electronic and paper mail.
651
+
652
+ If your software can interact with users remotely through a computer
653
+ network, you should also make sure that it provides a way for users to
654
+ get its source. For example, if your program is a web application, its
655
+ interface could display a "Source" link that leads users to an archive
656
+ of the code. There are many ways you could offer source, and different
657
+ solutions will be better for different programs; see section 13 for the
658
+ specific requirements.
659
+
660
+ You should also get your employer (if you work as a programmer) or school,
661
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
662
+ For more information on this, and how to apply and follow the GNU AGPL, see
663
+ <https://www.gnu.org/licenses/>.
README.md CHANGED
@@ -1,3 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
  ---
 
1
+ # Chill Watcher
2
+ consider deploy on:
3
+ - huggingface inference point
4
+ - replicate api
5
+ - lightning.ai
6
+
7
+ # platform comparison
8
+ > all support autoscaling
9
+
10
+ |platform|prediction speed|charges|deploy handiness|
11
+ |-|-|-|-|
12
+ |huggingface|fast:20s|high:$0.6/hr (without autoscaling)|easy:git push|
13
+ |replicate|fast if used frequently: 30s, slow if needs initialization: 5min|low: $0.02 per generation|difficult: build image and upload|
14
+ |lightning.ai|fast with app running: 20s, slow if idle: XXs|low: free $30 per month, $0.18 per init, $0.02 per run|easy: one command|
15
+
16
+ # platform deploy options
17
+ ## huggingface
18
+ > [docs](https://huggingface.co/docs/inference-endpoints/guides/custom_handler)
19
+
20
+ - requirements: use pip packages in `requirements.txt`
21
+ - `init()` and `predict()` function: use `handler.py`, implement the `EndpointHandler` class
22
+ - more: modify `handler.py` for requests and inference and explore more highly-customized features
23
+ - deploy: git (lfs) push to huggingface repository(the whole directory including models and weights, etc.), and use inference endpoints to deploy. Click and deploy automaticly, very simple.
24
+ - call api: use the url provide by inference endpoints after endpoint is ready(build, initialize and in a "running" state), make a post request to the url using request schema definied in the `handler.py`
25
+
26
+ ## replicate
27
+ > [docs](https://replicate.com/docs/guides/push-a-model)
28
+
29
+ - requirements: specify all requirements(pip packages, system packages, python version, cuda, etc.) in `cog.yaml`
30
+ - `init()` and `predict()` function: use `predict.py`, implement the `Predictor` class
31
+ - more: modify `predict.py`
32
+ - deploy:
33
+ 1. get a linux GPU machine with 60GB disk space;
34
+ 2. install [cog](https://replicate.com/docs/guides/push-a-model) and [docker](https://docs.docker.com/engine/install/ubuntu/#set-up-the-repository)
35
+ 3. `git pull` the current repository from huggingface, including large model files
36
+ 4. after `predict.py` and `cog.yaml` is correctly coded, run `cog login`, `cog push`, then cog will build a docker image locally and push the image to replicate. As the image could take 30GB or so disk space, it would cost a lot network bandwidth.
37
+ - call api: if everything runs successfully and the docker image is pushed to replicate, you will see a web-ui and an API example directly in your replicate repository
38
+
39
+ ## lightning.ai
40
+ > docs: [code](https://lightning.ai/docs/app/stable/levels/basic/real_lightning_component_implementations.html), [deploy](https://lightning.ai/docs/app/stable/workflows/run_app_on_cloud/)
41
+
42
+ - requirements:
43
+ - pip packages are listed in `requirements.txt`, note that some requirements are different from those in huggingface, and you need to modify some lines in `requirements.txt` according to the comment in the `requirements.txt`
44
+ - other pip packages, system packages and some big model weight files download commands, can be listed using a custom build config. Checkout `class CustomBuildConfig(BuildConfig)` in `app.py`. In a custom build config you can use many linux commands such as `wget` and `sudo apt-get update`. The custom build config will be executed on the `__init__()` of the `PythonServer` class
45
+ - `init()` and `predict()` function: use `app.py`, implement the `PythonServer` class. Note:
46
+ - some packages haven't been installed when the file is called(these packages may be installed when `__init__()` is called), so some import code should be in the function, not at the top of the file, or you may get import errors.
47
+ - you can't save your own value to `PythonServer.self` unless it's predifined in the variables, so don't assign any self-defined variables to `self`
48
+ - if you use the custom build config, you should implement `PythonServer`'s `__init()__` yourself, so don't forget to use the correct function signature
49
+ - more: ...
50
+ - deploy:
51
+ - `pip install lightning`
52
+ - prepare the directory on your local computer(no need to have a GPU)
53
+ - list big files in the `.lightningignore` file to avoid big file upload and save deploy time cost
54
+ - run `lightning run app app.py --cloud` in the local terminal, and it will upload the files in the directory to lightning cloud, and start deploying on the cloud
55
+ - check error logs on the web-ui, use `all logs`
56
+ - call api: only if the app starts successfully, you can see a valid url in the `settings` page of the web-ui. Open that url, and you can see the api
57
+
58
+ ### some stackoverflow:
59
+ install docker:
60
+ - https://docs.docker.com/engine/install/ubuntu/#set-up-the-repository
61
+
62
+ install git-lfs:
63
+ - https://github.com/git-lfs/git-lfs/blob/main/INSTALLING.md
64
+ linux:
65
+ ```
66
+ curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash
67
+
68
+ sudo apt-get install git-lfs
69
+ ```
70
+
71
  ---
72
  license: apache-2.0
73
  ---
app.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # inference handler for lightning ai
2
+
3
+ import re
4
+ import os
5
+ import logging
6
+ # import json
7
+ from pydantic import BaseModel
8
+ from typing import Any, Dict, Optional, TYPE_CHECKING
9
+ from dataclasses import dataclass
10
+ logging.getLogger("xformers").addFilter(lambda record: 'A matching Triton is not available' not in record.getMessage())
11
+
12
+ import lightning as L
13
+ from lightning.app.components.serve import PythonServer, Text
14
+ from lightning.app import BuildConfig
15
+
16
+
17
+ class _DefaultInputData(BaseModel):
18
+ prompt: str
19
+
20
+ class _DefaultOutputData(BaseModel):
21
+ img_data: str
22
+ parameters: str
23
+
24
+
25
+ @dataclass
26
+ class CustomBuildConfig(BuildConfig):
27
+ def build_commands(self):
28
+ dir_path = "/content/"
29
+ model_path = os.path.join(dir_path, "models/Stable-diffusion")
30
+ model_url = "https://huggingface.co/Hardy01/chill_watcher/resolve/main/models/Stable-diffusion/chilloutmix_NiPrunedFp32Fix.safetensors"
31
+ download_cmd = "wget -P {} {}".format(str(model_path), model_url)
32
+ vae_url = "https://huggingface.co/Hardy01/chill_watcher/resolve/main/models/VAE/vae-ft-mse-840000-ema-pruned.ckpt"
33
+ vae_path = os.path.join(dir_path, "models/VAE")
34
+ down2 = "wget -P {} {}".format(str(vae_path), vae_url)
35
+ lora_url1 = "https://huggingface.co/Hardy01/chill_watcher/resolve/main/models/Lora/koreanDollLikeness_v10.safetensors"
36
+ lora_url2 = "https://huggingface.co/Hardy01/chill_watcher/resolve/main/models/Lora/taiwanDollLikeness_v10.safetensors"
37
+ lora_path = os.path.join(dir_path, "models/Lora")
38
+ down3 = "wget -P {} {}".format(str(lora_path), lora_url1)
39
+ down4 = "wget -P {} {}".format(str(lora_path), lora_url2)
40
+ # https://stackoverflow.com/questions/55313610/importerror-libgl-so-1-cannot-open-shared-object-file-no-such-file-or-directo
41
+ cmd1 = "pip3 install torch==1.13.1+cu117 --extra-index-url https://download.pytorch.org/whl/cu117"
42
+ cmd2 = "pip3 install torchvision==0.14.1+cu117 --extra-index-url https://download.pytorch.org/whl/cu117"
43
+ cmd_31 = "sudo apt-get update"
44
+ cmd3 = "sudo apt-get install libgl1-mesa-glx"
45
+ cmd4 = "sudo apt-get install libglib2.0-0"
46
+ return [download_cmd, down2, down3, down4, cmd1, cmd2, cmd_31, cmd3, cmd4]
47
+
48
+
49
+ class PyTorchServer(PythonServer):
50
+ def __init__(
51
+ self,
52
+ input_type: type = _DefaultInputData,
53
+ output_type: type = _DefaultOutputData,
54
+ **kwargs: Any,
55
+ ):
56
+ super().__init__(input_type=input_type, output_type=output_type, **kwargs)
57
+
58
+ # Use the custom build config
59
+ self.cloud_build_config = CustomBuildConfig()
60
+ def setup(self):
61
+ # need to install dependancies first to import packages
62
+ import torch
63
+ # Truncate version number of nightly/local build of PyTorch to not cause exceptions with CodeFormer or Safetensors
64
+ if ".dev" in torch.__version__ or "+git" in torch.__version__:
65
+ torch.__long_version__ = torch.__version__
66
+ torch.__version__ = re.search(r'[\d.]+[\d]', torch.__version__).group(0)
67
+
68
+ from handler import initialize
69
+ initialize()
70
+
71
+ def predict(self, request):
72
+ from modules.api.api import encode_pil_to_base64
73
+ from modules import shared
74
+ from modules.processing import StableDiffusionProcessingTxt2Img, process_images
75
+ args = {
76
+ "do_not_save_samples": True,
77
+ "do_not_save_grid": True,
78
+ "outpath_samples": "/content/desktop",
79
+ "prompt": "lora:koreanDollLikeness_v15:0.66, best quality, ultra high res, (photorealistic:1.4), 1girl, beige sweater, black choker, smile, laughing, bare shoulders, solo focus, ((full body), (brown hair:1), looking at viewer",
80
+ "negative_prompt": "paintings, sketches, (worst quality:2), (low quality:2), (normal quality:2), lowres, normal quality, ((monochrome)), ((grayscale)), skin spots, acnes, skin blemishes, age spot, glans, (ugly:1.331), (duplicate:1.331), (morbid:1.21), (mutilated:1.21), (tranny:1.331), mutated hands, (poorly drawn hands:1.331), blurry, 3hands,4fingers,3arms, bad anatomy, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts,poorly drawn face,mutation,deformed",
81
+ "sampler_name": "DPM++ SDE Karras",
82
+ "steps": 20, # 25
83
+ "cfg_scale": 8,
84
+ "width": 512,
85
+ "height": 768,
86
+ "seed": -1,
87
+ }
88
+ print("&&&&&&&&&&&&&&&&&&&&&&&&",request)
89
+ if request.prompt:
90
+ prompt = request.prompt
91
+ print("get prompt from request: ", prompt)
92
+ args["prompt"] = prompt
93
+ p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args)
94
+ processed = process_images(p)
95
+ single_image_b64 = encode_pil_to_base64(processed.images[0]).decode('utf-8')
96
+ return {
97
+ "img_data": single_image_b64,
98
+ "parameters": processed.images[0].info.get('parameters', ""),
99
+ }
100
+
101
+
102
+ component = PyTorchServer(
103
+ cloud_compute=L.CloudCompute('gpu', disk_size=20, idle_timeout=30)
104
+ )
105
+ # lightning run app app.py --cloud
106
+ app = L.LightningApp(component)
107
+
cog.yaml ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Configuration for Cog ⚙️
2
+ # https://replicate.com/docs/guides/push-a-model
3
+ # prerequisite:https://docs.docker.com/engine/install/ubuntu/#set-up-the-repository `dockerd` to start docker
4
+ # Reference: https://github.com/replicate/cog/blob/main/docs/yaml.md
5
+ # !!!! recommend 60G disk space for cog docker
6
+
7
+ build:
8
+ # set to true if your model requires a GPU
9
+ gpu: true
10
+
11
+ # a list of ubuntu apt packages to install
12
+ system_packages:
13
+ - "libgl1-mesa-glx"
14
+ - "libglib2.0-0"
15
+
16
+ # python version in the form '3.8' or '3.8.12'
17
+ python_version: "3.10.4"
18
+
19
+ # a list of packages in the format <package-name>==<version>
20
+ python_packages:
21
+ - blendmodes==2022
22
+ - transformers==4.25.1
23
+ - accelerate==0.12.0
24
+ - basicsr==1.4.2
25
+ - gfpgan==1.3.8
26
+ - gradio==3.16.2
27
+ - numpy==1.23.3
28
+ - Pillow==9.4.0
29
+ - realesrgan==0.3.0
30
+ # - torch==1.13.1+cu117
31
+ # - --extra-index-url https://download.pytorch.org/whl/cu117
32
+ # - torchvision==0.14.1+cu117
33
+ # - --extra-index-url https://download.pytorch.org/whl/cu117
34
+ - omegaconf==2.2.3
35
+ - pytorch_lightning==1.7.6
36
+ - scikit-image==0.19.2
37
+ - fonts
38
+ - font-roboto
39
+ - timm==0.6.7
40
+ - piexif==1.1.3
41
+ - einops==0.4.1
42
+ - jsonmerge==1.8.0
43
+ - clean-fid==0.1.29
44
+ - resize-right==0.0.2
45
+ - torchdiffeq==0.2.3
46
+ - kornia==0.6.7
47
+ - lark==1.1.2
48
+ - inflection==0.5.1
49
+ - GitPython==3.1.27
50
+ - torchsde==0.2.5
51
+ - safetensors==0.2.7
52
+ - httpcore<=0.15
53
+ - fastapi==0.90.1
54
+ # - open_clip_torch
55
+ - git+https://github.com/mlfoundations/open_clip.git@bb6e834e9c70d9c27d0dc3ecedeebeaeb1ffad6b
56
+ - git+https://github.com/openai/CLIP.git@d50d76daa670286dd6cacf3bcd80b5e4823fc8e1
57
+
58
+ # commands run after the environment is setup
59
+ run:
60
+ - "pip3 install torch==1.13.1+cu117 --extra-index-url https://download.pytorch.org/whl/cu117"
61
+ - "pip3 install torchvision==0.14.1+cu117 --extra-index-url https://download.pytorch.org/whl/cu117"
62
+ - "echo env is ready!"
63
+
64
+ # https://replicate.com/wolverinn/chill_watcher
65
+ image: "r8.im/wolverinn/chill_watcher"
66
+
67
+ # predict.py defines how predictions are run on your model
68
+ predict: "predict.py:Predictor"
config.json ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "samples_save": true,
3
+ "samples_format": "png",
4
+ "samples_filename_pattern": "",
5
+ "save_images_add_number": true,
6
+ "grid_save": true,
7
+ "grid_format": "png",
8
+ "grid_extended_filename": false,
9
+ "grid_only_if_multiple": true,
10
+ "grid_prevent_empty_spots": false,
11
+ "n_rows": -1,
12
+ "enable_pnginfo": true,
13
+ "save_txt": false,
14
+ "save_images_before_face_restoration": false,
15
+ "save_images_before_highres_fix": false,
16
+ "save_images_before_color_correction": false,
17
+ "jpeg_quality": 80,
18
+ "export_for_4chan": true,
19
+ "img_downscale_threshold": 4.0,
20
+ "target_side_length": 4000,
21
+ "use_original_name_batch": true,
22
+ "use_upscaler_name_as_suffix": false,
23
+ "save_selected_only": true,
24
+ "do_not_add_watermark": false,
25
+ "temp_dir": "",
26
+ "clean_temp_dir_at_start": false,
27
+ "outdir_samples": "",
28
+ "outdir_txt2img_samples": "outputs/txt2img-images",
29
+ "outdir_img2img_samples": "outputs/img2img-images",
30
+ "outdir_extras_samples": "outputs/extras-images",
31
+ "outdir_grids": "",
32
+ "outdir_txt2img_grids": "outputs/txt2img-grids",
33
+ "outdir_img2img_grids": "outputs/img2img-grids",
34
+ "outdir_save": "log/images",
35
+ "save_to_dirs": true,
36
+ "grid_save_to_dirs": true,
37
+ "use_save_to_dirs_for_ui": false,
38
+ "directories_filename_pattern": "[date]",
39
+ "directories_max_prompt_words": 8,
40
+ "ESRGAN_tile": 192,
41
+ "ESRGAN_tile_overlap": 8,
42
+ "realesrgan_enabled_models": [
43
+ "R-ESRGAN 4x+",
44
+ "R-ESRGAN 4x+ Anime6B"
45
+ ],
46
+ "upscaler_for_img2img": null,
47
+ "face_restoration_model": "CodeFormer",
48
+ "code_former_weight": 0.5,
49
+ "face_restoration_unload": false,
50
+ "show_warnings": false,
51
+ "memmon_poll_rate": 8,
52
+ "samples_log_stdout": false,
53
+ "multiple_tqdm": true,
54
+ "print_hypernet_extra": false,
55
+ "unload_models_when_training": false,
56
+ "pin_memory": false,
57
+ "save_optimizer_state": false,
58
+ "save_training_settings_to_txt": true,
59
+ "dataset_filename_word_regex": "",
60
+ "dataset_filename_join_string": " ",
61
+ "training_image_repeats_per_epoch": 1,
62
+ "training_write_csv_every": 500,
63
+ "training_xattention_optimizations": false,
64
+ "training_enable_tensorboard": false,
65
+ "training_tensorboard_save_images": false,
66
+ "training_tensorboard_flush_every": 120,
67
+ "sd_model_checkpoint": "chilloutmix_NiPrunedFp32Fix.safetensors [fc2511737a]",
68
+ "sd_checkpoint_cache": 0,
69
+ "sd_vae_checkpoint_cache": 0,
70
+ "sd_vae": "Automatic",
71
+ "sd_vae_as_default": true,
72
+ "inpainting_mask_weight": 1.0,
73
+ "initial_noise_multiplier": 1.0,
74
+ "img2img_color_correction": false,
75
+ "img2img_fix_steps": false,
76
+ "img2img_background_color": "#ffffff",
77
+ "enable_quantization": false,
78
+ "enable_emphasis": true,
79
+ "enable_batch_seeds": true,
80
+ "comma_padding_backtrack": 20,
81
+ "CLIP_stop_at_last_layers": 1,
82
+ "upcast_attn": false,
83
+ "use_old_emphasis_implementation": false,
84
+ "use_old_karras_scheduler_sigmas": false,
85
+ "no_dpmpp_sde_batch_determinism": false,
86
+ "use_old_hires_fix_width_height": false,
87
+ "interrogate_keep_models_in_memory": false,
88
+ "interrogate_return_ranks": false,
89
+ "interrogate_clip_num_beams": 1,
90
+ "interrogate_clip_min_length": 24,
91
+ "interrogate_clip_max_length": 48,
92
+ "interrogate_clip_dict_limit": 1500,
93
+ "interrogate_clip_skip_categories": [],
94
+ "interrogate_deepbooru_score_threshold": 0.5,
95
+ "deepbooru_sort_alpha": true,
96
+ "deepbooru_use_spaces": false,
97
+ "deepbooru_escape": true,
98
+ "deepbooru_filter_tags": "",
99
+ "extra_networks_default_view": "cards",
100
+ "extra_networks_default_multiplier": 1.0,
101
+ "sd_hypernetwork": "None",
102
+ "return_grid": true,
103
+ "do_not_show_images": false,
104
+ "add_model_hash_to_info": true,
105
+ "add_model_name_to_info": true,
106
+ "disable_weights_auto_swap": true,
107
+ "send_seed": true,
108
+ "send_size": true,
109
+ "font": "",
110
+ "js_modal_lightbox": true,
111
+ "js_modal_lightbox_initially_zoomed": true,
112
+ "show_progress_in_title": true,
113
+ "samplers_in_dropdown": true,
114
+ "dimensions_and_batch_together": true,
115
+ "keyedit_precision_attention": 0.1,
116
+ "keyedit_precision_extra": 0.05,
117
+ "quicksettings": "sd_model_checkpoint",
118
+ "ui_reorder": "inpaint, sampler, checkboxes, hires_fix, dimensions, cfg, seed, batch, override_settings, scripts",
119
+ "ui_extra_networks_tab_reorder": "",
120
+ "localization": "zh_CN",
121
+ "show_progressbar": true,
122
+ "live_previews_enable": true,
123
+ "show_progress_grid": true,
124
+ "show_progress_every_n_steps": 10,
125
+ "show_progress_type": "Approx NN",
126
+ "live_preview_content": "Prompt",
127
+ "live_preview_refresh_period": 1000,
128
+ "hide_samplers": [],
129
+ "eta_ddim": 0.0,
130
+ "eta_ancestral": 1.0,
131
+ "ddim_discretize": "uniform",
132
+ "s_churn": 0.0,
133
+ "s_tmin": 0.0,
134
+ "s_noise": 1.0,
135
+ "eta_noise_seed_delta": 0,
136
+ "always_discard_next_to_last_sigma": false,
137
+ "postprocessing_enable_in_main_ui": [],
138
+ "postprocessing_operation_order": [],
139
+ "upscaling_max_images_in_cache": 5,
140
+ "disabled_extensions": [],
141
+ "sd_checkpoint_hash": "fc2511737a54c5e80b89ab03e0ab4b98d051ab187f92860f3cd664dc9d08b271",
142
+ "ldsr_steps": 100,
143
+ "ldsr_cached": false,
144
+ "SWIN_tile": 192,
145
+ "SWIN_tile_overlap": 8,
146
+ "sd_lora": "None",
147
+ "lora_apply_to_outputs": false
148
+ }
configs/alt-diffusion-inference.yaml ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-04
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 64
13
+ channels: 4
14
+ cond_stage_trainable: false # Note: different from the one we trained before
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+ use_ema: False
19
+
20
+ scheduler_config: # 10000 warmup steps
21
+ target: ldm.lr_scheduler.LambdaLinearScheduler
22
+ params:
23
+ warm_up_steps: [ 10000 ]
24
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
25
+ f_start: [ 1.e-6 ]
26
+ f_max: [ 1. ]
27
+ f_min: [ 1. ]
28
+
29
+ unet_config:
30
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
31
+ params:
32
+ image_size: 32 # unused
33
+ in_channels: 4
34
+ out_channels: 4
35
+ model_channels: 320
36
+ attention_resolutions: [ 4, 2, 1 ]
37
+ num_res_blocks: 2
38
+ channel_mult: [ 1, 2, 4, 4 ]
39
+ num_heads: 8
40
+ use_spatial_transformer: True
41
+ transformer_depth: 1
42
+ context_dim: 768
43
+ use_checkpoint: True
44
+ legacy: False
45
+
46
+ first_stage_config:
47
+ target: ldm.models.autoencoder.AutoencoderKL
48
+ params:
49
+ embed_dim: 4
50
+ monitor: val/rec_loss
51
+ ddconfig:
52
+ double_z: true
53
+ z_channels: 4
54
+ resolution: 256
55
+ in_channels: 3
56
+ out_ch: 3
57
+ ch: 128
58
+ ch_mult:
59
+ - 1
60
+ - 2
61
+ - 4
62
+ - 4
63
+ num_res_blocks: 2
64
+ attn_resolutions: []
65
+ dropout: 0.0
66
+ lossconfig:
67
+ target: torch.nn.Identity
68
+
69
+ cond_stage_config:
70
+ target: modules.xlmr.BertSeriesModelWithTransformation
71
+ params:
72
+ name: "XLMR-Large"
configs/instruct-pix2pix.yaml ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # File modified by authors of InstructPix2Pix from original (https://github.com/CompVis/stable-diffusion).
2
+ # See more details in LICENSE.
3
+
4
+ model:
5
+ base_learning_rate: 1.0e-04
6
+ target: modules.models.diffusion.ddpm_edit.LatentDiffusion
7
+ params:
8
+ linear_start: 0.00085
9
+ linear_end: 0.0120
10
+ num_timesteps_cond: 1
11
+ log_every_t: 200
12
+ timesteps: 1000
13
+ first_stage_key: edited
14
+ cond_stage_key: edit
15
+ # image_size: 64
16
+ # image_size: 32
17
+ image_size: 16
18
+ channels: 4
19
+ cond_stage_trainable: false # Note: different from the one we trained before
20
+ conditioning_key: hybrid
21
+ monitor: val/loss_simple_ema
22
+ scale_factor: 0.18215
23
+ use_ema: false
24
+
25
+ scheduler_config: # 10000 warmup steps
26
+ target: ldm.lr_scheduler.LambdaLinearScheduler
27
+ params:
28
+ warm_up_steps: [ 0 ]
29
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
30
+ f_start: [ 1.e-6 ]
31
+ f_max: [ 1. ]
32
+ f_min: [ 1. ]
33
+
34
+ unet_config:
35
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
36
+ params:
37
+ image_size: 32 # unused
38
+ in_channels: 8
39
+ out_channels: 4
40
+ model_channels: 320
41
+ attention_resolutions: [ 4, 2, 1 ]
42
+ num_res_blocks: 2
43
+ channel_mult: [ 1, 2, 4, 4 ]
44
+ num_heads: 8
45
+ use_spatial_transformer: True
46
+ transformer_depth: 1
47
+ context_dim: 768
48
+ use_checkpoint: True
49
+ legacy: False
50
+
51
+ first_stage_config:
52
+ target: ldm.models.autoencoder.AutoencoderKL
53
+ params:
54
+ embed_dim: 4
55
+ monitor: val/rec_loss
56
+ ddconfig:
57
+ double_z: true
58
+ z_channels: 4
59
+ resolution: 256
60
+ in_channels: 3
61
+ out_ch: 3
62
+ ch: 128
63
+ ch_mult:
64
+ - 1
65
+ - 2
66
+ - 4
67
+ - 4
68
+ num_res_blocks: 2
69
+ attn_resolutions: []
70
+ dropout: 0.0
71
+ lossconfig:
72
+ target: torch.nn.Identity
73
+
74
+ cond_stage_config:
75
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
76
+
77
+ data:
78
+ target: main.DataModuleFromConfig
79
+ params:
80
+ batch_size: 128
81
+ num_workers: 1
82
+ wrap: false
83
+ validation:
84
+ target: edit_dataset.EditDataset
85
+ params:
86
+ path: data/clip-filtered-dataset
87
+ cache_dir: data/
88
+ cache_name: data_10k
89
+ split: val
90
+ min_text_sim: 0.2
91
+ min_image_sim: 0.75
92
+ min_direction_sim: 0.2
93
+ max_samples_per_prompt: 1
94
+ min_resize_res: 512
95
+ max_resize_res: 512
96
+ crop_res: 512
97
+ output_as_edit: False
98
+ real_input: True
configs/v1-inference.yaml ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-04
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 64
13
+ channels: 4
14
+ cond_stage_trainable: false # Note: different from the one we trained before
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+ use_ema: False
19
+
20
+ scheduler_config: # 10000 warmup steps
21
+ target: ldm.lr_scheduler.LambdaLinearScheduler
22
+ params:
23
+ warm_up_steps: [ 10000 ]
24
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
25
+ f_start: [ 1.e-6 ]
26
+ f_max: [ 1. ]
27
+ f_min: [ 1. ]
28
+
29
+ unet_config:
30
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
31
+ params:
32
+ image_size: 32 # unused
33
+ in_channels: 4
34
+ out_channels: 4
35
+ model_channels: 320
36
+ attention_resolutions: [ 4, 2, 1 ]
37
+ num_res_blocks: 2
38
+ channel_mult: [ 1, 2, 4, 4 ]
39
+ num_heads: 8
40
+ use_spatial_transformer: True
41
+ transformer_depth: 1
42
+ context_dim: 768
43
+ use_checkpoint: True
44
+ legacy: False
45
+
46
+ first_stage_config:
47
+ target: ldm.models.autoencoder.AutoencoderKL
48
+ params:
49
+ embed_dim: 4
50
+ monitor: val/rec_loss
51
+ ddconfig:
52
+ double_z: true
53
+ z_channels: 4
54
+ resolution: 256
55
+ in_channels: 3
56
+ out_ch: 3
57
+ ch: 128
58
+ ch_mult:
59
+ - 1
60
+ - 2
61
+ - 4
62
+ - 4
63
+ num_res_blocks: 2
64
+ attn_resolutions: []
65
+ dropout: 0.0
66
+ lossconfig:
67
+ target: torch.nn.Identity
68
+
69
+ cond_stage_config:
70
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
configs/v1-inpainting-inference.yaml ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 7.5e-05
3
+ target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 64
13
+ channels: 4
14
+ cond_stage_trainable: false # Note: different from the one we trained before
15
+ conditioning_key: hybrid # important
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+ finetune_keys: null
19
+
20
+ scheduler_config: # 10000 warmup steps
21
+ target: ldm.lr_scheduler.LambdaLinearScheduler
22
+ params:
23
+ warm_up_steps: [ 2500 ] # NOTE for resuming. use 10000 if starting from scratch
24
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
25
+ f_start: [ 1.e-6 ]
26
+ f_max: [ 1. ]
27
+ f_min: [ 1. ]
28
+
29
+ unet_config:
30
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
31
+ params:
32
+ image_size: 32 # unused
33
+ in_channels: 9 # 4 data + 4 downscaled image + 1 mask
34
+ out_channels: 4
35
+ model_channels: 320
36
+ attention_resolutions: [ 4, 2, 1 ]
37
+ num_res_blocks: 2
38
+ channel_mult: [ 1, 2, 4, 4 ]
39
+ num_heads: 8
40
+ use_spatial_transformer: True
41
+ transformer_depth: 1
42
+ context_dim: 768
43
+ use_checkpoint: True
44
+ legacy: False
45
+
46
+ first_stage_config:
47
+ target: ldm.models.autoencoder.AutoencoderKL
48
+ params:
49
+ embed_dim: 4
50
+ monitor: val/rec_loss
51
+ ddconfig:
52
+ double_z: true
53
+ z_channels: 4
54
+ resolution: 256
55
+ in_channels: 3
56
+ out_ch: 3
57
+ ch: 128
58
+ ch_mult:
59
+ - 1
60
+ - 2
61
+ - 4
62
+ - 4
63
+ num_res_blocks: 2
64
+ attn_resolutions: []
65
+ dropout: 0.0
66
+ lossconfig:
67
+ target: torch.nn.Identity
68
+
69
+ cond_stage_config:
70
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
extensions-builtin/LDSR/ldsr_model_arch.py ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gc
3
+ import time
4
+
5
+ import numpy as np
6
+ import torch
7
+ import torchvision
8
+ from PIL import Image
9
+ from einops import rearrange, repeat
10
+ from omegaconf import OmegaConf
11
+ import safetensors.torch
12
+
13
+ from ldm.models.diffusion.ddim import DDIMSampler
14
+ from ldm.util import instantiate_from_config, ismap
15
+ from modules import shared, sd_hijack
16
+
17
+ cached_ldsr_model: torch.nn.Module = None
18
+
19
+
20
+ # Create LDSR Class
21
+ class LDSR:
22
+ def load_model_from_config(self, half_attention):
23
+ global cached_ldsr_model
24
+
25
+ if shared.opts.ldsr_cached and cached_ldsr_model is not None:
26
+ print("Loading model from cache")
27
+ model: torch.nn.Module = cached_ldsr_model
28
+ else:
29
+ print(f"Loading model from {self.modelPath}")
30
+ _, extension = os.path.splitext(self.modelPath)
31
+ if extension.lower() == ".safetensors":
32
+ pl_sd = safetensors.torch.load_file(self.modelPath, device="cpu")
33
+ else:
34
+ pl_sd = torch.load(self.modelPath, map_location="cpu")
35
+ sd = pl_sd["state_dict"] if "state_dict" in pl_sd else pl_sd
36
+ config = OmegaConf.load(self.yamlPath)
37
+ config.model.target = "ldm.models.diffusion.ddpm.LatentDiffusionV1"
38
+ model: torch.nn.Module = instantiate_from_config(config.model)
39
+ model.load_state_dict(sd, strict=False)
40
+ model = model.to(shared.device)
41
+ if half_attention:
42
+ model = model.half()
43
+ if shared.cmd_opts.opt_channelslast:
44
+ model = model.to(memory_format=torch.channels_last)
45
+
46
+ sd_hijack.model_hijack.hijack(model) # apply optimization
47
+ model.eval()
48
+
49
+ if shared.opts.ldsr_cached:
50
+ cached_ldsr_model = model
51
+
52
+ return {"model": model}
53
+
54
+ def __init__(self, model_path, yaml_path):
55
+ self.modelPath = model_path
56
+ self.yamlPath = yaml_path
57
+
58
+ @staticmethod
59
+ def run(model, selected_path, custom_steps, eta):
60
+ example = get_cond(selected_path)
61
+
62
+ n_runs = 1
63
+ guider = None
64
+ ckwargs = None
65
+ ddim_use_x0_pred = False
66
+ temperature = 1.
67
+ eta = eta
68
+ custom_shape = None
69
+
70
+ height, width = example["image"].shape[1:3]
71
+ split_input = height >= 128 and width >= 128
72
+
73
+ if split_input:
74
+ ks = 128
75
+ stride = 64
76
+ vqf = 4 #
77
+ model.split_input_params = {"ks": (ks, ks), "stride": (stride, stride),
78
+ "vqf": vqf,
79
+ "patch_distributed_vq": True,
80
+ "tie_braker": False,
81
+ "clip_max_weight": 0.5,
82
+ "clip_min_weight": 0.01,
83
+ "clip_max_tie_weight": 0.5,
84
+ "clip_min_tie_weight": 0.01}
85
+ else:
86
+ if hasattr(model, "split_input_params"):
87
+ delattr(model, "split_input_params")
88
+
89
+ x_t = None
90
+ logs = None
91
+ for n in range(n_runs):
92
+ if custom_shape is not None:
93
+ x_t = torch.randn(1, custom_shape[1], custom_shape[2], custom_shape[3]).to(model.device)
94
+ x_t = repeat(x_t, '1 c h w -> b c h w', b=custom_shape[0])
95
+
96
+ logs = make_convolutional_sample(example, model,
97
+ custom_steps=custom_steps,
98
+ eta=eta, quantize_x0=False,
99
+ custom_shape=custom_shape,
100
+ temperature=temperature, noise_dropout=0.,
101
+ corrector=guider, corrector_kwargs=ckwargs, x_T=x_t,
102
+ ddim_use_x0_pred=ddim_use_x0_pred
103
+ )
104
+ return logs
105
+
106
+ def super_resolution(self, image, steps=100, target_scale=2, half_attention=False):
107
+ model = self.load_model_from_config(half_attention)
108
+
109
+ # Run settings
110
+ diffusion_steps = int(steps)
111
+ eta = 1.0
112
+
113
+ down_sample_method = 'Lanczos'
114
+
115
+ gc.collect()
116
+ if torch.cuda.is_available:
117
+ torch.cuda.empty_cache()
118
+
119
+ im_og = image
120
+ width_og, height_og = im_og.size
121
+ # If we can adjust the max upscale size, then the 4 below should be our variable
122
+ down_sample_rate = target_scale / 4
123
+ wd = width_og * down_sample_rate
124
+ hd = height_og * down_sample_rate
125
+ width_downsampled_pre = int(np.ceil(wd))
126
+ height_downsampled_pre = int(np.ceil(hd))
127
+
128
+ if down_sample_rate != 1:
129
+ print(
130
+ f'Downsampling from [{width_og}, {height_og}] to [{width_downsampled_pre}, {height_downsampled_pre}]')
131
+ im_og = im_og.resize((width_downsampled_pre, height_downsampled_pre), Image.LANCZOS)
132
+ else:
133
+ print(f"Down sample rate is 1 from {target_scale} / 4 (Not downsampling)")
134
+
135
+ # pad width and height to multiples of 64, pads with the edge values of image to avoid artifacts
136
+ pad_w, pad_h = np.max(((2, 2), np.ceil(np.array(im_og.size) / 64).astype(int)), axis=0) * 64 - im_og.size
137
+ im_padded = Image.fromarray(np.pad(np.array(im_og), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge'))
138
+
139
+ logs = self.run(model["model"], im_padded, diffusion_steps, eta)
140
+
141
+ sample = logs["sample"]
142
+ sample = sample.detach().cpu()
143
+ sample = torch.clamp(sample, -1., 1.)
144
+ sample = (sample + 1.) / 2. * 255
145
+ sample = sample.numpy().astype(np.uint8)
146
+ sample = np.transpose(sample, (0, 2, 3, 1))
147
+ a = Image.fromarray(sample[0])
148
+
149
+ # remove padding
150
+ a = a.crop((0, 0) + tuple(np.array(im_og.size) * 4))
151
+
152
+ del model
153
+ gc.collect()
154
+ if torch.cuda.is_available:
155
+ torch.cuda.empty_cache()
156
+
157
+ return a
158
+
159
+
160
+ def get_cond(selected_path):
161
+ example = dict()
162
+ up_f = 4
163
+ c = selected_path.convert('RGB')
164
+ c = torch.unsqueeze(torchvision.transforms.ToTensor()(c), 0)
165
+ c_up = torchvision.transforms.functional.resize(c, size=[up_f * c.shape[2], up_f * c.shape[3]],
166
+ antialias=True)
167
+ c_up = rearrange(c_up, '1 c h w -> 1 h w c')
168
+ c = rearrange(c, '1 c h w -> 1 h w c')
169
+ c = 2. * c - 1.
170
+
171
+ c = c.to(shared.device)
172
+ example["LR_image"] = c
173
+ example["image"] = c_up
174
+
175
+ return example
176
+
177
+
178
+ @torch.no_grad()
179
+ def convsample_ddim(model, cond, steps, shape, eta=1.0, callback=None, normals_sequence=None,
180
+ mask=None, x0=None, quantize_x0=False, temperature=1., score_corrector=None,
181
+ corrector_kwargs=None, x_t=None
182
+ ):
183
+ ddim = DDIMSampler(model)
184
+ bs = shape[0]
185
+ shape = shape[1:]
186
+ print(f"Sampling with eta = {eta}; steps: {steps}")
187
+ samples, intermediates = ddim.sample(steps, batch_size=bs, shape=shape, conditioning=cond, callback=callback,
188
+ normals_sequence=normals_sequence, quantize_x0=quantize_x0, eta=eta,
189
+ mask=mask, x0=x0, temperature=temperature, verbose=False,
190
+ score_corrector=score_corrector,
191
+ corrector_kwargs=corrector_kwargs, x_t=x_t)
192
+
193
+ return samples, intermediates
194
+
195
+
196
+ @torch.no_grad()
197
+ def make_convolutional_sample(batch, model, custom_steps=None, eta=1.0, quantize_x0=False, custom_shape=None, temperature=1., noise_dropout=0., corrector=None,
198
+ corrector_kwargs=None, x_T=None, ddim_use_x0_pred=False):
199
+ log = dict()
200
+
201
+ z, c, x, xrec, xc = model.get_input(batch, model.first_stage_key,
202
+ return_first_stage_outputs=True,
203
+ force_c_encode=not (hasattr(model, 'split_input_params')
204
+ and model.cond_stage_key == 'coordinates_bbox'),
205
+ return_original_cond=True)
206
+
207
+ if custom_shape is not None:
208
+ z = torch.randn(custom_shape)
209
+ print(f"Generating {custom_shape[0]} samples of shape {custom_shape[1:]}")
210
+
211
+ z0 = None
212
+
213
+ log["input"] = x
214
+ log["reconstruction"] = xrec
215
+
216
+ if ismap(xc):
217
+ log["original_conditioning"] = model.to_rgb(xc)
218
+ if hasattr(model, 'cond_stage_key'):
219
+ log[model.cond_stage_key] = model.to_rgb(xc)
220
+
221
+ else:
222
+ log["original_conditioning"] = xc if xc is not None else torch.zeros_like(x)
223
+ if model.cond_stage_model:
224
+ log[model.cond_stage_key] = xc if xc is not None else torch.zeros_like(x)
225
+ if model.cond_stage_key == 'class_label':
226
+ log[model.cond_stage_key] = xc[model.cond_stage_key]
227
+
228
+ with model.ema_scope("Plotting"):
229
+ t0 = time.time()
230
+
231
+ sample, intermediates = convsample_ddim(model, c, steps=custom_steps, shape=z.shape,
232
+ eta=eta,
233
+ quantize_x0=quantize_x0, mask=None, x0=z0,
234
+ temperature=temperature, score_corrector=corrector, corrector_kwargs=corrector_kwargs,
235
+ x_t=x_T)
236
+ t1 = time.time()
237
+
238
+ if ddim_use_x0_pred:
239
+ sample = intermediates['pred_x0'][-1]
240
+
241
+ x_sample = model.decode_first_stage(sample)
242
+
243
+ try:
244
+ x_sample_noquant = model.decode_first_stage(sample, force_not_quantize=True)
245
+ log["sample_noquant"] = x_sample_noquant
246
+ log["sample_diff"] = torch.abs(x_sample_noquant - x_sample)
247
+ except:
248
+ pass
249
+
250
+ log["sample"] = x_sample
251
+ log["time"] = t1 - t0
252
+
253
+ return log
extensions-builtin/LDSR/preload.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ import os
2
+ from modules import paths
3
+
4
+
5
+ def preload(parser):
6
+ parser.add_argument("--ldsr-models-path", type=str, help="Path to directory with LDSR model file(s).", default=os.path.join(paths.models_path, 'LDSR'))
extensions-builtin/LDSR/scripts/ldsr_model.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ import traceback
4
+
5
+ from basicsr.utils.download_util import load_file_from_url
6
+
7
+ from modules.upscaler import Upscaler, UpscalerData
8
+ from ldsr_model_arch import LDSR
9
+ from modules import shared, script_callbacks
10
+ import sd_hijack_autoencoder, sd_hijack_ddpm_v1
11
+
12
+
13
+ class UpscalerLDSR(Upscaler):
14
+ def __init__(self, user_path):
15
+ self.name = "LDSR"
16
+ self.user_path = user_path
17
+ self.model_url = "https://heibox.uni-heidelberg.de/f/578df07c8fc04ffbadf3/?dl=1"
18
+ self.yaml_url = "https://heibox.uni-heidelberg.de/f/31a76b13ea27482981b4/?dl=1"
19
+ super().__init__()
20
+ scaler_data = UpscalerData("LDSR", None, self)
21
+ self.scalers = [scaler_data]
22
+
23
+ def load_model(self, path: str):
24
+ # Remove incorrect project.yaml file if too big
25
+ yaml_path = os.path.join(self.model_path, "project.yaml")
26
+ old_model_path = os.path.join(self.model_path, "model.pth")
27
+ new_model_path = os.path.join(self.model_path, "model.ckpt")
28
+ safetensors_model_path = os.path.join(self.model_path, "model.safetensors")
29
+ if os.path.exists(yaml_path):
30
+ statinfo = os.stat(yaml_path)
31
+ if statinfo.st_size >= 10485760:
32
+ print("Removing invalid LDSR YAML file.")
33
+ os.remove(yaml_path)
34
+ if os.path.exists(old_model_path):
35
+ print("Renaming model from model.pth to model.ckpt")
36
+ os.rename(old_model_path, new_model_path)
37
+ if os.path.exists(safetensors_model_path):
38
+ model = safetensors_model_path
39
+ else:
40
+ model = load_file_from_url(url=self.model_url, model_dir=self.model_path,
41
+ file_name="model.ckpt", progress=True)
42
+ yaml = load_file_from_url(url=self.yaml_url, model_dir=self.model_path,
43
+ file_name="project.yaml", progress=True)
44
+
45
+ try:
46
+ return LDSR(model, yaml)
47
+
48
+ except Exception:
49
+ print("Error importing LDSR:", file=sys.stderr)
50
+ print(traceback.format_exc(), file=sys.stderr)
51
+ return None
52
+
53
+ def do_upscale(self, img, path):
54
+ ldsr = self.load_model(path)
55
+ if ldsr is None:
56
+ print("NO LDSR!")
57
+ return img
58
+ ddim_steps = shared.opts.ldsr_steps
59
+ return ldsr.super_resolution(img, ddim_steps, self.scale)
60
+
61
+
62
+ def on_ui_settings():
63
+ import gradio as gr
64
+
65
+ shared.opts.add_option("ldsr_steps", shared.OptionInfo(100, "LDSR processing steps. Lower = faster", gr.Slider, {"minimum": 1, "maximum": 200, "step": 1}, section=('upscaling', "Upscaling")))
66
+ shared.opts.add_option("ldsr_cached", shared.OptionInfo(False, "Cache LDSR model in memory", gr.Checkbox, {"interactive": True}, section=('upscaling', "Upscaling")))
67
+
68
+
69
+ script_callbacks.on_ui_settings(on_ui_settings)
extensions-builtin/LDSR/sd_hijack_autoencoder.py ADDED
@@ -0,0 +1,286 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # The content of this file comes from the ldm/models/autoencoder.py file of the compvis/stable-diffusion repo
2
+ # The VQModel & VQModelInterface were subsequently removed from ldm/models/autoencoder.py when we moved to the stability-ai/stablediffusion repo
3
+ # As the LDSR upscaler relies on VQModel & VQModelInterface, the hijack aims to put them back into the ldm.models.autoencoder
4
+
5
+ import torch
6
+ import pytorch_lightning as pl
7
+ import torch.nn.functional as F
8
+ from contextlib import contextmanager
9
+ from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
10
+ from ldm.modules.diffusionmodules.model import Encoder, Decoder
11
+ from ldm.util import instantiate_from_config
12
+
13
+ import ldm.models.autoencoder
14
+
15
+ class VQModel(pl.LightningModule):
16
+ def __init__(self,
17
+ ddconfig,
18
+ lossconfig,
19
+ n_embed,
20
+ embed_dim,
21
+ ckpt_path=None,
22
+ ignore_keys=[],
23
+ image_key="image",
24
+ colorize_nlabels=None,
25
+ monitor=None,
26
+ batch_resize_range=None,
27
+ scheduler_config=None,
28
+ lr_g_factor=1.0,
29
+ remap=None,
30
+ sane_index_shape=False, # tell vector quantizer to return indices as bhw
31
+ use_ema=False
32
+ ):
33
+ super().__init__()
34
+ self.embed_dim = embed_dim
35
+ self.n_embed = n_embed
36
+ self.image_key = image_key
37
+ self.encoder = Encoder(**ddconfig)
38
+ self.decoder = Decoder(**ddconfig)
39
+ self.loss = instantiate_from_config(lossconfig)
40
+ self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
41
+ remap=remap,
42
+ sane_index_shape=sane_index_shape)
43
+ self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
44
+ self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
45
+ if colorize_nlabels is not None:
46
+ assert type(colorize_nlabels)==int
47
+ self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
48
+ if monitor is not None:
49
+ self.monitor = monitor
50
+ self.batch_resize_range = batch_resize_range
51
+ if self.batch_resize_range is not None:
52
+ print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.")
53
+
54
+ self.use_ema = use_ema
55
+ if self.use_ema:
56
+ self.model_ema = LitEma(self)
57
+ print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
58
+
59
+ if ckpt_path is not None:
60
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
61
+ self.scheduler_config = scheduler_config
62
+ self.lr_g_factor = lr_g_factor
63
+
64
+ @contextmanager
65
+ def ema_scope(self, context=None):
66
+ if self.use_ema:
67
+ self.model_ema.store(self.parameters())
68
+ self.model_ema.copy_to(self)
69
+ if context is not None:
70
+ print(f"{context}: Switched to EMA weights")
71
+ try:
72
+ yield None
73
+ finally:
74
+ if self.use_ema:
75
+ self.model_ema.restore(self.parameters())
76
+ if context is not None:
77
+ print(f"{context}: Restored training weights")
78
+
79
+ def init_from_ckpt(self, path, ignore_keys=list()):
80
+ sd = torch.load(path, map_location="cpu")["state_dict"]
81
+ keys = list(sd.keys())
82
+ for k in keys:
83
+ for ik in ignore_keys:
84
+ if k.startswith(ik):
85
+ print("Deleting key {} from state_dict.".format(k))
86
+ del sd[k]
87
+ missing, unexpected = self.load_state_dict(sd, strict=False)
88
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
89
+ if len(missing) > 0:
90
+ print(f"Missing Keys: {missing}")
91
+ print(f"Unexpected Keys: {unexpected}")
92
+
93
+ def on_train_batch_end(self, *args, **kwargs):
94
+ if self.use_ema:
95
+ self.model_ema(self)
96
+
97
+ def encode(self, x):
98
+ h = self.encoder(x)
99
+ h = self.quant_conv(h)
100
+ quant, emb_loss, info = self.quantize(h)
101
+ return quant, emb_loss, info
102
+
103
+ def encode_to_prequant(self, x):
104
+ h = self.encoder(x)
105
+ h = self.quant_conv(h)
106
+ return h
107
+
108
+ def decode(self, quant):
109
+ quant = self.post_quant_conv(quant)
110
+ dec = self.decoder(quant)
111
+ return dec
112
+
113
+ def decode_code(self, code_b):
114
+ quant_b = self.quantize.embed_code(code_b)
115
+ dec = self.decode(quant_b)
116
+ return dec
117
+
118
+ def forward(self, input, return_pred_indices=False):
119
+ quant, diff, (_,_,ind) = self.encode(input)
120
+ dec = self.decode(quant)
121
+ if return_pred_indices:
122
+ return dec, diff, ind
123
+ return dec, diff
124
+
125
+ def get_input(self, batch, k):
126
+ x = batch[k]
127
+ if len(x.shape) == 3:
128
+ x = x[..., None]
129
+ x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
130
+ if self.batch_resize_range is not None:
131
+ lower_size = self.batch_resize_range[0]
132
+ upper_size = self.batch_resize_range[1]
133
+ if self.global_step <= 4:
134
+ # do the first few batches with max size to avoid later oom
135
+ new_resize = upper_size
136
+ else:
137
+ new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16))
138
+ if new_resize != x.shape[2]:
139
+ x = F.interpolate(x, size=new_resize, mode="bicubic")
140
+ x = x.detach()
141
+ return x
142
+
143
+ def training_step(self, batch, batch_idx, optimizer_idx):
144
+ # https://github.com/pytorch/pytorch/issues/37142
145
+ # try not to fool the heuristics
146
+ x = self.get_input(batch, self.image_key)
147
+ xrec, qloss, ind = self(x, return_pred_indices=True)
148
+
149
+ if optimizer_idx == 0:
150
+ # autoencode
151
+ aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
152
+ last_layer=self.get_last_layer(), split="train",
153
+ predicted_indices=ind)
154
+
155
+ self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
156
+ return aeloss
157
+
158
+ if optimizer_idx == 1:
159
+ # discriminator
160
+ discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
161
+ last_layer=self.get_last_layer(), split="train")
162
+ self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
163
+ return discloss
164
+
165
+ def validation_step(self, batch, batch_idx):
166
+ log_dict = self._validation_step(batch, batch_idx)
167
+ with self.ema_scope():
168
+ log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema")
169
+ return log_dict
170
+
171
+ def _validation_step(self, batch, batch_idx, suffix=""):
172
+ x = self.get_input(batch, self.image_key)
173
+ xrec, qloss, ind = self(x, return_pred_indices=True)
174
+ aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0,
175
+ self.global_step,
176
+ last_layer=self.get_last_layer(),
177
+ split="val"+suffix,
178
+ predicted_indices=ind
179
+ )
180
+
181
+ discloss, log_dict_disc = self.loss(qloss, x, xrec, 1,
182
+ self.global_step,
183
+ last_layer=self.get_last_layer(),
184
+ split="val"+suffix,
185
+ predicted_indices=ind
186
+ )
187
+ rec_loss = log_dict_ae[f"val{suffix}/rec_loss"]
188
+ self.log(f"val{suffix}/rec_loss", rec_loss,
189
+ prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
190
+ self.log(f"val{suffix}/aeloss", aeloss,
191
+ prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
192
+ if version.parse(pl.__version__) >= version.parse('1.4.0'):
193
+ del log_dict_ae[f"val{suffix}/rec_loss"]
194
+ self.log_dict(log_dict_ae)
195
+ self.log_dict(log_dict_disc)
196
+ return self.log_dict
197
+
198
+ def configure_optimizers(self):
199
+ lr_d = self.learning_rate
200
+ lr_g = self.lr_g_factor*self.learning_rate
201
+ print("lr_d", lr_d)
202
+ print("lr_g", lr_g)
203
+ opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
204
+ list(self.decoder.parameters())+
205
+ list(self.quantize.parameters())+
206
+ list(self.quant_conv.parameters())+
207
+ list(self.post_quant_conv.parameters()),
208
+ lr=lr_g, betas=(0.5, 0.9))
209
+ opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
210
+ lr=lr_d, betas=(0.5, 0.9))
211
+
212
+ if self.scheduler_config is not None:
213
+ scheduler = instantiate_from_config(self.scheduler_config)
214
+
215
+ print("Setting up LambdaLR scheduler...")
216
+ scheduler = [
217
+ {
218
+ 'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule),
219
+ 'interval': 'step',
220
+ 'frequency': 1
221
+ },
222
+ {
223
+ 'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule),
224
+ 'interval': 'step',
225
+ 'frequency': 1
226
+ },
227
+ ]
228
+ return [opt_ae, opt_disc], scheduler
229
+ return [opt_ae, opt_disc], []
230
+
231
+ def get_last_layer(self):
232
+ return self.decoder.conv_out.weight
233
+
234
+ def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
235
+ log = dict()
236
+ x = self.get_input(batch, self.image_key)
237
+ x = x.to(self.device)
238
+ if only_inputs:
239
+ log["inputs"] = x
240
+ return log
241
+ xrec, _ = self(x)
242
+ if x.shape[1] > 3:
243
+ # colorize with random projection
244
+ assert xrec.shape[1] > 3
245
+ x = self.to_rgb(x)
246
+ xrec = self.to_rgb(xrec)
247
+ log["inputs"] = x
248
+ log["reconstructions"] = xrec
249
+ if plot_ema:
250
+ with self.ema_scope():
251
+ xrec_ema, _ = self(x)
252
+ if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema)
253
+ log["reconstructions_ema"] = xrec_ema
254
+ return log
255
+
256
+ def to_rgb(self, x):
257
+ assert self.image_key == "segmentation"
258
+ if not hasattr(self, "colorize"):
259
+ self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
260
+ x = F.conv2d(x, weight=self.colorize)
261
+ x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
262
+ return x
263
+
264
+
265
+ class VQModelInterface(VQModel):
266
+ def __init__(self, embed_dim, *args, **kwargs):
267
+ super().__init__(embed_dim=embed_dim, *args, **kwargs)
268
+ self.embed_dim = embed_dim
269
+
270
+ def encode(self, x):
271
+ h = self.encoder(x)
272
+ h = self.quant_conv(h)
273
+ return h
274
+
275
+ def decode(self, h, force_not_quantize=False):
276
+ # also go through quantization layer
277
+ if not force_not_quantize:
278
+ quant, emb_loss, info = self.quantize(h)
279
+ else:
280
+ quant = h
281
+ quant = self.post_quant_conv(quant)
282
+ dec = self.decoder(quant)
283
+ return dec
284
+
285
+ setattr(ldm.models.autoencoder, "VQModel", VQModel)
286
+ setattr(ldm.models.autoencoder, "VQModelInterface", VQModelInterface)
extensions-builtin/LDSR/sd_hijack_ddpm_v1.py ADDED
@@ -0,0 +1,1449 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This script is copied from the compvis/stable-diffusion repo (aka the SD V1 repo)
2
+ # Original filename: ldm/models/diffusion/ddpm.py
3
+ # The purpose to reinstate the old DDPM logic which works with VQ, whereas the V2 one doesn't
4
+ # Some models such as LDSR require VQ to work correctly
5
+ # The classes are suffixed with "V1" and added back to the "ldm.models.diffusion.ddpm" module
6
+
7
+ import torch
8
+ import torch.nn as nn
9
+ import numpy as np
10
+ import pytorch_lightning as pl
11
+ from torch.optim.lr_scheduler import LambdaLR
12
+ from einops import rearrange, repeat
13
+ from contextlib import contextmanager
14
+ from functools import partial
15
+ from tqdm import tqdm
16
+ from torchvision.utils import make_grid
17
+ from pytorch_lightning.utilities.distributed import rank_zero_only
18
+
19
+ from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
20
+ from ldm.modules.ema import LitEma
21
+ from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
22
+ from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL
23
+ from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
24
+ from ldm.models.diffusion.ddim import DDIMSampler
25
+
26
+ import ldm.models.diffusion.ddpm
27
+
28
+ __conditioning_keys__ = {'concat': 'c_concat',
29
+ 'crossattn': 'c_crossattn',
30
+ 'adm': 'y'}
31
+
32
+
33
+ def disabled_train(self, mode=True):
34
+ """Overwrite model.train with this function to make sure train/eval mode
35
+ does not change anymore."""
36
+ return self
37
+
38
+
39
+ def uniform_on_device(r1, r2, shape, device):
40
+ return (r1 - r2) * torch.rand(*shape, device=device) + r2
41
+
42
+
43
+ class DDPMV1(pl.LightningModule):
44
+ # classic DDPM with Gaussian diffusion, in image space
45
+ def __init__(self,
46
+ unet_config,
47
+ timesteps=1000,
48
+ beta_schedule="linear",
49
+ loss_type="l2",
50
+ ckpt_path=None,
51
+ ignore_keys=[],
52
+ load_only_unet=False,
53
+ monitor="val/loss",
54
+ use_ema=True,
55
+ first_stage_key="image",
56
+ image_size=256,
57
+ channels=3,
58
+ log_every_t=100,
59
+ clip_denoised=True,
60
+ linear_start=1e-4,
61
+ linear_end=2e-2,
62
+ cosine_s=8e-3,
63
+ given_betas=None,
64
+ original_elbo_weight=0.,
65
+ v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
66
+ l_simple_weight=1.,
67
+ conditioning_key=None,
68
+ parameterization="eps", # all assuming fixed variance schedules
69
+ scheduler_config=None,
70
+ use_positional_encodings=False,
71
+ learn_logvar=False,
72
+ logvar_init=0.,
73
+ ):
74
+ super().__init__()
75
+ assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"'
76
+ self.parameterization = parameterization
77
+ print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
78
+ self.cond_stage_model = None
79
+ self.clip_denoised = clip_denoised
80
+ self.log_every_t = log_every_t
81
+ self.first_stage_key = first_stage_key
82
+ self.image_size = image_size # try conv?
83
+ self.channels = channels
84
+ self.use_positional_encodings = use_positional_encodings
85
+ self.model = DiffusionWrapperV1(unet_config, conditioning_key)
86
+ count_params(self.model, verbose=True)
87
+ self.use_ema = use_ema
88
+ if self.use_ema:
89
+ self.model_ema = LitEma(self.model)
90
+ print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
91
+
92
+ self.use_scheduler = scheduler_config is not None
93
+ if self.use_scheduler:
94
+ self.scheduler_config = scheduler_config
95
+
96
+ self.v_posterior = v_posterior
97
+ self.original_elbo_weight = original_elbo_weight
98
+ self.l_simple_weight = l_simple_weight
99
+
100
+ if monitor is not None:
101
+ self.monitor = monitor
102
+ if ckpt_path is not None:
103
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
104
+
105
+ self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
106
+ linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
107
+
108
+ self.loss_type = loss_type
109
+
110
+ self.learn_logvar = learn_logvar
111
+ self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
112
+ if self.learn_logvar:
113
+ self.logvar = nn.Parameter(self.logvar, requires_grad=True)
114
+
115
+
116
+ def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
117
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
118
+ if exists(given_betas):
119
+ betas = given_betas
120
+ else:
121
+ betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
122
+ cosine_s=cosine_s)
123
+ alphas = 1. - betas
124
+ alphas_cumprod = np.cumprod(alphas, axis=0)
125
+ alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
126
+
127
+ timesteps, = betas.shape
128
+ self.num_timesteps = int(timesteps)
129
+ self.linear_start = linear_start
130
+ self.linear_end = linear_end
131
+ assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
132
+
133
+ to_torch = partial(torch.tensor, dtype=torch.float32)
134
+
135
+ self.register_buffer('betas', to_torch(betas))
136
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
137
+ self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
138
+
139
+ # calculations for diffusion q(x_t | x_{t-1}) and others
140
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
141
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
142
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
143
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
144
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
145
+
146
+ # calculations for posterior q(x_{t-1} | x_t, x_0)
147
+ posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
148
+ 1. - alphas_cumprod) + self.v_posterior * betas
149
+ # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
150
+ self.register_buffer('posterior_variance', to_torch(posterior_variance))
151
+ # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
152
+ self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
153
+ self.register_buffer('posterior_mean_coef1', to_torch(
154
+ betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
155
+ self.register_buffer('posterior_mean_coef2', to_torch(
156
+ (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
157
+
158
+ if self.parameterization == "eps":
159
+ lvlb_weights = self.betas ** 2 / (
160
+ 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
161
+ elif self.parameterization == "x0":
162
+ lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
163
+ else:
164
+ raise NotImplementedError("mu not supported")
165
+ # TODO how to choose this term
166
+ lvlb_weights[0] = lvlb_weights[1]
167
+ self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
168
+ assert not torch.isnan(self.lvlb_weights).all()
169
+
170
+ @contextmanager
171
+ def ema_scope(self, context=None):
172
+ if self.use_ema:
173
+ self.model_ema.store(self.model.parameters())
174
+ self.model_ema.copy_to(self.model)
175
+ if context is not None:
176
+ print(f"{context}: Switched to EMA weights")
177
+ try:
178
+ yield None
179
+ finally:
180
+ if self.use_ema:
181
+ self.model_ema.restore(self.model.parameters())
182
+ if context is not None:
183
+ print(f"{context}: Restored training weights")
184
+
185
+ def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
186
+ sd = torch.load(path, map_location="cpu")
187
+ if "state_dict" in list(sd.keys()):
188
+ sd = sd["state_dict"]
189
+ keys = list(sd.keys())
190
+ for k in keys:
191
+ for ik in ignore_keys:
192
+ if k.startswith(ik):
193
+ print("Deleting key {} from state_dict.".format(k))
194
+ del sd[k]
195
+ missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
196
+ sd, strict=False)
197
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
198
+ if len(missing) > 0:
199
+ print(f"Missing Keys: {missing}")
200
+ if len(unexpected) > 0:
201
+ print(f"Unexpected Keys: {unexpected}")
202
+
203
+ def q_mean_variance(self, x_start, t):
204
+ """
205
+ Get the distribution q(x_t | x_0).
206
+ :param x_start: the [N x C x ...] tensor of noiseless inputs.
207
+ :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
208
+ :return: A tuple (mean, variance, log_variance), all of x_start's shape.
209
+ """
210
+ mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
211
+ variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
212
+ log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
213
+ return mean, variance, log_variance
214
+
215
+ def predict_start_from_noise(self, x_t, t, noise):
216
+ return (
217
+ extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
218
+ extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
219
+ )
220
+
221
+ def q_posterior(self, x_start, x_t, t):
222
+ posterior_mean = (
223
+ extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
224
+ extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
225
+ )
226
+ posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
227
+ posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
228
+ return posterior_mean, posterior_variance, posterior_log_variance_clipped
229
+
230
+ def p_mean_variance(self, x, t, clip_denoised: bool):
231
+ model_out = self.model(x, t)
232
+ if self.parameterization == "eps":
233
+ x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
234
+ elif self.parameterization == "x0":
235
+ x_recon = model_out
236
+ if clip_denoised:
237
+ x_recon.clamp_(-1., 1.)
238
+
239
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
240
+ return model_mean, posterior_variance, posterior_log_variance
241
+
242
+ @torch.no_grad()
243
+ def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
244
+ b, *_, device = *x.shape, x.device
245
+ model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
246
+ noise = noise_like(x.shape, device, repeat_noise)
247
+ # no noise when t == 0
248
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
249
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
250
+
251
+ @torch.no_grad()
252
+ def p_sample_loop(self, shape, return_intermediates=False):
253
+ device = self.betas.device
254
+ b = shape[0]
255
+ img = torch.randn(shape, device=device)
256
+ intermediates = [img]
257
+ for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
258
+ img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
259
+ clip_denoised=self.clip_denoised)
260
+ if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
261
+ intermediates.append(img)
262
+ if return_intermediates:
263
+ return img, intermediates
264
+ return img
265
+
266
+ @torch.no_grad()
267
+ def sample(self, batch_size=16, return_intermediates=False):
268
+ image_size = self.image_size
269
+ channels = self.channels
270
+ return self.p_sample_loop((batch_size, channels, image_size, image_size),
271
+ return_intermediates=return_intermediates)
272
+
273
+ def q_sample(self, x_start, t, noise=None):
274
+ noise = default(noise, lambda: torch.randn_like(x_start))
275
+ return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
276
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
277
+
278
+ def get_loss(self, pred, target, mean=True):
279
+ if self.loss_type == 'l1':
280
+ loss = (target - pred).abs()
281
+ if mean:
282
+ loss = loss.mean()
283
+ elif self.loss_type == 'l2':
284
+ if mean:
285
+ loss = torch.nn.functional.mse_loss(target, pred)
286
+ else:
287
+ loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
288
+ else:
289
+ raise NotImplementedError("unknown loss type '{loss_type}'")
290
+
291
+ return loss
292
+
293
+ def p_losses(self, x_start, t, noise=None):
294
+ noise = default(noise, lambda: torch.randn_like(x_start))
295
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
296
+ model_out = self.model(x_noisy, t)
297
+
298
+ loss_dict = {}
299
+ if self.parameterization == "eps":
300
+ target = noise
301
+ elif self.parameterization == "x0":
302
+ target = x_start
303
+ else:
304
+ raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported")
305
+
306
+ loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
307
+
308
+ log_prefix = 'train' if self.training else 'val'
309
+
310
+ loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
311
+ loss_simple = loss.mean() * self.l_simple_weight
312
+
313
+ loss_vlb = (self.lvlb_weights[t] * loss).mean()
314
+ loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
315
+
316
+ loss = loss_simple + self.original_elbo_weight * loss_vlb
317
+
318
+ loss_dict.update({f'{log_prefix}/loss': loss})
319
+
320
+ return loss, loss_dict
321
+
322
+ def forward(self, x, *args, **kwargs):
323
+ # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
324
+ # assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
325
+ t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
326
+ return self.p_losses(x, t, *args, **kwargs)
327
+
328
+ def get_input(self, batch, k):
329
+ x = batch[k]
330
+ if len(x.shape) == 3:
331
+ x = x[..., None]
332
+ x = rearrange(x, 'b h w c -> b c h w')
333
+ x = x.to(memory_format=torch.contiguous_format).float()
334
+ return x
335
+
336
+ def shared_step(self, batch):
337
+ x = self.get_input(batch, self.first_stage_key)
338
+ loss, loss_dict = self(x)
339
+ return loss, loss_dict
340
+
341
+ def training_step(self, batch, batch_idx):
342
+ loss, loss_dict = self.shared_step(batch)
343
+
344
+ self.log_dict(loss_dict, prog_bar=True,
345
+ logger=True, on_step=True, on_epoch=True)
346
+
347
+ self.log("global_step", self.global_step,
348
+ prog_bar=True, logger=True, on_step=True, on_epoch=False)
349
+
350
+ if self.use_scheduler:
351
+ lr = self.optimizers().param_groups[0]['lr']
352
+ self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
353
+
354
+ return loss
355
+
356
+ @torch.no_grad()
357
+ def validation_step(self, batch, batch_idx):
358
+ _, loss_dict_no_ema = self.shared_step(batch)
359
+ with self.ema_scope():
360
+ _, loss_dict_ema = self.shared_step(batch)
361
+ loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
362
+ self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
363
+ self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
364
+
365
+ def on_train_batch_end(self, *args, **kwargs):
366
+ if self.use_ema:
367
+ self.model_ema(self.model)
368
+
369
+ def _get_rows_from_list(self, samples):
370
+ n_imgs_per_row = len(samples)
371
+ denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
372
+ denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
373
+ denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
374
+ return denoise_grid
375
+
376
+ @torch.no_grad()
377
+ def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
378
+ log = dict()
379
+ x = self.get_input(batch, self.first_stage_key)
380
+ N = min(x.shape[0], N)
381
+ n_row = min(x.shape[0], n_row)
382
+ x = x.to(self.device)[:N]
383
+ log["inputs"] = x
384
+
385
+ # get diffusion row
386
+ diffusion_row = list()
387
+ x_start = x[:n_row]
388
+
389
+ for t in range(self.num_timesteps):
390
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
391
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
392
+ t = t.to(self.device).long()
393
+ noise = torch.randn_like(x_start)
394
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
395
+ diffusion_row.append(x_noisy)
396
+
397
+ log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
398
+
399
+ if sample:
400
+ # get denoise row
401
+ with self.ema_scope("Plotting"):
402
+ samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
403
+
404
+ log["samples"] = samples
405
+ log["denoise_row"] = self._get_rows_from_list(denoise_row)
406
+
407
+ if return_keys:
408
+ if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
409
+ return log
410
+ else:
411
+ return {key: log[key] for key in return_keys}
412
+ return log
413
+
414
+ def configure_optimizers(self):
415
+ lr = self.learning_rate
416
+ params = list(self.model.parameters())
417
+ if self.learn_logvar:
418
+ params = params + [self.logvar]
419
+ opt = torch.optim.AdamW(params, lr=lr)
420
+ return opt
421
+
422
+
423
+ class LatentDiffusionV1(DDPMV1):
424
+ """main class"""
425
+ def __init__(self,
426
+ first_stage_config,
427
+ cond_stage_config,
428
+ num_timesteps_cond=None,
429
+ cond_stage_key="image",
430
+ cond_stage_trainable=False,
431
+ concat_mode=True,
432
+ cond_stage_forward=None,
433
+ conditioning_key=None,
434
+ scale_factor=1.0,
435
+ scale_by_std=False,
436
+ *args, **kwargs):
437
+ self.num_timesteps_cond = default(num_timesteps_cond, 1)
438
+ self.scale_by_std = scale_by_std
439
+ assert self.num_timesteps_cond <= kwargs['timesteps']
440
+ # for backwards compatibility after implementation of DiffusionWrapper
441
+ if conditioning_key is None:
442
+ conditioning_key = 'concat' if concat_mode else 'crossattn'
443
+ if cond_stage_config == '__is_unconditional__':
444
+ conditioning_key = None
445
+ ckpt_path = kwargs.pop("ckpt_path", None)
446
+ ignore_keys = kwargs.pop("ignore_keys", [])
447
+ super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
448
+ self.concat_mode = concat_mode
449
+ self.cond_stage_trainable = cond_stage_trainable
450
+ self.cond_stage_key = cond_stage_key
451
+ try:
452
+ self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
453
+ except:
454
+ self.num_downs = 0
455
+ if not scale_by_std:
456
+ self.scale_factor = scale_factor
457
+ else:
458
+ self.register_buffer('scale_factor', torch.tensor(scale_factor))
459
+ self.instantiate_first_stage(first_stage_config)
460
+ self.instantiate_cond_stage(cond_stage_config)
461
+ self.cond_stage_forward = cond_stage_forward
462
+ self.clip_denoised = False
463
+ self.bbox_tokenizer = None
464
+
465
+ self.restarted_from_ckpt = False
466
+ if ckpt_path is not None:
467
+ self.init_from_ckpt(ckpt_path, ignore_keys)
468
+ self.restarted_from_ckpt = True
469
+
470
+ def make_cond_schedule(self, ):
471
+ self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
472
+ ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
473
+ self.cond_ids[:self.num_timesteps_cond] = ids
474
+
475
+ @rank_zero_only
476
+ @torch.no_grad()
477
+ def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
478
+ # only for very first batch
479
+ if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
480
+ assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
481
+ # set rescale weight to 1./std of encodings
482
+ print("### USING STD-RESCALING ###")
483
+ x = super().get_input(batch, self.first_stage_key)
484
+ x = x.to(self.device)
485
+ encoder_posterior = self.encode_first_stage(x)
486
+ z = self.get_first_stage_encoding(encoder_posterior).detach()
487
+ del self.scale_factor
488
+ self.register_buffer('scale_factor', 1. / z.flatten().std())
489
+ print(f"setting self.scale_factor to {self.scale_factor}")
490
+ print("### USING STD-RESCALING ###")
491
+
492
+ def register_schedule(self,
493
+ given_betas=None, beta_schedule="linear", timesteps=1000,
494
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
495
+ super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
496
+
497
+ self.shorten_cond_schedule = self.num_timesteps_cond > 1
498
+ if self.shorten_cond_schedule:
499
+ self.make_cond_schedule()
500
+
501
+ def instantiate_first_stage(self, config):
502
+ model = instantiate_from_config(config)
503
+ self.first_stage_model = model.eval()
504
+ self.first_stage_model.train = disabled_train
505
+ for param in self.first_stage_model.parameters():
506
+ param.requires_grad = False
507
+
508
+ def instantiate_cond_stage(self, config):
509
+ if not self.cond_stage_trainable:
510
+ if config == "__is_first_stage__":
511
+ print("Using first stage also as cond stage.")
512
+ self.cond_stage_model = self.first_stage_model
513
+ elif config == "__is_unconditional__":
514
+ print(f"Training {self.__class__.__name__} as an unconditional model.")
515
+ self.cond_stage_model = None
516
+ # self.be_unconditional = True
517
+ else:
518
+ model = instantiate_from_config(config)
519
+ self.cond_stage_model = model.eval()
520
+ self.cond_stage_model.train = disabled_train
521
+ for param in self.cond_stage_model.parameters():
522
+ param.requires_grad = False
523
+ else:
524
+ assert config != '__is_first_stage__'
525
+ assert config != '__is_unconditional__'
526
+ model = instantiate_from_config(config)
527
+ self.cond_stage_model = model
528
+
529
+ def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
530
+ denoise_row = []
531
+ for zd in tqdm(samples, desc=desc):
532
+ denoise_row.append(self.decode_first_stage(zd.to(self.device),
533
+ force_not_quantize=force_no_decoder_quantization))
534
+ n_imgs_per_row = len(denoise_row)
535
+ denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
536
+ denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
537
+ denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
538
+ denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
539
+ return denoise_grid
540
+
541
+ def get_first_stage_encoding(self, encoder_posterior):
542
+ if isinstance(encoder_posterior, DiagonalGaussianDistribution):
543
+ z = encoder_posterior.sample()
544
+ elif isinstance(encoder_posterior, torch.Tensor):
545
+ z = encoder_posterior
546
+ else:
547
+ raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
548
+ return self.scale_factor * z
549
+
550
+ def get_learned_conditioning(self, c):
551
+ if self.cond_stage_forward is None:
552
+ if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
553
+ c = self.cond_stage_model.encode(c)
554
+ if isinstance(c, DiagonalGaussianDistribution):
555
+ c = c.mode()
556
+ else:
557
+ c = self.cond_stage_model(c)
558
+ else:
559
+ assert hasattr(self.cond_stage_model, self.cond_stage_forward)
560
+ c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
561
+ return c
562
+
563
+ def meshgrid(self, h, w):
564
+ y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
565
+ x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
566
+
567
+ arr = torch.cat([y, x], dim=-1)
568
+ return arr
569
+
570
+ def delta_border(self, h, w):
571
+ """
572
+ :param h: height
573
+ :param w: width
574
+ :return: normalized distance to image border,
575
+ wtith min distance = 0 at border and max dist = 0.5 at image center
576
+ """
577
+ lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
578
+ arr = self.meshgrid(h, w) / lower_right_corner
579
+ dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
580
+ dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
581
+ edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
582
+ return edge_dist
583
+
584
+ def get_weighting(self, h, w, Ly, Lx, device):
585
+ weighting = self.delta_border(h, w)
586
+ weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
587
+ self.split_input_params["clip_max_weight"], )
588
+ weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
589
+
590
+ if self.split_input_params["tie_braker"]:
591
+ L_weighting = self.delta_border(Ly, Lx)
592
+ L_weighting = torch.clip(L_weighting,
593
+ self.split_input_params["clip_min_tie_weight"],
594
+ self.split_input_params["clip_max_tie_weight"])
595
+
596
+ L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
597
+ weighting = weighting * L_weighting
598
+ return weighting
599
+
600
+ def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code
601
+ """
602
+ :param x: img of size (bs, c, h, w)
603
+ :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
604
+ """
605
+ bs, nc, h, w = x.shape
606
+
607
+ # number of crops in image
608
+ Ly = (h - kernel_size[0]) // stride[0] + 1
609
+ Lx = (w - kernel_size[1]) // stride[1] + 1
610
+
611
+ if uf == 1 and df == 1:
612
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
613
+ unfold = torch.nn.Unfold(**fold_params)
614
+
615
+ fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
616
+
617
+ weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
618
+ normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
619
+ weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
620
+
621
+ elif uf > 1 and df == 1:
622
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
623
+ unfold = torch.nn.Unfold(**fold_params)
624
+
625
+ fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
626
+ dilation=1, padding=0,
627
+ stride=(stride[0] * uf, stride[1] * uf))
628
+ fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
629
+
630
+ weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
631
+ normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
632
+ weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
633
+
634
+ elif df > 1 and uf == 1:
635
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
636
+ unfold = torch.nn.Unfold(**fold_params)
637
+
638
+ fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
639
+ dilation=1, padding=0,
640
+ stride=(stride[0] // df, stride[1] // df))
641
+ fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
642
+
643
+ weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
644
+ normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
645
+ weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
646
+
647
+ else:
648
+ raise NotImplementedError
649
+
650
+ return fold, unfold, normalization, weighting
651
+
652
+ @torch.no_grad()
653
+ def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
654
+ cond_key=None, return_original_cond=False, bs=None):
655
+ x = super().get_input(batch, k)
656
+ if bs is not None:
657
+ x = x[:bs]
658
+ x = x.to(self.device)
659
+ encoder_posterior = self.encode_first_stage(x)
660
+ z = self.get_first_stage_encoding(encoder_posterior).detach()
661
+
662
+ if self.model.conditioning_key is not None:
663
+ if cond_key is None:
664
+ cond_key = self.cond_stage_key
665
+ if cond_key != self.first_stage_key:
666
+ if cond_key in ['caption', 'coordinates_bbox']:
667
+ xc = batch[cond_key]
668
+ elif cond_key == 'class_label':
669
+ xc = batch
670
+ else:
671
+ xc = super().get_input(batch, cond_key).to(self.device)
672
+ else:
673
+ xc = x
674
+ if not self.cond_stage_trainable or force_c_encode:
675
+ if isinstance(xc, dict) or isinstance(xc, list):
676
+ # import pudb; pudb.set_trace()
677
+ c = self.get_learned_conditioning(xc)
678
+ else:
679
+ c = self.get_learned_conditioning(xc.to(self.device))
680
+ else:
681
+ c = xc
682
+ if bs is not None:
683
+ c = c[:bs]
684
+
685
+ if self.use_positional_encodings:
686
+ pos_x, pos_y = self.compute_latent_shifts(batch)
687
+ ckey = __conditioning_keys__[self.model.conditioning_key]
688
+ c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
689
+
690
+ else:
691
+ c = None
692
+ xc = None
693
+ if self.use_positional_encodings:
694
+ pos_x, pos_y = self.compute_latent_shifts(batch)
695
+ c = {'pos_x': pos_x, 'pos_y': pos_y}
696
+ out = [z, c]
697
+ if return_first_stage_outputs:
698
+ xrec = self.decode_first_stage(z)
699
+ out.extend([x, xrec])
700
+ if return_original_cond:
701
+ out.append(xc)
702
+ return out
703
+
704
+ @torch.no_grad()
705
+ def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
706
+ if predict_cids:
707
+ if z.dim() == 4:
708
+ z = torch.argmax(z.exp(), dim=1).long()
709
+ z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
710
+ z = rearrange(z, 'b h w c -> b c h w').contiguous()
711
+
712
+ z = 1. / self.scale_factor * z
713
+
714
+ if hasattr(self, "split_input_params"):
715
+ if self.split_input_params["patch_distributed_vq"]:
716
+ ks = self.split_input_params["ks"] # eg. (128, 128)
717
+ stride = self.split_input_params["stride"] # eg. (64, 64)
718
+ uf = self.split_input_params["vqf"]
719
+ bs, nc, h, w = z.shape
720
+ if ks[0] > h or ks[1] > w:
721
+ ks = (min(ks[0], h), min(ks[1], w))
722
+ print("reducing Kernel")
723
+
724
+ if stride[0] > h or stride[1] > w:
725
+ stride = (min(stride[0], h), min(stride[1], w))
726
+ print("reducing stride")
727
+
728
+ fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
729
+
730
+ z = unfold(z) # (bn, nc * prod(**ks), L)
731
+ # 1. Reshape to img shape
732
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
733
+
734
+ # 2. apply model loop over last dim
735
+ if isinstance(self.first_stage_model, VQModelInterface):
736
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
737
+ force_not_quantize=predict_cids or force_not_quantize)
738
+ for i in range(z.shape[-1])]
739
+ else:
740
+
741
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
742
+ for i in range(z.shape[-1])]
743
+
744
+ o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
745
+ o = o * weighting
746
+ # Reverse 1. reshape to img shape
747
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
748
+ # stitch crops together
749
+ decoded = fold(o)
750
+ decoded = decoded / normalization # norm is shape (1, 1, h, w)
751
+ return decoded
752
+ else:
753
+ if isinstance(self.first_stage_model, VQModelInterface):
754
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
755
+ else:
756
+ return self.first_stage_model.decode(z)
757
+
758
+ else:
759
+ if isinstance(self.first_stage_model, VQModelInterface):
760
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
761
+ else:
762
+ return self.first_stage_model.decode(z)
763
+
764
+ # same as above but without decorator
765
+ def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
766
+ if predict_cids:
767
+ if z.dim() == 4:
768
+ z = torch.argmax(z.exp(), dim=1).long()
769
+ z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
770
+ z = rearrange(z, 'b h w c -> b c h w').contiguous()
771
+
772
+ z = 1. / self.scale_factor * z
773
+
774
+ if hasattr(self, "split_input_params"):
775
+ if self.split_input_params["patch_distributed_vq"]:
776
+ ks = self.split_input_params["ks"] # eg. (128, 128)
777
+ stride = self.split_input_params["stride"] # eg. (64, 64)
778
+ uf = self.split_input_params["vqf"]
779
+ bs, nc, h, w = z.shape
780
+ if ks[0] > h or ks[1] > w:
781
+ ks = (min(ks[0], h), min(ks[1], w))
782
+ print("reducing Kernel")
783
+
784
+ if stride[0] > h or stride[1] > w:
785
+ stride = (min(stride[0], h), min(stride[1], w))
786
+ print("reducing stride")
787
+
788
+ fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
789
+
790
+ z = unfold(z) # (bn, nc * prod(**ks), L)
791
+ # 1. Reshape to img shape
792
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
793
+
794
+ # 2. apply model loop over last dim
795
+ if isinstance(self.first_stage_model, VQModelInterface):
796
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
797
+ force_not_quantize=predict_cids or force_not_quantize)
798
+ for i in range(z.shape[-1])]
799
+ else:
800
+
801
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
802
+ for i in range(z.shape[-1])]
803
+
804
+ o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
805
+ o = o * weighting
806
+ # Reverse 1. reshape to img shape
807
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
808
+ # stitch crops together
809
+ decoded = fold(o)
810
+ decoded = decoded / normalization # norm is shape (1, 1, h, w)
811
+ return decoded
812
+ else:
813
+ if isinstance(self.first_stage_model, VQModelInterface):
814
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
815
+ else:
816
+ return self.first_stage_model.decode(z)
817
+
818
+ else:
819
+ if isinstance(self.first_stage_model, VQModelInterface):
820
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
821
+ else:
822
+ return self.first_stage_model.decode(z)
823
+
824
+ @torch.no_grad()
825
+ def encode_first_stage(self, x):
826
+ if hasattr(self, "split_input_params"):
827
+ if self.split_input_params["patch_distributed_vq"]:
828
+ ks = self.split_input_params["ks"] # eg. (128, 128)
829
+ stride = self.split_input_params["stride"] # eg. (64, 64)
830
+ df = self.split_input_params["vqf"]
831
+ self.split_input_params['original_image_size'] = x.shape[-2:]
832
+ bs, nc, h, w = x.shape
833
+ if ks[0] > h or ks[1] > w:
834
+ ks = (min(ks[0], h), min(ks[1], w))
835
+ print("reducing Kernel")
836
+
837
+ if stride[0] > h or stride[1] > w:
838
+ stride = (min(stride[0], h), min(stride[1], w))
839
+ print("reducing stride")
840
+
841
+ fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df)
842
+ z = unfold(x) # (bn, nc * prod(**ks), L)
843
+ # Reshape to img shape
844
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
845
+
846
+ output_list = [self.first_stage_model.encode(z[:, :, :, :, i])
847
+ for i in range(z.shape[-1])]
848
+
849
+ o = torch.stack(output_list, axis=-1)
850
+ o = o * weighting
851
+
852
+ # Reverse reshape to img shape
853
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
854
+ # stitch crops together
855
+ decoded = fold(o)
856
+ decoded = decoded / normalization
857
+ return decoded
858
+
859
+ else:
860
+ return self.first_stage_model.encode(x)
861
+ else:
862
+ return self.first_stage_model.encode(x)
863
+
864
+ def shared_step(self, batch, **kwargs):
865
+ x, c = self.get_input(batch, self.first_stage_key)
866
+ loss = self(x, c)
867
+ return loss
868
+
869
+ def forward(self, x, c, *args, **kwargs):
870
+ t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
871
+ if self.model.conditioning_key is not None:
872
+ assert c is not None
873
+ if self.cond_stage_trainable:
874
+ c = self.get_learned_conditioning(c)
875
+ if self.shorten_cond_schedule: # TODO: drop this option
876
+ tc = self.cond_ids[t].to(self.device)
877
+ c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
878
+ return self.p_losses(x, c, t, *args, **kwargs)
879
+
880
+ def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset
881
+ def rescale_bbox(bbox):
882
+ x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2])
883
+ y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3])
884
+ w = min(bbox[2] / crop_coordinates[2], 1 - x0)
885
+ h = min(bbox[3] / crop_coordinates[3], 1 - y0)
886
+ return x0, y0, w, h
887
+
888
+ return [rescale_bbox(b) for b in bboxes]
889
+
890
+ def apply_model(self, x_noisy, t, cond, return_ids=False):
891
+
892
+ if isinstance(cond, dict):
893
+ # hybrid case, cond is exptected to be a dict
894
+ pass
895
+ else:
896
+ if not isinstance(cond, list):
897
+ cond = [cond]
898
+ key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
899
+ cond = {key: cond}
900
+
901
+ if hasattr(self, "split_input_params"):
902
+ assert len(cond) == 1 # todo can only deal with one conditioning atm
903
+ assert not return_ids
904
+ ks = self.split_input_params["ks"] # eg. (128, 128)
905
+ stride = self.split_input_params["stride"] # eg. (64, 64)
906
+
907
+ h, w = x_noisy.shape[-2:]
908
+
909
+ fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride)
910
+
911
+ z = unfold(x_noisy) # (bn, nc * prod(**ks), L)
912
+ # Reshape to img shape
913
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
914
+ z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])]
915
+
916
+ if self.cond_stage_key in ["image", "LR_image", "segmentation",
917
+ 'bbox_img'] and self.model.conditioning_key: # todo check for completeness
918
+ c_key = next(iter(cond.keys())) # get key
919
+ c = next(iter(cond.values())) # get value
920
+ assert (len(c) == 1) # todo extend to list with more than one elem
921
+ c = c[0] # get element
922
+
923
+ c = unfold(c)
924
+ c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L )
925
+
926
+ cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])]
927
+
928
+ elif self.cond_stage_key == 'coordinates_bbox':
929
+ assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size'
930
+
931
+ # assuming padding of unfold is always 0 and its dilation is always 1
932
+ n_patches_per_row = int((w - ks[0]) / stride[0] + 1)
933
+ full_img_h, full_img_w = self.split_input_params['original_image_size']
934
+ # as we are operating on latents, we need the factor from the original image size to the
935
+ # spatial latent size to properly rescale the crops for regenerating the bbox annotations
936
+ num_downs = self.first_stage_model.encoder.num_resolutions - 1
937
+ rescale_latent = 2 ** (num_downs)
938
+
939
+ # get top left postions of patches as conforming for the bbbox tokenizer, therefore we
940
+ # need to rescale the tl patch coordinates to be in between (0,1)
941
+ tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w,
942
+ rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h)
943
+ for patch_nr in range(z.shape[-1])]
944
+
945
+ # patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w)
946
+ patch_limits = [(x_tl, y_tl,
947
+ rescale_latent * ks[0] / full_img_w,
948
+ rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates]
949
+ # patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates]
950
+
951
+ # tokenize crop coordinates for the bounding boxes of the respective patches
952
+ patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device)
953
+ for bbox in patch_limits] # list of length l with tensors of shape (1, 2)
954
+ print(patch_limits_tknzd[0].shape)
955
+ # cut tknzd crop position from conditioning
956
+ assert isinstance(cond, dict), 'cond must be dict to be fed into model'
957
+ cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device)
958
+ print(cut_cond.shape)
959
+
960
+ adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd])
961
+ adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n')
962
+ print(adapted_cond.shape)
963
+ adapted_cond = self.get_learned_conditioning(adapted_cond)
964
+ print(adapted_cond.shape)
965
+ adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1])
966
+ print(adapted_cond.shape)
967
+
968
+ cond_list = [{'c_crossattn': [e]} for e in adapted_cond]
969
+
970
+ else:
971
+ cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient
972
+
973
+ # apply model by loop over crops
974
+ output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])]
975
+ assert not isinstance(output_list[0],
976
+ tuple) # todo cant deal with multiple model outputs check this never happens
977
+
978
+ o = torch.stack(output_list, axis=-1)
979
+ o = o * weighting
980
+ # Reverse reshape to img shape
981
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
982
+ # stitch crops together
983
+ x_recon = fold(o) / normalization
984
+
985
+ else:
986
+ x_recon = self.model(x_noisy, t, **cond)
987
+
988
+ if isinstance(x_recon, tuple) and not return_ids:
989
+ return x_recon[0]
990
+ else:
991
+ return x_recon
992
+
993
+ def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
994
+ return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
995
+ extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
996
+
997
+ def _prior_bpd(self, x_start):
998
+ """
999
+ Get the prior KL term for the variational lower-bound, measured in
1000
+ bits-per-dim.
1001
+ This term can't be optimized, as it only depends on the encoder.
1002
+ :param x_start: the [N x C x ...] tensor of inputs.
1003
+ :return: a batch of [N] KL values (in bits), one per batch element.
1004
+ """
1005
+ batch_size = x_start.shape[0]
1006
+ t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
1007
+ qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
1008
+ kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
1009
+ return mean_flat(kl_prior) / np.log(2.0)
1010
+
1011
+ def p_losses(self, x_start, cond, t, noise=None):
1012
+ noise = default(noise, lambda: torch.randn_like(x_start))
1013
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
1014
+ model_output = self.apply_model(x_noisy, t, cond)
1015
+
1016
+ loss_dict = {}
1017
+ prefix = 'train' if self.training else 'val'
1018
+
1019
+ if self.parameterization == "x0":
1020
+ target = x_start
1021
+ elif self.parameterization == "eps":
1022
+ target = noise
1023
+ else:
1024
+ raise NotImplementedError()
1025
+
1026
+ loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
1027
+ loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
1028
+
1029
+ logvar_t = self.logvar[t].to(self.device)
1030
+ loss = loss_simple / torch.exp(logvar_t) + logvar_t
1031
+ # loss = loss_simple / torch.exp(self.logvar) + self.logvar
1032
+ if self.learn_logvar:
1033
+ loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
1034
+ loss_dict.update({'logvar': self.logvar.data.mean()})
1035
+
1036
+ loss = self.l_simple_weight * loss.mean()
1037
+
1038
+ loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
1039
+ loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
1040
+ loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
1041
+ loss += (self.original_elbo_weight * loss_vlb)
1042
+ loss_dict.update({f'{prefix}/loss': loss})
1043
+
1044
+ return loss, loss_dict
1045
+
1046
+ def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
1047
+ return_x0=False, score_corrector=None, corrector_kwargs=None):
1048
+ t_in = t
1049
+ model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
1050
+
1051
+ if score_corrector is not None:
1052
+ assert self.parameterization == "eps"
1053
+ model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
1054
+
1055
+ if return_codebook_ids:
1056
+ model_out, logits = model_out
1057
+
1058
+ if self.parameterization == "eps":
1059
+ x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
1060
+ elif self.parameterization == "x0":
1061
+ x_recon = model_out
1062
+ else:
1063
+ raise NotImplementedError()
1064
+
1065
+ if clip_denoised:
1066
+ x_recon.clamp_(-1., 1.)
1067
+ if quantize_denoised:
1068
+ x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
1069
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
1070
+ if return_codebook_ids:
1071
+ return model_mean, posterior_variance, posterior_log_variance, logits
1072
+ elif return_x0:
1073
+ return model_mean, posterior_variance, posterior_log_variance, x_recon
1074
+ else:
1075
+ return model_mean, posterior_variance, posterior_log_variance
1076
+
1077
+ @torch.no_grad()
1078
+ def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
1079
+ return_codebook_ids=False, quantize_denoised=False, return_x0=False,
1080
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
1081
+ b, *_, device = *x.shape, x.device
1082
+ outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
1083
+ return_codebook_ids=return_codebook_ids,
1084
+ quantize_denoised=quantize_denoised,
1085
+ return_x0=return_x0,
1086
+ score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
1087
+ if return_codebook_ids:
1088
+ raise DeprecationWarning("Support dropped.")
1089
+ model_mean, _, model_log_variance, logits = outputs
1090
+ elif return_x0:
1091
+ model_mean, _, model_log_variance, x0 = outputs
1092
+ else:
1093
+ model_mean, _, model_log_variance = outputs
1094
+
1095
+ noise = noise_like(x.shape, device, repeat_noise) * temperature
1096
+ if noise_dropout > 0.:
1097
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
1098
+ # no noise when t == 0
1099
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
1100
+
1101
+ if return_codebook_ids:
1102
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
1103
+ if return_x0:
1104
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
1105
+ else:
1106
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
1107
+
1108
+ @torch.no_grad()
1109
+ def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
1110
+ img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
1111
+ score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
1112
+ log_every_t=None):
1113
+ if not log_every_t:
1114
+ log_every_t = self.log_every_t
1115
+ timesteps = self.num_timesteps
1116
+ if batch_size is not None:
1117
+ b = batch_size if batch_size is not None else shape[0]
1118
+ shape = [batch_size] + list(shape)
1119
+ else:
1120
+ b = batch_size = shape[0]
1121
+ if x_T is None:
1122
+ img = torch.randn(shape, device=self.device)
1123
+ else:
1124
+ img = x_T
1125
+ intermediates = []
1126
+ if cond is not None:
1127
+ if isinstance(cond, dict):
1128
+ cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
1129
+ list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
1130
+ else:
1131
+ cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
1132
+
1133
+ if start_T is not None:
1134
+ timesteps = min(timesteps, start_T)
1135
+ iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
1136
+ total=timesteps) if verbose else reversed(
1137
+ range(0, timesteps))
1138
+ if type(temperature) == float:
1139
+ temperature = [temperature] * timesteps
1140
+
1141
+ for i in iterator:
1142
+ ts = torch.full((b,), i, device=self.device, dtype=torch.long)
1143
+ if self.shorten_cond_schedule:
1144
+ assert self.model.conditioning_key != 'hybrid'
1145
+ tc = self.cond_ids[ts].to(cond.device)
1146
+ cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
1147
+
1148
+ img, x0_partial = self.p_sample(img, cond, ts,
1149
+ clip_denoised=self.clip_denoised,
1150
+ quantize_denoised=quantize_denoised, return_x0=True,
1151
+ temperature=temperature[i], noise_dropout=noise_dropout,
1152
+ score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
1153
+ if mask is not None:
1154
+ assert x0 is not None
1155
+ img_orig = self.q_sample(x0, ts)
1156
+ img = img_orig * mask + (1. - mask) * img
1157
+
1158
+ if i % log_every_t == 0 or i == timesteps - 1:
1159
+ intermediates.append(x0_partial)
1160
+ if callback: callback(i)
1161
+ if img_callback: img_callback(img, i)
1162
+ return img, intermediates
1163
+
1164
+ @torch.no_grad()
1165
+ def p_sample_loop(self, cond, shape, return_intermediates=False,
1166
+ x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
1167
+ mask=None, x0=None, img_callback=None, start_T=None,
1168
+ log_every_t=None):
1169
+
1170
+ if not log_every_t:
1171
+ log_every_t = self.log_every_t
1172
+ device = self.betas.device
1173
+ b = shape[0]
1174
+ if x_T is None:
1175
+ img = torch.randn(shape, device=device)
1176
+ else:
1177
+ img = x_T
1178
+
1179
+ intermediates = [img]
1180
+ if timesteps is None:
1181
+ timesteps = self.num_timesteps
1182
+
1183
+ if start_T is not None:
1184
+ timesteps = min(timesteps, start_T)
1185
+ iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
1186
+ range(0, timesteps))
1187
+
1188
+ if mask is not None:
1189
+ assert x0 is not None
1190
+ assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
1191
+
1192
+ for i in iterator:
1193
+ ts = torch.full((b,), i, device=device, dtype=torch.long)
1194
+ if self.shorten_cond_schedule:
1195
+ assert self.model.conditioning_key != 'hybrid'
1196
+ tc = self.cond_ids[ts].to(cond.device)
1197
+ cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
1198
+
1199
+ img = self.p_sample(img, cond, ts,
1200
+ clip_denoised=self.clip_denoised,
1201
+ quantize_denoised=quantize_denoised)
1202
+ if mask is not None:
1203
+ img_orig = self.q_sample(x0, ts)
1204
+ img = img_orig * mask + (1. - mask) * img
1205
+
1206
+ if i % log_every_t == 0 or i == timesteps - 1:
1207
+ intermediates.append(img)
1208
+ if callback: callback(i)
1209
+ if img_callback: img_callback(img, i)
1210
+
1211
+ if return_intermediates:
1212
+ return img, intermediates
1213
+ return img
1214
+
1215
+ @torch.no_grad()
1216
+ def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
1217
+ verbose=True, timesteps=None, quantize_denoised=False,
1218
+ mask=None, x0=None, shape=None,**kwargs):
1219
+ if shape is None:
1220
+ shape = (batch_size, self.channels, self.image_size, self.image_size)
1221
+ if cond is not None:
1222
+ if isinstance(cond, dict):
1223
+ cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
1224
+ list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
1225
+ else:
1226
+ cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
1227
+ return self.p_sample_loop(cond,
1228
+ shape,
1229
+ return_intermediates=return_intermediates, x_T=x_T,
1230
+ verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
1231
+ mask=mask, x0=x0)
1232
+
1233
+ @torch.no_grad()
1234
+ def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs):
1235
+
1236
+ if ddim:
1237
+ ddim_sampler = DDIMSampler(self)
1238
+ shape = (self.channels, self.image_size, self.image_size)
1239
+ samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size,
1240
+ shape,cond,verbose=False,**kwargs)
1241
+
1242
+ else:
1243
+ samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
1244
+ return_intermediates=True,**kwargs)
1245
+
1246
+ return samples, intermediates
1247
+
1248
+
1249
+ @torch.no_grad()
1250
+ def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
1251
+ quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
1252
+ plot_diffusion_rows=True, **kwargs):
1253
+
1254
+ use_ddim = ddim_steps is not None
1255
+
1256
+ log = dict()
1257
+ z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
1258
+ return_first_stage_outputs=True,
1259
+ force_c_encode=True,
1260
+ return_original_cond=True,
1261
+ bs=N)
1262
+ N = min(x.shape[0], N)
1263
+ n_row = min(x.shape[0], n_row)
1264
+ log["inputs"] = x
1265
+ log["reconstruction"] = xrec
1266
+ if self.model.conditioning_key is not None:
1267
+ if hasattr(self.cond_stage_model, "decode"):
1268
+ xc = self.cond_stage_model.decode(c)
1269
+ log["conditioning"] = xc
1270
+ elif self.cond_stage_key in ["caption"]:
1271
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"])
1272
+ log["conditioning"] = xc
1273
+ elif self.cond_stage_key == 'class_label':
1274
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
1275
+ log['conditioning'] = xc
1276
+ elif isimage(xc):
1277
+ log["conditioning"] = xc
1278
+ if ismap(xc):
1279
+ log["original_conditioning"] = self.to_rgb(xc)
1280
+
1281
+ if plot_diffusion_rows:
1282
+ # get diffusion row
1283
+ diffusion_row = list()
1284
+ z_start = z[:n_row]
1285
+ for t in range(self.num_timesteps):
1286
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
1287
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
1288
+ t = t.to(self.device).long()
1289
+ noise = torch.randn_like(z_start)
1290
+ z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
1291
+ diffusion_row.append(self.decode_first_stage(z_noisy))
1292
+
1293
+ diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
1294
+ diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
1295
+ diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
1296
+ diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
1297
+ log["diffusion_row"] = diffusion_grid
1298
+
1299
+ if sample:
1300
+ # get denoise row
1301
+ with self.ema_scope("Plotting"):
1302
+ samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
1303
+ ddim_steps=ddim_steps,eta=ddim_eta)
1304
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
1305
+ x_samples = self.decode_first_stage(samples)
1306
+ log["samples"] = x_samples
1307
+ if plot_denoise_rows:
1308
+ denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
1309
+ log["denoise_row"] = denoise_grid
1310
+
1311
+ if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
1312
+ self.first_stage_model, IdentityFirstStage):
1313
+ # also display when quantizing x0 while sampling
1314
+ with self.ema_scope("Plotting Quantized Denoised"):
1315
+ samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
1316
+ ddim_steps=ddim_steps,eta=ddim_eta,
1317
+ quantize_denoised=True)
1318
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
1319
+ # quantize_denoised=True)
1320
+ x_samples = self.decode_first_stage(samples.to(self.device))
1321
+ log["samples_x0_quantized"] = x_samples
1322
+
1323
+ if inpaint:
1324
+ # make a simple center square
1325
+ b, h, w = z.shape[0], z.shape[2], z.shape[3]
1326
+ mask = torch.ones(N, h, w).to(self.device)
1327
+ # zeros will be filled in
1328
+ mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
1329
+ mask = mask[:, None, ...]
1330
+ with self.ema_scope("Plotting Inpaint"):
1331
+
1332
+ samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta,
1333
+ ddim_steps=ddim_steps, x0=z[:N], mask=mask)
1334
+ x_samples = self.decode_first_stage(samples.to(self.device))
1335
+ log["samples_inpainting"] = x_samples
1336
+ log["mask"] = mask
1337
+
1338
+ # outpaint
1339
+ with self.ema_scope("Plotting Outpaint"):
1340
+ samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta,
1341
+ ddim_steps=ddim_steps, x0=z[:N], mask=mask)
1342
+ x_samples = self.decode_first_stage(samples.to(self.device))
1343
+ log["samples_outpainting"] = x_samples
1344
+
1345
+ if plot_progressive_rows:
1346
+ with self.ema_scope("Plotting Progressives"):
1347
+ img, progressives = self.progressive_denoising(c,
1348
+ shape=(self.channels, self.image_size, self.image_size),
1349
+ batch_size=N)
1350
+ prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
1351
+ log["progressive_row"] = prog_row
1352
+
1353
+ if return_keys:
1354
+ if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
1355
+ return log
1356
+ else:
1357
+ return {key: log[key] for key in return_keys}
1358
+ return log
1359
+
1360
+ def configure_optimizers(self):
1361
+ lr = self.learning_rate
1362
+ params = list(self.model.parameters())
1363
+ if self.cond_stage_trainable:
1364
+ print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
1365
+ params = params + list(self.cond_stage_model.parameters())
1366
+ if self.learn_logvar:
1367
+ print('Diffusion model optimizing logvar')
1368
+ params.append(self.logvar)
1369
+ opt = torch.optim.AdamW(params, lr=lr)
1370
+ if self.use_scheduler:
1371
+ assert 'target' in self.scheduler_config
1372
+ scheduler = instantiate_from_config(self.scheduler_config)
1373
+
1374
+ print("Setting up LambdaLR scheduler...")
1375
+ scheduler = [
1376
+ {
1377
+ 'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
1378
+ 'interval': 'step',
1379
+ 'frequency': 1
1380
+ }]
1381
+ return [opt], scheduler
1382
+ return opt
1383
+
1384
+ @torch.no_grad()
1385
+ def to_rgb(self, x):
1386
+ x = x.float()
1387
+ if not hasattr(self, "colorize"):
1388
+ self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
1389
+ x = nn.functional.conv2d(x, weight=self.colorize)
1390
+ x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
1391
+ return x
1392
+
1393
+
1394
+ class DiffusionWrapperV1(pl.LightningModule):
1395
+ def __init__(self, diff_model_config, conditioning_key):
1396
+ super().__init__()
1397
+ self.diffusion_model = instantiate_from_config(diff_model_config)
1398
+ self.conditioning_key = conditioning_key
1399
+ assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm']
1400
+
1401
+ def forward(self, x, t, c_concat: list = None, c_crossattn: list = None):
1402
+ if self.conditioning_key is None:
1403
+ out = self.diffusion_model(x, t)
1404
+ elif self.conditioning_key == 'concat':
1405
+ xc = torch.cat([x] + c_concat, dim=1)
1406
+ out = self.diffusion_model(xc, t)
1407
+ elif self.conditioning_key == 'crossattn':
1408
+ cc = torch.cat(c_crossattn, 1)
1409
+ out = self.diffusion_model(x, t, context=cc)
1410
+ elif self.conditioning_key == 'hybrid':
1411
+ xc = torch.cat([x] + c_concat, dim=1)
1412
+ cc = torch.cat(c_crossattn, 1)
1413
+ out = self.diffusion_model(xc, t, context=cc)
1414
+ elif self.conditioning_key == 'adm':
1415
+ cc = c_crossattn[0]
1416
+ out = self.diffusion_model(x, t, y=cc)
1417
+ else:
1418
+ raise NotImplementedError()
1419
+
1420
+ return out
1421
+
1422
+
1423
+ class Layout2ImgDiffusionV1(LatentDiffusionV1):
1424
+ # TODO: move all layout-specific hacks to this class
1425
+ def __init__(self, cond_stage_key, *args, **kwargs):
1426
+ assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"'
1427
+ super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs)
1428
+
1429
+ def log_images(self, batch, N=8, *args, **kwargs):
1430
+ logs = super().log_images(batch=batch, N=N, *args, **kwargs)
1431
+
1432
+ key = 'train' if self.training else 'validation'
1433
+ dset = self.trainer.datamodule.datasets[key]
1434
+ mapper = dset.conditional_builders[self.cond_stage_key]
1435
+
1436
+ bbox_imgs = []
1437
+ map_fn = lambda catno: dset.get_textual_label(dset.get_category_id(catno))
1438
+ for tknzd_bbox in batch[self.cond_stage_key][:N]:
1439
+ bboximg = mapper.plot(tknzd_bbox.detach().cpu(), map_fn, (256, 256))
1440
+ bbox_imgs.append(bboximg)
1441
+
1442
+ cond_img = torch.stack(bbox_imgs, dim=0)
1443
+ logs['bbox_image'] = cond_img
1444
+ return logs
1445
+
1446
+ setattr(ldm.models.diffusion.ddpm, "DDPMV1", DDPMV1)
1447
+ setattr(ldm.models.diffusion.ddpm, "LatentDiffusionV1", LatentDiffusionV1)
1448
+ setattr(ldm.models.diffusion.ddpm, "DiffusionWrapperV1", DiffusionWrapperV1)
1449
+ setattr(ldm.models.diffusion.ddpm, "Layout2ImgDiffusionV1", Layout2ImgDiffusionV1)
extensions-builtin/Lora/extra_networks_lora.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from modules import extra_networks, shared
2
+ import lora
3
+
4
+ class ExtraNetworkLora(extra_networks.ExtraNetwork):
5
+ def __init__(self):
6
+ super().__init__('lora')
7
+
8
+ def activate(self, p, params_list):
9
+ additional = shared.opts.sd_lora
10
+
11
+ if additional != "" and additional in lora.available_loras and len([x for x in params_list if x.items[0] == additional]) == 0:
12
+ p.all_prompts = [x + f"<lora:{additional}:{shared.opts.extra_networks_default_multiplier}>" for x in p.all_prompts]
13
+ params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier]))
14
+
15
+ names = []
16
+ multipliers = []
17
+ for params in params_list:
18
+ assert len(params.items) > 0
19
+
20
+ names.append(params.items[0])
21
+ multipliers.append(float(params.items[1]) if len(params.items) > 1 else 1.0)
22
+
23
+ lora.load_loras(names, multipliers)
24
+
25
+ def deactivate(self, p):
26
+ pass
extensions-builtin/Lora/lora.py ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import glob
2
+ import os
3
+ import re
4
+ import torch
5
+
6
+ from modules import shared, devices, sd_models
7
+
8
+ re_digits = re.compile(r"\d+")
9
+ re_unet_down_blocks = re.compile(r"lora_unet_down_blocks_(\d+)_attentions_(\d+)_(.+)")
10
+ re_unet_mid_blocks = re.compile(r"lora_unet_mid_block_attentions_(\d+)_(.+)")
11
+ re_unet_up_blocks = re.compile(r"lora_unet_up_blocks_(\d+)_attentions_(\d+)_(.+)")
12
+ re_text_block = re.compile(r"lora_te_text_model_encoder_layers_(\d+)_(.+)")
13
+
14
+
15
+ def convert_diffusers_name_to_compvis(key):
16
+ def match(match_list, regex):
17
+ r = re.match(regex, key)
18
+ if not r:
19
+ return False
20
+
21
+ match_list.clear()
22
+ match_list.extend([int(x) if re.match(re_digits, x) else x for x in r.groups()])
23
+ return True
24
+
25
+ m = []
26
+
27
+ if match(m, re_unet_down_blocks):
28
+ return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[1]}_1_{m[2]}"
29
+
30
+ if match(m, re_unet_mid_blocks):
31
+ return f"diffusion_model_middle_block_1_{m[1]}"
32
+
33
+ if match(m, re_unet_up_blocks):
34
+ return f"diffusion_model_output_blocks_{m[0] * 3 + m[1]}_1_{m[2]}"
35
+
36
+ if match(m, re_text_block):
37
+ return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}"
38
+
39
+ return key
40
+
41
+
42
+ class LoraOnDisk:
43
+ def __init__(self, name, filename):
44
+ self.name = name
45
+ self.filename = filename
46
+
47
+
48
+ class LoraModule:
49
+ def __init__(self, name):
50
+ self.name = name
51
+ self.multiplier = 1.0
52
+ self.modules = {}
53
+ self.mtime = None
54
+
55
+
56
+ class LoraUpDownModule:
57
+ def __init__(self):
58
+ self.up = None
59
+ self.down = None
60
+ self.alpha = None
61
+
62
+
63
+ def assign_lora_names_to_compvis_modules(sd_model):
64
+ lora_layer_mapping = {}
65
+
66
+ for name, module in shared.sd_model.cond_stage_model.wrapped.named_modules():
67
+ lora_name = name.replace(".", "_")
68
+ lora_layer_mapping[lora_name] = module
69
+ module.lora_layer_name = lora_name
70
+
71
+ for name, module in shared.sd_model.model.named_modules():
72
+ lora_name = name.replace(".", "_")
73
+ lora_layer_mapping[lora_name] = module
74
+ module.lora_layer_name = lora_name
75
+
76
+ sd_model.lora_layer_mapping = lora_layer_mapping
77
+
78
+
79
+ def load_lora(name, filename):
80
+ lora = LoraModule(name)
81
+ lora.mtime = os.path.getmtime(filename)
82
+
83
+ sd = sd_models.read_state_dict(filename)
84
+
85
+ keys_failed_to_match = []
86
+
87
+ for key_diffusers, weight in sd.items():
88
+ fullkey = convert_diffusers_name_to_compvis(key_diffusers)
89
+ key, lora_key = fullkey.split(".", 1)
90
+
91
+ sd_module = shared.sd_model.lora_layer_mapping.get(key, None)
92
+ if sd_module is None:
93
+ keys_failed_to_match.append(key_diffusers)
94
+ continue
95
+
96
+ lora_module = lora.modules.get(key, None)
97
+ if lora_module is None:
98
+ lora_module = LoraUpDownModule()
99
+ lora.modules[key] = lora_module
100
+
101
+ if lora_key == "alpha":
102
+ lora_module.alpha = weight.item()
103
+ continue
104
+
105
+ if type(sd_module) == torch.nn.Linear:
106
+ module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
107
+ elif type(sd_module) == torch.nn.Conv2d:
108
+ module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
109
+ else:
110
+ assert False, f'Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}'
111
+
112
+ with torch.no_grad():
113
+ module.weight.copy_(weight)
114
+
115
+ module.to(device=devices.device, dtype=devices.dtype)
116
+
117
+ if lora_key == "lora_up.weight":
118
+ lora_module.up = module
119
+ elif lora_key == "lora_down.weight":
120
+ lora_module.down = module
121
+ else:
122
+ assert False, f'Bad Lora layer name: {key_diffusers} - must end in lora_up.weight, lora_down.weight or alpha'
123
+
124
+ if len(keys_failed_to_match) > 0:
125
+ print(f"Failed to match keys when loading Lora {filename}: {keys_failed_to_match}")
126
+
127
+ return lora
128
+
129
+
130
+ def load_loras(names, multipliers=None):
131
+ already_loaded = {}
132
+
133
+ for lora in loaded_loras:
134
+ if lora.name in names:
135
+ already_loaded[lora.name] = lora
136
+
137
+ loaded_loras.clear()
138
+
139
+ loras_on_disk = [available_loras.get(name, None) for name in names]
140
+ if any([x is None for x in loras_on_disk]):
141
+ list_available_loras()
142
+
143
+ loras_on_disk = [available_loras.get(name, None) for name in names]
144
+
145
+ for i, name in enumerate(names):
146
+ lora = already_loaded.get(name, None)
147
+
148
+ lora_on_disk = loras_on_disk[i]
149
+ if lora_on_disk is not None:
150
+ if lora is None or os.path.getmtime(lora_on_disk.filename) > lora.mtime:
151
+ lora = load_lora(name, lora_on_disk.filename)
152
+
153
+ if lora is None:
154
+ print(f"Couldn't find Lora with name {name}")
155
+ continue
156
+
157
+ lora.multiplier = multipliers[i] if multipliers else 1.0
158
+ loaded_loras.append(lora)
159
+
160
+
161
+ def lora_forward(module, input, res):
162
+ if len(loaded_loras) == 0:
163
+ return res
164
+
165
+ lora_layer_name = getattr(module, 'lora_layer_name', None)
166
+ for lora in loaded_loras:
167
+ module = lora.modules.get(lora_layer_name, None)
168
+ if module is not None:
169
+ if shared.opts.lora_apply_to_outputs and res.shape == input.shape:
170
+ res = res + module.up(module.down(res)) * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0)
171
+ else:
172
+ res = res + module.up(module.down(input)) * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0)
173
+
174
+ return res
175
+
176
+
177
+ def lora_Linear_forward(self, input):
178
+ return lora_forward(self, input, torch.nn.Linear_forward_before_lora(self, input))
179
+
180
+
181
+ def lora_Conv2d_forward(self, input):
182
+ return lora_forward(self, input, torch.nn.Conv2d_forward_before_lora(self, input))
183
+
184
+
185
+ def list_available_loras():
186
+ available_loras.clear()
187
+
188
+ os.makedirs(shared.cmd_opts.lora_dir, exist_ok=True)
189
+
190
+ candidates = \
191
+ glob.glob(os.path.join(shared.cmd_opts.lora_dir, '**/*.pt'), recursive=True) + \
192
+ glob.glob(os.path.join(shared.cmd_opts.lora_dir, '**/*.safetensors'), recursive=True) + \
193
+ glob.glob(os.path.join(shared.cmd_opts.lora_dir, '**/*.ckpt'), recursive=True)
194
+
195
+ for filename in sorted(candidates):
196
+ if os.path.isdir(filename):
197
+ continue
198
+
199
+ name = os.path.splitext(os.path.basename(filename))[0]
200
+
201
+ available_loras[name] = LoraOnDisk(name, filename)
202
+
203
+
204
+ available_loras = {}
205
+ loaded_loras = []
206
+
207
+ list_available_loras()
extensions-builtin/Lora/preload.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ import os
2
+ from modules import paths
3
+
4
+
5
+ def preload(parser):
6
+ parser.add_argument("--lora-dir", type=str, help="Path to directory with Lora networks.", default=os.path.join(paths.models_path, 'Lora'))
extensions-builtin/Lora/scripts/lora_script.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import gradio as gr
3
+
4
+ import lora
5
+ import extra_networks_lora
6
+ import ui_extra_networks_lora
7
+ from modules import script_callbacks, ui_extra_networks, extra_networks, shared
8
+
9
+
10
+ def unload():
11
+ torch.nn.Linear.forward = torch.nn.Linear_forward_before_lora
12
+ torch.nn.Conv2d.forward = torch.nn.Conv2d_forward_before_lora
13
+
14
+
15
+ def before_ui():
16
+ ui_extra_networks.register_page(ui_extra_networks_lora.ExtraNetworksPageLora())
17
+ extra_networks.register_extra_network(extra_networks_lora.ExtraNetworkLora())
18
+
19
+
20
+ if not hasattr(torch.nn, 'Linear_forward_before_lora'):
21
+ torch.nn.Linear_forward_before_lora = torch.nn.Linear.forward
22
+
23
+ if not hasattr(torch.nn, 'Conv2d_forward_before_lora'):
24
+ torch.nn.Conv2d_forward_before_lora = torch.nn.Conv2d.forward
25
+
26
+ torch.nn.Linear.forward = lora.lora_Linear_forward
27
+ torch.nn.Conv2d.forward = lora.lora_Conv2d_forward
28
+
29
+ script_callbacks.on_model_loaded(lora.assign_lora_names_to_compvis_modules)
30
+ script_callbacks.on_script_unloaded(unload)
31
+ script_callbacks.on_before_ui(before_ui)
32
+
33
+
34
+ shared.options_templates.update(shared.options_section(('extra_networks', "Extra Networks"), {
35
+ "sd_lora": shared.OptionInfo("None", "Add Lora to prompt", gr.Dropdown, lambda: {"choices": [""] + [x for x in lora.available_loras]}, refresh=lora.list_available_loras),
36
+ "lora_apply_to_outputs": shared.OptionInfo(False, "Apply Lora to outputs rather than inputs when possible (experimental)"),
37
+
38
+ }))
extensions-builtin/Lora/ui_extra_networks_lora.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import lora
4
+
5
+ from modules import shared, ui_extra_networks
6
+
7
+
8
+ class ExtraNetworksPageLora(ui_extra_networks.ExtraNetworksPage):
9
+ def __init__(self):
10
+ super().__init__('Lora')
11
+
12
+ def refresh(self):
13
+ lora.list_available_loras()
14
+
15
+ def list_items(self):
16
+ for name, lora_on_disk in lora.available_loras.items():
17
+ path, ext = os.path.splitext(lora_on_disk.filename)
18
+ previews = [path + ".png", path + ".preview.png"]
19
+
20
+ preview = None
21
+ for file in previews:
22
+ if os.path.isfile(file):
23
+ preview = self.link_preview(file)
24
+ break
25
+
26
+ yield {
27
+ "name": name,
28
+ "filename": path,
29
+ "preview": preview,
30
+ "search_term": self.search_terms_from_path(lora_on_disk.filename),
31
+ "prompt": json.dumps(f"<lora:{name}:") + " + opts.extra_networks_default_multiplier + " + json.dumps(">"),
32
+ "local_preview": path + ".png",
33
+ }
34
+
35
+ def allowed_directories_for_previews(self):
36
+ return [shared.cmd_opts.lora_dir]
37
+
extensions-builtin/ScuNET/preload.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ import os
2
+ from modules import paths
3
+
4
+
5
+ def preload(parser):
6
+ parser.add_argument("--scunet-models-path", type=str, help="Path to directory with ScuNET model file(s).", default=os.path.join(paths.models_path, 'ScuNET'))
extensions-builtin/ScuNET/scripts/scunet_model.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os.path
2
+ import sys
3
+ import traceback
4
+
5
+ import PIL.Image
6
+ import numpy as np
7
+ import torch
8
+ from basicsr.utils.download_util import load_file_from_url
9
+
10
+ import modules.upscaler
11
+ from modules import devices, modelloader
12
+ from scunet_model_arch import SCUNet as net
13
+
14
+
15
+ class UpscalerScuNET(modules.upscaler.Upscaler):
16
+ def __init__(self, dirname):
17
+ self.name = "ScuNET"
18
+ self.model_name = "ScuNET GAN"
19
+ self.model_name2 = "ScuNET PSNR"
20
+ self.model_url = "https://github.com/cszn/KAIR/releases/download/v1.0/scunet_color_real_gan.pth"
21
+ self.model_url2 = "https://github.com/cszn/KAIR/releases/download/v1.0/scunet_color_real_psnr.pth"
22
+ self.user_path = dirname
23
+ super().__init__()
24
+ model_paths = self.find_models(ext_filter=[".pth"])
25
+ scalers = []
26
+ add_model2 = True
27
+ for file in model_paths:
28
+ if "http" in file:
29
+ name = self.model_name
30
+ else:
31
+ name = modelloader.friendly_name(file)
32
+ if name == self.model_name2 or file == self.model_url2:
33
+ add_model2 = False
34
+ try:
35
+ scaler_data = modules.upscaler.UpscalerData(name, file, self, 4)
36
+ scalers.append(scaler_data)
37
+ except Exception:
38
+ print(f"Error loading ScuNET model: {file}", file=sys.stderr)
39
+ print(traceback.format_exc(), file=sys.stderr)
40
+ if add_model2:
41
+ scaler_data2 = modules.upscaler.UpscalerData(self.model_name2, self.model_url2, self)
42
+ scalers.append(scaler_data2)
43
+ self.scalers = scalers
44
+
45
+ def do_upscale(self, img: PIL.Image, selected_file):
46
+ torch.cuda.empty_cache()
47
+
48
+ model = self.load_model(selected_file)
49
+ if model is None:
50
+ return img
51
+
52
+ device = devices.get_device_for('scunet')
53
+ img = np.array(img)
54
+ img = img[:, :, ::-1]
55
+ img = np.moveaxis(img, 2, 0) / 255
56
+ img = torch.from_numpy(img).float()
57
+ img = img.unsqueeze(0).to(device)
58
+
59
+ with torch.no_grad():
60
+ output = model(img)
61
+ output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
62
+ output = 255. * np.moveaxis(output, 0, 2)
63
+ output = output.astype(np.uint8)
64
+ output = output[:, :, ::-1]
65
+ torch.cuda.empty_cache()
66
+ return PIL.Image.fromarray(output, 'RGB')
67
+
68
+ def load_model(self, path: str):
69
+ device = devices.get_device_for('scunet')
70
+ if "http" in path:
71
+ filename = load_file_from_url(url=self.model_url, model_dir=self.model_path, file_name="%s.pth" % self.name,
72
+ progress=True)
73
+ else:
74
+ filename = path
75
+ if not os.path.exists(os.path.join(self.model_path, filename)) or filename is None:
76
+ print(f"ScuNET: Unable to load model from {filename}", file=sys.stderr)
77
+ return None
78
+
79
+ model = net(in_nc=3, config=[4, 4, 4, 4, 4, 4, 4], dim=64)
80
+ model.load_state_dict(torch.load(filename), strict=True)
81
+ model.eval()
82
+ for k, v in model.named_parameters():
83
+ v.requires_grad = False
84
+ model = model.to(device)
85
+
86
+ return model
87
+
extensions-builtin/ScuNET/scunet_model_arch.py ADDED
@@ -0,0 +1,265 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ import numpy as np
3
+ import torch
4
+ import torch.nn as nn
5
+ from einops import rearrange
6
+ from einops.layers.torch import Rearrange
7
+ from timm.models.layers import trunc_normal_, DropPath
8
+
9
+
10
+ class WMSA(nn.Module):
11
+ """ Self-attention module in Swin Transformer
12
+ """
13
+
14
+ def __init__(self, input_dim, output_dim, head_dim, window_size, type):
15
+ super(WMSA, self).__init__()
16
+ self.input_dim = input_dim
17
+ self.output_dim = output_dim
18
+ self.head_dim = head_dim
19
+ self.scale = self.head_dim ** -0.5
20
+ self.n_heads = input_dim // head_dim
21
+ self.window_size = window_size
22
+ self.type = type
23
+ self.embedding_layer = nn.Linear(self.input_dim, 3 * self.input_dim, bias=True)
24
+
25
+ self.relative_position_params = nn.Parameter(
26
+ torch.zeros((2 * window_size - 1) * (2 * window_size - 1), self.n_heads))
27
+
28
+ self.linear = nn.Linear(self.input_dim, self.output_dim)
29
+
30
+ trunc_normal_(self.relative_position_params, std=.02)
31
+ self.relative_position_params = torch.nn.Parameter(
32
+ self.relative_position_params.view(2 * window_size - 1, 2 * window_size - 1, self.n_heads).transpose(1,
33
+ 2).transpose(
34
+ 0, 1))
35
+
36
+ def generate_mask(self, h, w, p, shift):
37
+ """ generating the mask of SW-MSA
38
+ Args:
39
+ shift: shift parameters in CyclicShift.
40
+ Returns:
41
+ attn_mask: should be (1 1 w p p),
42
+ """
43
+ # supporting square.
44
+ attn_mask = torch.zeros(h, w, p, p, p, p, dtype=torch.bool, device=self.relative_position_params.device)
45
+ if self.type == 'W':
46
+ return attn_mask
47
+
48
+ s = p - shift
49
+ attn_mask[-1, :, :s, :, s:, :] = True
50
+ attn_mask[-1, :, s:, :, :s, :] = True
51
+ attn_mask[:, -1, :, :s, :, s:] = True
52
+ attn_mask[:, -1, :, s:, :, :s] = True
53
+ attn_mask = rearrange(attn_mask, 'w1 w2 p1 p2 p3 p4 -> 1 1 (w1 w2) (p1 p2) (p3 p4)')
54
+ return attn_mask
55
+
56
+ def forward(self, x):
57
+ """ Forward pass of Window Multi-head Self-attention module.
58
+ Args:
59
+ x: input tensor with shape of [b h w c];
60
+ attn_mask: attention mask, fill -inf where the value is True;
61
+ Returns:
62
+ output: tensor shape [b h w c]
63
+ """
64
+ if self.type != 'W': x = torch.roll(x, shifts=(-(self.window_size // 2), -(self.window_size // 2)), dims=(1, 2))
65
+ x = rearrange(x, 'b (w1 p1) (w2 p2) c -> b w1 w2 p1 p2 c', p1=self.window_size, p2=self.window_size)
66
+ h_windows = x.size(1)
67
+ w_windows = x.size(2)
68
+ # square validation
69
+ # assert h_windows == w_windows
70
+
71
+ x = rearrange(x, 'b w1 w2 p1 p2 c -> b (w1 w2) (p1 p2) c', p1=self.window_size, p2=self.window_size)
72
+ qkv = self.embedding_layer(x)
73
+ q, k, v = rearrange(qkv, 'b nw np (threeh c) -> threeh b nw np c', c=self.head_dim).chunk(3, dim=0)
74
+ sim = torch.einsum('hbwpc,hbwqc->hbwpq', q, k) * self.scale
75
+ # Adding learnable relative embedding
76
+ sim = sim + rearrange(self.relative_embedding(), 'h p q -> h 1 1 p q')
77
+ # Using Attn Mask to distinguish different subwindows.
78
+ if self.type != 'W':
79
+ attn_mask = self.generate_mask(h_windows, w_windows, self.window_size, shift=self.window_size // 2)
80
+ sim = sim.masked_fill_(attn_mask, float("-inf"))
81
+
82
+ probs = nn.functional.softmax(sim, dim=-1)
83
+ output = torch.einsum('hbwij,hbwjc->hbwic', probs, v)
84
+ output = rearrange(output, 'h b w p c -> b w p (h c)')
85
+ output = self.linear(output)
86
+ output = rearrange(output, 'b (w1 w2) (p1 p2) c -> b (w1 p1) (w2 p2) c', w1=h_windows, p1=self.window_size)
87
+
88
+ if self.type != 'W': output = torch.roll(output, shifts=(self.window_size // 2, self.window_size // 2),
89
+ dims=(1, 2))
90
+ return output
91
+
92
+ def relative_embedding(self):
93
+ cord = torch.tensor(np.array([[i, j] for i in range(self.window_size) for j in range(self.window_size)]))
94
+ relation = cord[:, None, :] - cord[None, :, :] + self.window_size - 1
95
+ # negative is allowed
96
+ return self.relative_position_params[:, relation[:, :, 0].long(), relation[:, :, 1].long()]
97
+
98
+
99
+ class Block(nn.Module):
100
+ def __init__(self, input_dim, output_dim, head_dim, window_size, drop_path, type='W', input_resolution=None):
101
+ """ SwinTransformer Block
102
+ """
103
+ super(Block, self).__init__()
104
+ self.input_dim = input_dim
105
+ self.output_dim = output_dim
106
+ assert type in ['W', 'SW']
107
+ self.type = type
108
+ if input_resolution <= window_size:
109
+ self.type = 'W'
110
+
111
+ self.ln1 = nn.LayerNorm(input_dim)
112
+ self.msa = WMSA(input_dim, input_dim, head_dim, window_size, self.type)
113
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
114
+ self.ln2 = nn.LayerNorm(input_dim)
115
+ self.mlp = nn.Sequential(
116
+ nn.Linear(input_dim, 4 * input_dim),
117
+ nn.GELU(),
118
+ nn.Linear(4 * input_dim, output_dim),
119
+ )
120
+
121
+ def forward(self, x):
122
+ x = x + self.drop_path(self.msa(self.ln1(x)))
123
+ x = x + self.drop_path(self.mlp(self.ln2(x)))
124
+ return x
125
+
126
+
127
+ class ConvTransBlock(nn.Module):
128
+ def __init__(self, conv_dim, trans_dim, head_dim, window_size, drop_path, type='W', input_resolution=None):
129
+ """ SwinTransformer and Conv Block
130
+ """
131
+ super(ConvTransBlock, self).__init__()
132
+ self.conv_dim = conv_dim
133
+ self.trans_dim = trans_dim
134
+ self.head_dim = head_dim
135
+ self.window_size = window_size
136
+ self.drop_path = drop_path
137
+ self.type = type
138
+ self.input_resolution = input_resolution
139
+
140
+ assert self.type in ['W', 'SW']
141
+ if self.input_resolution <= self.window_size:
142
+ self.type = 'W'
143
+
144
+ self.trans_block = Block(self.trans_dim, self.trans_dim, self.head_dim, self.window_size, self.drop_path,
145
+ self.type, self.input_resolution)
146
+ self.conv1_1 = nn.Conv2d(self.conv_dim + self.trans_dim, self.conv_dim + self.trans_dim, 1, 1, 0, bias=True)
147
+ self.conv1_2 = nn.Conv2d(self.conv_dim + self.trans_dim, self.conv_dim + self.trans_dim, 1, 1, 0, bias=True)
148
+
149
+ self.conv_block = nn.Sequential(
150
+ nn.Conv2d(self.conv_dim, self.conv_dim, 3, 1, 1, bias=False),
151
+ nn.ReLU(True),
152
+ nn.Conv2d(self.conv_dim, self.conv_dim, 3, 1, 1, bias=False)
153
+ )
154
+
155
+ def forward(self, x):
156
+ conv_x, trans_x = torch.split(self.conv1_1(x), (self.conv_dim, self.trans_dim), dim=1)
157
+ conv_x = self.conv_block(conv_x) + conv_x
158
+ trans_x = Rearrange('b c h w -> b h w c')(trans_x)
159
+ trans_x = self.trans_block(trans_x)
160
+ trans_x = Rearrange('b h w c -> b c h w')(trans_x)
161
+ res = self.conv1_2(torch.cat((conv_x, trans_x), dim=1))
162
+ x = x + res
163
+
164
+ return x
165
+
166
+
167
+ class SCUNet(nn.Module):
168
+ # def __init__(self, in_nc=3, config=[2, 2, 2, 2, 2, 2, 2], dim=64, drop_path_rate=0.0, input_resolution=256):
169
+ def __init__(self, in_nc=3, config=None, dim=64, drop_path_rate=0.0, input_resolution=256):
170
+ super(SCUNet, self).__init__()
171
+ if config is None:
172
+ config = [2, 2, 2, 2, 2, 2, 2]
173
+ self.config = config
174
+ self.dim = dim
175
+ self.head_dim = 32
176
+ self.window_size = 8
177
+
178
+ # drop path rate for each layer
179
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(config))]
180
+
181
+ self.m_head = [nn.Conv2d(in_nc, dim, 3, 1, 1, bias=False)]
182
+
183
+ begin = 0
184
+ self.m_down1 = [ConvTransBlock(dim // 2, dim // 2, self.head_dim, self.window_size, dpr[i + begin],
185
+ 'W' if not i % 2 else 'SW', input_resolution)
186
+ for i in range(config[0])] + \
187
+ [nn.Conv2d(dim, 2 * dim, 2, 2, 0, bias=False)]
188
+
189
+ begin += config[0]
190
+ self.m_down2 = [ConvTransBlock(dim, dim, self.head_dim, self.window_size, dpr[i + begin],
191
+ 'W' if not i % 2 else 'SW', input_resolution // 2)
192
+ for i in range(config[1])] + \
193
+ [nn.Conv2d(2 * dim, 4 * dim, 2, 2, 0, bias=False)]
194
+
195
+ begin += config[1]
196
+ self.m_down3 = [ConvTransBlock(2 * dim, 2 * dim, self.head_dim, self.window_size, dpr[i + begin],
197
+ 'W' if not i % 2 else 'SW', input_resolution // 4)
198
+ for i in range(config[2])] + \
199
+ [nn.Conv2d(4 * dim, 8 * dim, 2, 2, 0, bias=False)]
200
+
201
+ begin += config[2]
202
+ self.m_body = [ConvTransBlock(4 * dim, 4 * dim, self.head_dim, self.window_size, dpr[i + begin],
203
+ 'W' if not i % 2 else 'SW', input_resolution // 8)
204
+ for i in range(config[3])]
205
+
206
+ begin += config[3]
207
+ self.m_up3 = [nn.ConvTranspose2d(8 * dim, 4 * dim, 2, 2, 0, bias=False), ] + \
208
+ [ConvTransBlock(2 * dim, 2 * dim, self.head_dim, self.window_size, dpr[i + begin],
209
+ 'W' if not i % 2 else 'SW', input_resolution // 4)
210
+ for i in range(config[4])]
211
+
212
+ begin += config[4]
213
+ self.m_up2 = [nn.ConvTranspose2d(4 * dim, 2 * dim, 2, 2, 0, bias=False), ] + \
214
+ [ConvTransBlock(dim, dim, self.head_dim, self.window_size, dpr[i + begin],
215
+ 'W' if not i % 2 else 'SW', input_resolution // 2)
216
+ for i in range(config[5])]
217
+
218
+ begin += config[5]
219
+ self.m_up1 = [nn.ConvTranspose2d(2 * dim, dim, 2, 2, 0, bias=False), ] + \
220
+ [ConvTransBlock(dim // 2, dim // 2, self.head_dim, self.window_size, dpr[i + begin],
221
+ 'W' if not i % 2 else 'SW', input_resolution)
222
+ for i in range(config[6])]
223
+
224
+ self.m_tail = [nn.Conv2d(dim, in_nc, 3, 1, 1, bias=False)]
225
+
226
+ self.m_head = nn.Sequential(*self.m_head)
227
+ self.m_down1 = nn.Sequential(*self.m_down1)
228
+ self.m_down2 = nn.Sequential(*self.m_down2)
229
+ self.m_down3 = nn.Sequential(*self.m_down3)
230
+ self.m_body = nn.Sequential(*self.m_body)
231
+ self.m_up3 = nn.Sequential(*self.m_up3)
232
+ self.m_up2 = nn.Sequential(*self.m_up2)
233
+ self.m_up1 = nn.Sequential(*self.m_up1)
234
+ self.m_tail = nn.Sequential(*self.m_tail)
235
+ # self.apply(self._init_weights)
236
+
237
+ def forward(self, x0):
238
+
239
+ h, w = x0.size()[-2:]
240
+ paddingBottom = int(np.ceil(h / 64) * 64 - h)
241
+ paddingRight = int(np.ceil(w / 64) * 64 - w)
242
+ x0 = nn.ReplicationPad2d((0, paddingRight, 0, paddingBottom))(x0)
243
+
244
+ x1 = self.m_head(x0)
245
+ x2 = self.m_down1(x1)
246
+ x3 = self.m_down2(x2)
247
+ x4 = self.m_down3(x3)
248
+ x = self.m_body(x4)
249
+ x = self.m_up3(x + x4)
250
+ x = self.m_up2(x + x3)
251
+ x = self.m_up1(x + x2)
252
+ x = self.m_tail(x + x1)
253
+
254
+ x = x[..., :h, :w]
255
+
256
+ return x
257
+
258
+ def _init_weights(self, m):
259
+ if isinstance(m, nn.Linear):
260
+ trunc_normal_(m.weight, std=.02)
261
+ if m.bias is not None:
262
+ nn.init.constant_(m.bias, 0)
263
+ elif isinstance(m, nn.LayerNorm):
264
+ nn.init.constant_(m.bias, 0)
265
+ nn.init.constant_(m.weight, 1.0)
extensions-builtin/SwinIR/preload.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ import os
2
+ from modules import paths
3
+
4
+
5
+ def preload(parser):
6
+ parser.add_argument("--swinir-models-path", type=str, help="Path to directory with SwinIR model file(s).", default=os.path.join(paths.models_path, 'SwinIR'))
extensions-builtin/SwinIR/scripts/swinir_model.py ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import contextlib
2
+ import os
3
+
4
+ import numpy as np
5
+ import torch
6
+ from PIL import Image
7
+ from basicsr.utils.download_util import load_file_from_url
8
+ from tqdm import tqdm
9
+
10
+ from modules import modelloader, devices, script_callbacks, shared
11
+ from modules.shared import cmd_opts, opts, state
12
+ from swinir_model_arch import SwinIR as net
13
+ from swinir_model_arch_v2 import Swin2SR as net2
14
+ from modules.upscaler import Upscaler, UpscalerData
15
+
16
+
17
+ device_swinir = devices.get_device_for('swinir')
18
+
19
+
20
+ class UpscalerSwinIR(Upscaler):
21
+ def __init__(self, dirname):
22
+ self.name = "SwinIR"
23
+ self.model_url = "https://github.com/JingyunLiang/SwinIR/releases/download/v0.0" \
24
+ "/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR" \
25
+ "-L_x4_GAN.pth "
26
+ self.model_name = "SwinIR 4x"
27
+ self.user_path = dirname
28
+ super().__init__()
29
+ scalers = []
30
+ model_files = self.find_models(ext_filter=[".pt", ".pth"])
31
+ for model in model_files:
32
+ if "http" in model:
33
+ name = self.model_name
34
+ else:
35
+ name = modelloader.friendly_name(model)
36
+ model_data = UpscalerData(name, model, self)
37
+ scalers.append(model_data)
38
+ self.scalers = scalers
39
+
40
+ def do_upscale(self, img, model_file):
41
+ model = self.load_model(model_file)
42
+ if model is None:
43
+ return img
44
+ model = model.to(device_swinir, dtype=devices.dtype)
45
+ img = upscale(img, model)
46
+ try:
47
+ torch.cuda.empty_cache()
48
+ except:
49
+ pass
50
+ return img
51
+
52
+ def load_model(self, path, scale=4):
53
+ if "http" in path:
54
+ dl_name = "%s%s" % (self.model_name.replace(" ", "_"), ".pth")
55
+ filename = load_file_from_url(url=path, model_dir=self.model_path, file_name=dl_name, progress=True)
56
+ else:
57
+ filename = path
58
+ if filename is None or not os.path.exists(filename):
59
+ return None
60
+ if filename.endswith(".v2.pth"):
61
+ model = net2(
62
+ upscale=scale,
63
+ in_chans=3,
64
+ img_size=64,
65
+ window_size=8,
66
+ img_range=1.0,
67
+ depths=[6, 6, 6, 6, 6, 6],
68
+ embed_dim=180,
69
+ num_heads=[6, 6, 6, 6, 6, 6],
70
+ mlp_ratio=2,
71
+ upsampler="nearest+conv",
72
+ resi_connection="1conv",
73
+ )
74
+ params = None
75
+ else:
76
+ model = net(
77
+ upscale=scale,
78
+ in_chans=3,
79
+ img_size=64,
80
+ window_size=8,
81
+ img_range=1.0,
82
+ depths=[6, 6, 6, 6, 6, 6, 6, 6, 6],
83
+ embed_dim=240,
84
+ num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8],
85
+ mlp_ratio=2,
86
+ upsampler="nearest+conv",
87
+ resi_connection="3conv",
88
+ )
89
+ params = "params_ema"
90
+
91
+ pretrained_model = torch.load(filename)
92
+ if params is not None:
93
+ model.load_state_dict(pretrained_model[params], strict=True)
94
+ else:
95
+ model.load_state_dict(pretrained_model, strict=True)
96
+ return model
97
+
98
+
99
+ def upscale(
100
+ img,
101
+ model,
102
+ tile=None,
103
+ tile_overlap=None,
104
+ window_size=8,
105
+ scale=4,
106
+ ):
107
+ tile = tile or opts.SWIN_tile
108
+ tile_overlap = tile_overlap or opts.SWIN_tile_overlap
109
+
110
+
111
+ img = np.array(img)
112
+ img = img[:, :, ::-1]
113
+ img = np.moveaxis(img, 2, 0) / 255
114
+ img = torch.from_numpy(img).float()
115
+ img = img.unsqueeze(0).to(device_swinir, dtype=devices.dtype)
116
+ with torch.no_grad(), devices.autocast():
117
+ _, _, h_old, w_old = img.size()
118
+ h_pad = (h_old // window_size + 1) * window_size - h_old
119
+ w_pad = (w_old // window_size + 1) * window_size - w_old
120
+ img = torch.cat([img, torch.flip(img, [2])], 2)[:, :, : h_old + h_pad, :]
121
+ img = torch.cat([img, torch.flip(img, [3])], 3)[:, :, :, : w_old + w_pad]
122
+ output = inference(img, model, tile, tile_overlap, window_size, scale)
123
+ output = output[..., : h_old * scale, : w_old * scale]
124
+ output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
125
+ if output.ndim == 3:
126
+ output = np.transpose(
127
+ output[[2, 1, 0], :, :], (1, 2, 0)
128
+ ) # CHW-RGB to HCW-BGR
129
+ output = (output * 255.0).round().astype(np.uint8) # float32 to uint8
130
+ return Image.fromarray(output, "RGB")
131
+
132
+
133
+ def inference(img, model, tile, tile_overlap, window_size, scale):
134
+ # test the image tile by tile
135
+ b, c, h, w = img.size()
136
+ tile = min(tile, h, w)
137
+ assert tile % window_size == 0, "tile size should be a multiple of window_size"
138
+ sf = scale
139
+
140
+ stride = tile - tile_overlap
141
+ h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
142
+ w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
143
+ E = torch.zeros(b, c, h * sf, w * sf, dtype=devices.dtype, device=device_swinir).type_as(img)
144
+ W = torch.zeros_like(E, dtype=devices.dtype, device=device_swinir)
145
+
146
+ with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="SwinIR tiles") as pbar:
147
+ for h_idx in h_idx_list:
148
+ if state.interrupted or state.skipped:
149
+ break
150
+
151
+ for w_idx in w_idx_list:
152
+ if state.interrupted or state.skipped:
153
+ break
154
+
155
+ in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile]
156
+ out_patch = model(in_patch)
157
+ out_patch_mask = torch.ones_like(out_patch)
158
+
159
+ E[
160
+ ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
161
+ ].add_(out_patch)
162
+ W[
163
+ ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
164
+ ].add_(out_patch_mask)
165
+ pbar.update(1)
166
+ output = E.div_(W)
167
+
168
+ return output
169
+
170
+
171
+ def on_ui_settings():
172
+ import gradio as gr
173
+
174
+ shared.opts.add_option("SWIN_tile", shared.OptionInfo(192, "Tile size for all SwinIR.", gr.Slider, {"minimum": 16, "maximum": 512, "step": 16}, section=('upscaling', "Upscaling")))
175
+ shared.opts.add_option("SWIN_tile_overlap", shared.OptionInfo(8, "Tile overlap, in pixels for SwinIR. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}, section=('upscaling', "Upscaling")))
176
+
177
+
178
+ script_callbacks.on_ui_settings(on_ui_settings)
extensions-builtin/SwinIR/swinir_model_arch.py ADDED
@@ -0,0 +1,867 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -----------------------------------------------------------------------------------
2
+ # SwinIR: Image Restoration Using Swin Transformer, https://arxiv.org/abs/2108.10257
3
+ # Originally Written by Ze Liu, Modified by Jingyun Liang.
4
+ # -----------------------------------------------------------------------------------
5
+
6
+ import math
7
+ import torch
8
+ import torch.nn as nn
9
+ import torch.nn.functional as F
10
+ import torch.utils.checkpoint as checkpoint
11
+ from timm.models.layers import DropPath, to_2tuple, trunc_normal_
12
+
13
+
14
+ class Mlp(nn.Module):
15
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
16
+ super().__init__()
17
+ out_features = out_features or in_features
18
+ hidden_features = hidden_features or in_features
19
+ self.fc1 = nn.Linear(in_features, hidden_features)
20
+ self.act = act_layer()
21
+ self.fc2 = nn.Linear(hidden_features, out_features)
22
+ self.drop = nn.Dropout(drop)
23
+
24
+ def forward(self, x):
25
+ x = self.fc1(x)
26
+ x = self.act(x)
27
+ x = self.drop(x)
28
+ x = self.fc2(x)
29
+ x = self.drop(x)
30
+ return x
31
+
32
+
33
+ def window_partition(x, window_size):
34
+ """
35
+ Args:
36
+ x: (B, H, W, C)
37
+ window_size (int): window size
38
+
39
+ Returns:
40
+ windows: (num_windows*B, window_size, window_size, C)
41
+ """
42
+ B, H, W, C = x.shape
43
+ x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
44
+ windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
45
+ return windows
46
+
47
+
48
+ def window_reverse(windows, window_size, H, W):
49
+ """
50
+ Args:
51
+ windows: (num_windows*B, window_size, window_size, C)
52
+ window_size (int): Window size
53
+ H (int): Height of image
54
+ W (int): Width of image
55
+
56
+ Returns:
57
+ x: (B, H, W, C)
58
+ """
59
+ B = int(windows.shape[0] / (H * W / window_size / window_size))
60
+ x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
61
+ x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
62
+ return x
63
+
64
+
65
+ class WindowAttention(nn.Module):
66
+ r""" Window based multi-head self attention (W-MSA) module with relative position bias.
67
+ It supports both of shifted and non-shifted window.
68
+
69
+ Args:
70
+ dim (int): Number of input channels.
71
+ window_size (tuple[int]): The height and width of the window.
72
+ num_heads (int): Number of attention heads.
73
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
74
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
75
+ attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
76
+ proj_drop (float, optional): Dropout ratio of output. Default: 0.0
77
+ """
78
+
79
+ def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
80
+
81
+ super().__init__()
82
+ self.dim = dim
83
+ self.window_size = window_size # Wh, Ww
84
+ self.num_heads = num_heads
85
+ head_dim = dim // num_heads
86
+ self.scale = qk_scale or head_dim ** -0.5
87
+
88
+ # define a parameter table of relative position bias
89
+ self.relative_position_bias_table = nn.Parameter(
90
+ torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
91
+
92
+ # get pair-wise relative position index for each token inside the window
93
+ coords_h = torch.arange(self.window_size[0])
94
+ coords_w = torch.arange(self.window_size[1])
95
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
96
+ coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
97
+ relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
98
+ relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
99
+ relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
100
+ relative_coords[:, :, 1] += self.window_size[1] - 1
101
+ relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
102
+ relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
103
+ self.register_buffer("relative_position_index", relative_position_index)
104
+
105
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
106
+ self.attn_drop = nn.Dropout(attn_drop)
107
+ self.proj = nn.Linear(dim, dim)
108
+
109
+ self.proj_drop = nn.Dropout(proj_drop)
110
+
111
+ trunc_normal_(self.relative_position_bias_table, std=.02)
112
+ self.softmax = nn.Softmax(dim=-1)
113
+
114
+ def forward(self, x, mask=None):
115
+ """
116
+ Args:
117
+ x: input features with shape of (num_windows*B, N, C)
118
+ mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
119
+ """
120
+ B_, N, C = x.shape
121
+ qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
122
+ q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
123
+
124
+ q = q * self.scale
125
+ attn = (q @ k.transpose(-2, -1))
126
+
127
+ relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
128
+ self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
129
+ relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
130
+ attn = attn + relative_position_bias.unsqueeze(0)
131
+
132
+ if mask is not None:
133
+ nW = mask.shape[0]
134
+ attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
135
+ attn = attn.view(-1, self.num_heads, N, N)
136
+ attn = self.softmax(attn)
137
+ else:
138
+ attn = self.softmax(attn)
139
+
140
+ attn = self.attn_drop(attn)
141
+
142
+ x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
143
+ x = self.proj(x)
144
+ x = self.proj_drop(x)
145
+ return x
146
+
147
+ def extra_repr(self) -> str:
148
+ return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
149
+
150
+ def flops(self, N):
151
+ # calculate flops for 1 window with token length of N
152
+ flops = 0
153
+ # qkv = self.qkv(x)
154
+ flops += N * self.dim * 3 * self.dim
155
+ # attn = (q @ k.transpose(-2, -1))
156
+ flops += self.num_heads * N * (self.dim // self.num_heads) * N
157
+ # x = (attn @ v)
158
+ flops += self.num_heads * N * N * (self.dim // self.num_heads)
159
+ # x = self.proj(x)
160
+ flops += N * self.dim * self.dim
161
+ return flops
162
+
163
+
164
+ class SwinTransformerBlock(nn.Module):
165
+ r""" Swin Transformer Block.
166
+
167
+ Args:
168
+ dim (int): Number of input channels.
169
+ input_resolution (tuple[int]): Input resolution.
170
+ num_heads (int): Number of attention heads.
171
+ window_size (int): Window size.
172
+ shift_size (int): Shift size for SW-MSA.
173
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
174
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
175
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
176
+ drop (float, optional): Dropout rate. Default: 0.0
177
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
178
+ drop_path (float, optional): Stochastic depth rate. Default: 0.0
179
+ act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
180
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
181
+ """
182
+
183
+ def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
184
+ mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
185
+ act_layer=nn.GELU, norm_layer=nn.LayerNorm):
186
+ super().__init__()
187
+ self.dim = dim
188
+ self.input_resolution = input_resolution
189
+ self.num_heads = num_heads
190
+ self.window_size = window_size
191
+ self.shift_size = shift_size
192
+ self.mlp_ratio = mlp_ratio
193
+ if min(self.input_resolution) <= self.window_size:
194
+ # if window size is larger than input resolution, we don't partition windows
195
+ self.shift_size = 0
196
+ self.window_size = min(self.input_resolution)
197
+ assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
198
+
199
+ self.norm1 = norm_layer(dim)
200
+ self.attn = WindowAttention(
201
+ dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
202
+ qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
203
+
204
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
205
+ self.norm2 = norm_layer(dim)
206
+ mlp_hidden_dim = int(dim * mlp_ratio)
207
+ self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
208
+
209
+ if self.shift_size > 0:
210
+ attn_mask = self.calculate_mask(self.input_resolution)
211
+ else:
212
+ attn_mask = None
213
+
214
+ self.register_buffer("attn_mask", attn_mask)
215
+
216
+ def calculate_mask(self, x_size):
217
+ # calculate attention mask for SW-MSA
218
+ H, W = x_size
219
+ img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
220
+ h_slices = (slice(0, -self.window_size),
221
+ slice(-self.window_size, -self.shift_size),
222
+ slice(-self.shift_size, None))
223
+ w_slices = (slice(0, -self.window_size),
224
+ slice(-self.window_size, -self.shift_size),
225
+ slice(-self.shift_size, None))
226
+ cnt = 0
227
+ for h in h_slices:
228
+ for w in w_slices:
229
+ img_mask[:, h, w, :] = cnt
230
+ cnt += 1
231
+
232
+ mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
233
+ mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
234
+ attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
235
+ attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
236
+
237
+ return attn_mask
238
+
239
+ def forward(self, x, x_size):
240
+ H, W = x_size
241
+ B, L, C = x.shape
242
+ # assert L == H * W, "input feature has wrong size"
243
+
244
+ shortcut = x
245
+ x = self.norm1(x)
246
+ x = x.view(B, H, W, C)
247
+
248
+ # cyclic shift
249
+ if self.shift_size > 0:
250
+ shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
251
+ else:
252
+ shifted_x = x
253
+
254
+ # partition windows
255
+ x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
256
+ x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
257
+
258
+ # W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size
259
+ if self.input_resolution == x_size:
260
+ attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
261
+ else:
262
+ attn_windows = self.attn(x_windows, mask=self.calculate_mask(x_size).to(x.device))
263
+
264
+ # merge windows
265
+ attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
266
+ shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
267
+
268
+ # reverse cyclic shift
269
+ if self.shift_size > 0:
270
+ x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
271
+ else:
272
+ x = shifted_x
273
+ x = x.view(B, H * W, C)
274
+
275
+ # FFN
276
+ x = shortcut + self.drop_path(x)
277
+ x = x + self.drop_path(self.mlp(self.norm2(x)))
278
+
279
+ return x
280
+
281
+ def extra_repr(self) -> str:
282
+ return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
283
+ f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
284
+
285
+ def flops(self):
286
+ flops = 0
287
+ H, W = self.input_resolution
288
+ # norm1
289
+ flops += self.dim * H * W
290
+ # W-MSA/SW-MSA
291
+ nW = H * W / self.window_size / self.window_size
292
+ flops += nW * self.attn.flops(self.window_size * self.window_size)
293
+ # mlp
294
+ flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
295
+ # norm2
296
+ flops += self.dim * H * W
297
+ return flops
298
+
299
+
300
+ class PatchMerging(nn.Module):
301
+ r""" Patch Merging Layer.
302
+
303
+ Args:
304
+ input_resolution (tuple[int]): Resolution of input feature.
305
+ dim (int): Number of input channels.
306
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
307
+ """
308
+
309
+ def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
310
+ super().__init__()
311
+ self.input_resolution = input_resolution
312
+ self.dim = dim
313
+ self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
314
+ self.norm = norm_layer(4 * dim)
315
+
316
+ def forward(self, x):
317
+ """
318
+ x: B, H*W, C
319
+ """
320
+ H, W = self.input_resolution
321
+ B, L, C = x.shape
322
+ assert L == H * W, "input feature has wrong size"
323
+ assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
324
+
325
+ x = x.view(B, H, W, C)
326
+
327
+ x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
328
+ x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
329
+ x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
330
+ x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
331
+ x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
332
+ x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
333
+
334
+ x = self.norm(x)
335
+ x = self.reduction(x)
336
+
337
+ return x
338
+
339
+ def extra_repr(self) -> str:
340
+ return f"input_resolution={self.input_resolution}, dim={self.dim}"
341
+
342
+ def flops(self):
343
+ H, W = self.input_resolution
344
+ flops = H * W * self.dim
345
+ flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
346
+ return flops
347
+
348
+
349
+ class BasicLayer(nn.Module):
350
+ """ A basic Swin Transformer layer for one stage.
351
+
352
+ Args:
353
+ dim (int): Number of input channels.
354
+ input_resolution (tuple[int]): Input resolution.
355
+ depth (int): Number of blocks.
356
+ num_heads (int): Number of attention heads.
357
+ window_size (int): Local window size.
358
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
359
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
360
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
361
+ drop (float, optional): Dropout rate. Default: 0.0
362
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
363
+ drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
364
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
365
+ downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
366
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
367
+ """
368
+
369
+ def __init__(self, dim, input_resolution, depth, num_heads, window_size,
370
+ mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
371
+ drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):
372
+
373
+ super().__init__()
374
+ self.dim = dim
375
+ self.input_resolution = input_resolution
376
+ self.depth = depth
377
+ self.use_checkpoint = use_checkpoint
378
+
379
+ # build blocks
380
+ self.blocks = nn.ModuleList([
381
+ SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
382
+ num_heads=num_heads, window_size=window_size,
383
+ shift_size=0 if (i % 2 == 0) else window_size // 2,
384
+ mlp_ratio=mlp_ratio,
385
+ qkv_bias=qkv_bias, qk_scale=qk_scale,
386
+ drop=drop, attn_drop=attn_drop,
387
+ drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
388
+ norm_layer=norm_layer)
389
+ for i in range(depth)])
390
+
391
+ # patch merging layer
392
+ if downsample is not None:
393
+ self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
394
+ else:
395
+ self.downsample = None
396
+
397
+ def forward(self, x, x_size):
398
+ for blk in self.blocks:
399
+ if self.use_checkpoint:
400
+ x = checkpoint.checkpoint(blk, x, x_size)
401
+ else:
402
+ x = blk(x, x_size)
403
+ if self.downsample is not None:
404
+ x = self.downsample(x)
405
+ return x
406
+
407
+ def extra_repr(self) -> str:
408
+ return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
409
+
410
+ def flops(self):
411
+ flops = 0
412
+ for blk in self.blocks:
413
+ flops += blk.flops()
414
+ if self.downsample is not None:
415
+ flops += self.downsample.flops()
416
+ return flops
417
+
418
+
419
+ class RSTB(nn.Module):
420
+ """Residual Swin Transformer Block (RSTB).
421
+
422
+ Args:
423
+ dim (int): Number of input channels.
424
+ input_resolution (tuple[int]): Input resolution.
425
+ depth (int): Number of blocks.
426
+ num_heads (int): Number of attention heads.
427
+ window_size (int): Local window size.
428
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
429
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
430
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
431
+ drop (float, optional): Dropout rate. Default: 0.0
432
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
433
+ drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
434
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
435
+ downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
436
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
437
+ img_size: Input image size.
438
+ patch_size: Patch size.
439
+ resi_connection: The convolutional block before residual connection.
440
+ """
441
+
442
+ def __init__(self, dim, input_resolution, depth, num_heads, window_size,
443
+ mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
444
+ drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False,
445
+ img_size=224, patch_size=4, resi_connection='1conv'):
446
+ super(RSTB, self).__init__()
447
+
448
+ self.dim = dim
449
+ self.input_resolution = input_resolution
450
+
451
+ self.residual_group = BasicLayer(dim=dim,
452
+ input_resolution=input_resolution,
453
+ depth=depth,
454
+ num_heads=num_heads,
455
+ window_size=window_size,
456
+ mlp_ratio=mlp_ratio,
457
+ qkv_bias=qkv_bias, qk_scale=qk_scale,
458
+ drop=drop, attn_drop=attn_drop,
459
+ drop_path=drop_path,
460
+ norm_layer=norm_layer,
461
+ downsample=downsample,
462
+ use_checkpoint=use_checkpoint)
463
+
464
+ if resi_connection == '1conv':
465
+ self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
466
+ elif resi_connection == '3conv':
467
+ # to save parameters and memory
468
+ self.conv = nn.Sequential(nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
469
+ nn.Conv2d(dim // 4, dim // 4, 1, 1, 0),
470
+ nn.LeakyReLU(negative_slope=0.2, inplace=True),
471
+ nn.Conv2d(dim // 4, dim, 3, 1, 1))
472
+
473
+ self.patch_embed = PatchEmbed(
474
+ img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim,
475
+ norm_layer=None)
476
+
477
+ self.patch_unembed = PatchUnEmbed(
478
+ img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim,
479
+ norm_layer=None)
480
+
481
+ def forward(self, x, x_size):
482
+ return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size), x_size))) + x
483
+
484
+ def flops(self):
485
+ flops = 0
486
+ flops += self.residual_group.flops()
487
+ H, W = self.input_resolution
488
+ flops += H * W * self.dim * self.dim * 9
489
+ flops += self.patch_embed.flops()
490
+ flops += self.patch_unembed.flops()
491
+
492
+ return flops
493
+
494
+
495
+ class PatchEmbed(nn.Module):
496
+ r""" Image to Patch Embedding
497
+
498
+ Args:
499
+ img_size (int): Image size. Default: 224.
500
+ patch_size (int): Patch token size. Default: 4.
501
+ in_chans (int): Number of input image channels. Default: 3.
502
+ embed_dim (int): Number of linear projection output channels. Default: 96.
503
+ norm_layer (nn.Module, optional): Normalization layer. Default: None
504
+ """
505
+
506
+ def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
507
+ super().__init__()
508
+ img_size = to_2tuple(img_size)
509
+ patch_size = to_2tuple(patch_size)
510
+ patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
511
+ self.img_size = img_size
512
+ self.patch_size = patch_size
513
+ self.patches_resolution = patches_resolution
514
+ self.num_patches = patches_resolution[0] * patches_resolution[1]
515
+
516
+ self.in_chans = in_chans
517
+ self.embed_dim = embed_dim
518
+
519
+ if norm_layer is not None:
520
+ self.norm = norm_layer(embed_dim)
521
+ else:
522
+ self.norm = None
523
+
524
+ def forward(self, x):
525
+ x = x.flatten(2).transpose(1, 2) # B Ph*Pw C
526
+ if self.norm is not None:
527
+ x = self.norm(x)
528
+ return x
529
+
530
+ def flops(self):
531
+ flops = 0
532
+ H, W = self.img_size
533
+ if self.norm is not None:
534
+ flops += H * W * self.embed_dim
535
+ return flops
536
+
537
+
538
+ class PatchUnEmbed(nn.Module):
539
+ r""" Image to Patch Unembedding
540
+
541
+ Args:
542
+ img_size (int): Image size. Default: 224.
543
+ patch_size (int): Patch token size. Default: 4.
544
+ in_chans (int): Number of input image channels. Default: 3.
545
+ embed_dim (int): Number of linear projection output channels. Default: 96.
546
+ norm_layer (nn.Module, optional): Normalization layer. Default: None
547
+ """
548
+
549
+ def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
550
+ super().__init__()
551
+ img_size = to_2tuple(img_size)
552
+ patch_size = to_2tuple(patch_size)
553
+ patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
554
+ self.img_size = img_size
555
+ self.patch_size = patch_size
556
+ self.patches_resolution = patches_resolution
557
+ self.num_patches = patches_resolution[0] * patches_resolution[1]
558
+
559
+ self.in_chans = in_chans
560
+ self.embed_dim = embed_dim
561
+
562
+ def forward(self, x, x_size):
563
+ B, HW, C = x.shape
564
+ x = x.transpose(1, 2).view(B, self.embed_dim, x_size[0], x_size[1]) # B Ph*Pw C
565
+ return x
566
+
567
+ def flops(self):
568
+ flops = 0
569
+ return flops
570
+
571
+
572
+ class Upsample(nn.Sequential):
573
+ """Upsample module.
574
+
575
+ Args:
576
+ scale (int): Scale factor. Supported scales: 2^n and 3.
577
+ num_feat (int): Channel number of intermediate features.
578
+ """
579
+
580
+ def __init__(self, scale, num_feat):
581
+ m = []
582
+ if (scale & (scale - 1)) == 0: # scale = 2^n
583
+ for _ in range(int(math.log(scale, 2))):
584
+ m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
585
+ m.append(nn.PixelShuffle(2))
586
+ elif scale == 3:
587
+ m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
588
+ m.append(nn.PixelShuffle(3))
589
+ else:
590
+ raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
591
+ super(Upsample, self).__init__(*m)
592
+
593
+
594
+ class UpsampleOneStep(nn.Sequential):
595
+ """UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle)
596
+ Used in lightweight SR to save parameters.
597
+
598
+ Args:
599
+ scale (int): Scale factor. Supported scales: 2^n and 3.
600
+ num_feat (int): Channel number of intermediate features.
601
+
602
+ """
603
+
604
+ def __init__(self, scale, num_feat, num_out_ch, input_resolution=None):
605
+ self.num_feat = num_feat
606
+ self.input_resolution = input_resolution
607
+ m = []
608
+ m.append(nn.Conv2d(num_feat, (scale ** 2) * num_out_ch, 3, 1, 1))
609
+ m.append(nn.PixelShuffle(scale))
610
+ super(UpsampleOneStep, self).__init__(*m)
611
+
612
+ def flops(self):
613
+ H, W = self.input_resolution
614
+ flops = H * W * self.num_feat * 3 * 9
615
+ return flops
616
+
617
+
618
+ class SwinIR(nn.Module):
619
+ r""" SwinIR
620
+ A PyTorch impl of : `SwinIR: Image Restoration Using Swin Transformer`, based on Swin Transformer.
621
+
622
+ Args:
623
+ img_size (int | tuple(int)): Input image size. Default 64
624
+ patch_size (int | tuple(int)): Patch size. Default: 1
625
+ in_chans (int): Number of input image channels. Default: 3
626
+ embed_dim (int): Patch embedding dimension. Default: 96
627
+ depths (tuple(int)): Depth of each Swin Transformer layer.
628
+ num_heads (tuple(int)): Number of attention heads in different layers.
629
+ window_size (int): Window size. Default: 7
630
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
631
+ qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
632
+ qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
633
+ drop_rate (float): Dropout rate. Default: 0
634
+ attn_drop_rate (float): Attention dropout rate. Default: 0
635
+ drop_path_rate (float): Stochastic depth rate. Default: 0.1
636
+ norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
637
+ ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
638
+ patch_norm (bool): If True, add normalization after patch embedding. Default: True
639
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
640
+ upscale: Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction
641
+ img_range: Image range. 1. or 255.
642
+ upsampler: The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None
643
+ resi_connection: The convolutional block before residual connection. '1conv'/'3conv'
644
+ """
645
+
646
+ def __init__(self, img_size=64, patch_size=1, in_chans=3,
647
+ embed_dim=96, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6],
648
+ window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None,
649
+ drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
650
+ norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
651
+ use_checkpoint=False, upscale=2, img_range=1., upsampler='', resi_connection='1conv',
652
+ **kwargs):
653
+ super(SwinIR, self).__init__()
654
+ num_in_ch = in_chans
655
+ num_out_ch = in_chans
656
+ num_feat = 64
657
+ self.img_range = img_range
658
+ if in_chans == 3:
659
+ rgb_mean = (0.4488, 0.4371, 0.4040)
660
+ self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
661
+ else:
662
+ self.mean = torch.zeros(1, 1, 1, 1)
663
+ self.upscale = upscale
664
+ self.upsampler = upsampler
665
+ self.window_size = window_size
666
+
667
+ #####################################################################################################
668
+ ################################### 1, shallow feature extraction ###################################
669
+ self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)
670
+
671
+ #####################################################################################################
672
+ ################################### 2, deep feature extraction ######################################
673
+ self.num_layers = len(depths)
674
+ self.embed_dim = embed_dim
675
+ self.ape = ape
676
+ self.patch_norm = patch_norm
677
+ self.num_features = embed_dim
678
+ self.mlp_ratio = mlp_ratio
679
+
680
+ # split image into non-overlapping patches
681
+ self.patch_embed = PatchEmbed(
682
+ img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
683
+ norm_layer=norm_layer if self.patch_norm else None)
684
+ num_patches = self.patch_embed.num_patches
685
+ patches_resolution = self.patch_embed.patches_resolution
686
+ self.patches_resolution = patches_resolution
687
+
688
+ # merge non-overlapping patches into image
689
+ self.patch_unembed = PatchUnEmbed(
690
+ img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
691
+ norm_layer=norm_layer if self.patch_norm else None)
692
+
693
+ # absolute position embedding
694
+ if self.ape:
695
+ self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
696
+ trunc_normal_(self.absolute_pos_embed, std=.02)
697
+
698
+ self.pos_drop = nn.Dropout(p=drop_rate)
699
+
700
+ # stochastic depth
701
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
702
+
703
+ # build Residual Swin Transformer blocks (RSTB)
704
+ self.layers = nn.ModuleList()
705
+ for i_layer in range(self.num_layers):
706
+ layer = RSTB(dim=embed_dim,
707
+ input_resolution=(patches_resolution[0],
708
+ patches_resolution[1]),
709
+ depth=depths[i_layer],
710
+ num_heads=num_heads[i_layer],
711
+ window_size=window_size,
712
+ mlp_ratio=self.mlp_ratio,
713
+ qkv_bias=qkv_bias, qk_scale=qk_scale,
714
+ drop=drop_rate, attn_drop=attn_drop_rate,
715
+ drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results
716
+ norm_layer=norm_layer,
717
+ downsample=None,
718
+ use_checkpoint=use_checkpoint,
719
+ img_size=img_size,
720
+ patch_size=patch_size,
721
+ resi_connection=resi_connection
722
+
723
+ )
724
+ self.layers.append(layer)
725
+ self.norm = norm_layer(self.num_features)
726
+
727
+ # build the last conv layer in deep feature extraction
728
+ if resi_connection == '1conv':
729
+ self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
730
+ elif resi_connection == '3conv':
731
+ # to save parameters and memory
732
+ self.conv_after_body = nn.Sequential(nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1),
733
+ nn.LeakyReLU(negative_slope=0.2, inplace=True),
734
+ nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0),
735
+ nn.LeakyReLU(negative_slope=0.2, inplace=True),
736
+ nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1))
737
+
738
+ #####################################################################################################
739
+ ################################ 3, high quality image reconstruction ################################
740
+ if self.upsampler == 'pixelshuffle':
741
+ # for classical SR
742
+ self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
743
+ nn.LeakyReLU(inplace=True))
744
+ self.upsample = Upsample(upscale, num_feat)
745
+ self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
746
+ elif self.upsampler == 'pixelshuffledirect':
747
+ # for lightweight SR (to save parameters)
748
+ self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch,
749
+ (patches_resolution[0], patches_resolution[1]))
750
+ elif self.upsampler == 'nearest+conv':
751
+ # for real-world SR (less artifacts)
752
+ self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
753
+ nn.LeakyReLU(inplace=True))
754
+ self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
755
+ if self.upscale == 4:
756
+ self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
757
+ self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
758
+ self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
759
+ self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
760
+ else:
761
+ # for image denoising and JPEG compression artifact reduction
762
+ self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1)
763
+
764
+ self.apply(self._init_weights)
765
+
766
+ def _init_weights(self, m):
767
+ if isinstance(m, nn.Linear):
768
+ trunc_normal_(m.weight, std=.02)
769
+ if isinstance(m, nn.Linear) and m.bias is not None:
770
+ nn.init.constant_(m.bias, 0)
771
+ elif isinstance(m, nn.LayerNorm):
772
+ nn.init.constant_(m.bias, 0)
773
+ nn.init.constant_(m.weight, 1.0)
774
+
775
+ @torch.jit.ignore
776
+ def no_weight_decay(self):
777
+ return {'absolute_pos_embed'}
778
+
779
+ @torch.jit.ignore
780
+ def no_weight_decay_keywords(self):
781
+ return {'relative_position_bias_table'}
782
+
783
+ def check_image_size(self, x):
784
+ _, _, h, w = x.size()
785
+ mod_pad_h = (self.window_size - h % self.window_size) % self.window_size
786
+ mod_pad_w = (self.window_size - w % self.window_size) % self.window_size
787
+ x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect')
788
+ return x
789
+
790
+ def forward_features(self, x):
791
+ x_size = (x.shape[2], x.shape[3])
792
+ x = self.patch_embed(x)
793
+ if self.ape:
794
+ x = x + self.absolute_pos_embed
795
+ x = self.pos_drop(x)
796
+
797
+ for layer in self.layers:
798
+ x = layer(x, x_size)
799
+
800
+ x = self.norm(x) # B L C
801
+ x = self.patch_unembed(x, x_size)
802
+
803
+ return x
804
+
805
+ def forward(self, x):
806
+ H, W = x.shape[2:]
807
+ x = self.check_image_size(x)
808
+
809
+ self.mean = self.mean.type_as(x)
810
+ x = (x - self.mean) * self.img_range
811
+
812
+ if self.upsampler == 'pixelshuffle':
813
+ # for classical SR
814
+ x = self.conv_first(x)
815
+ x = self.conv_after_body(self.forward_features(x)) + x
816
+ x = self.conv_before_upsample(x)
817
+ x = self.conv_last(self.upsample(x))
818
+ elif self.upsampler == 'pixelshuffledirect':
819
+ # for lightweight SR
820
+ x = self.conv_first(x)
821
+ x = self.conv_after_body(self.forward_features(x)) + x
822
+ x = self.upsample(x)
823
+ elif self.upsampler == 'nearest+conv':
824
+ # for real-world SR
825
+ x = self.conv_first(x)
826
+ x = self.conv_after_body(self.forward_features(x)) + x
827
+ x = self.conv_before_upsample(x)
828
+ x = self.lrelu(self.conv_up1(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
829
+ if self.upscale == 4:
830
+ x = self.lrelu(self.conv_up2(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
831
+ x = self.conv_last(self.lrelu(self.conv_hr(x)))
832
+ else:
833
+ # for image denoising and JPEG compression artifact reduction
834
+ x_first = self.conv_first(x)
835
+ res = self.conv_after_body(self.forward_features(x_first)) + x_first
836
+ x = x + self.conv_last(res)
837
+
838
+ x = x / self.img_range + self.mean
839
+
840
+ return x[:, :, :H*self.upscale, :W*self.upscale]
841
+
842
+ def flops(self):
843
+ flops = 0
844
+ H, W = self.patches_resolution
845
+ flops += H * W * 3 * self.embed_dim * 9
846
+ flops += self.patch_embed.flops()
847
+ for i, layer in enumerate(self.layers):
848
+ flops += layer.flops()
849
+ flops += H * W * 3 * self.embed_dim * self.embed_dim
850
+ flops += self.upsample.flops()
851
+ return flops
852
+
853
+
854
+ if __name__ == '__main__':
855
+ upscale = 4
856
+ window_size = 8
857
+ height = (1024 // upscale // window_size + 1) * window_size
858
+ width = (720 // upscale // window_size + 1) * window_size
859
+ model = SwinIR(upscale=2, img_size=(height, width),
860
+ window_size=window_size, img_range=1., depths=[6, 6, 6, 6],
861
+ embed_dim=60, num_heads=[6, 6, 6, 6], mlp_ratio=2, upsampler='pixelshuffledirect')
862
+ print(model)
863
+ print(height, width, model.flops() / 1e9)
864
+
865
+ x = torch.randn((1, 3, height, width))
866
+ x = model(x)
867
+ print(x.shape)
extensions-builtin/SwinIR/swinir_model_arch_v2.py ADDED
@@ -0,0 +1,1017 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -----------------------------------------------------------------------------------
2
+ # Swin2SR: Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration, https://arxiv.org/abs/
3
+ # Written by Conde and Choi et al.
4
+ # -----------------------------------------------------------------------------------
5
+
6
+ import math
7
+ import numpy as np
8
+ import torch
9
+ import torch.nn as nn
10
+ import torch.nn.functional as F
11
+ import torch.utils.checkpoint as checkpoint
12
+ from timm.models.layers import DropPath, to_2tuple, trunc_normal_
13
+
14
+
15
+ class Mlp(nn.Module):
16
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
17
+ super().__init__()
18
+ out_features = out_features or in_features
19
+ hidden_features = hidden_features or in_features
20
+ self.fc1 = nn.Linear(in_features, hidden_features)
21
+ self.act = act_layer()
22
+ self.fc2 = nn.Linear(hidden_features, out_features)
23
+ self.drop = nn.Dropout(drop)
24
+
25
+ def forward(self, x):
26
+ x = self.fc1(x)
27
+ x = self.act(x)
28
+ x = self.drop(x)
29
+ x = self.fc2(x)
30
+ x = self.drop(x)
31
+ return x
32
+
33
+
34
+ def window_partition(x, window_size):
35
+ """
36
+ Args:
37
+ x: (B, H, W, C)
38
+ window_size (int): window size
39
+ Returns:
40
+ windows: (num_windows*B, window_size, window_size, C)
41
+ """
42
+ B, H, W, C = x.shape
43
+ x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
44
+ windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
45
+ return windows
46
+
47
+
48
+ def window_reverse(windows, window_size, H, W):
49
+ """
50
+ Args:
51
+ windows: (num_windows*B, window_size, window_size, C)
52
+ window_size (int): Window size
53
+ H (int): Height of image
54
+ W (int): Width of image
55
+ Returns:
56
+ x: (B, H, W, C)
57
+ """
58
+ B = int(windows.shape[0] / (H * W / window_size / window_size))
59
+ x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
60
+ x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
61
+ return x
62
+
63
+ class WindowAttention(nn.Module):
64
+ r""" Window based multi-head self attention (W-MSA) module with relative position bias.
65
+ It supports both of shifted and non-shifted window.
66
+ Args:
67
+ dim (int): Number of input channels.
68
+ window_size (tuple[int]): The height and width of the window.
69
+ num_heads (int): Number of attention heads.
70
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
71
+ attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
72
+ proj_drop (float, optional): Dropout ratio of output. Default: 0.0
73
+ pretrained_window_size (tuple[int]): The height and width of the window in pre-training.
74
+ """
75
+
76
+ def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.,
77
+ pretrained_window_size=[0, 0]):
78
+
79
+ super().__init__()
80
+ self.dim = dim
81
+ self.window_size = window_size # Wh, Ww
82
+ self.pretrained_window_size = pretrained_window_size
83
+ self.num_heads = num_heads
84
+
85
+ self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True)
86
+
87
+ # mlp to generate continuous relative position bias
88
+ self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True),
89
+ nn.ReLU(inplace=True),
90
+ nn.Linear(512, num_heads, bias=False))
91
+
92
+ # get relative_coords_table
93
+ relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32)
94
+ relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32)
95
+ relative_coords_table = torch.stack(
96
+ torch.meshgrid([relative_coords_h,
97
+ relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2
98
+ if pretrained_window_size[0] > 0:
99
+ relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1)
100
+ relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1)
101
+ else:
102
+ relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1)
103
+ relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1)
104
+ relative_coords_table *= 8 # normalize to -8, 8
105
+ relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
106
+ torch.abs(relative_coords_table) + 1.0) / np.log2(8)
107
+
108
+ self.register_buffer("relative_coords_table", relative_coords_table)
109
+
110
+ # get pair-wise relative position index for each token inside the window
111
+ coords_h = torch.arange(self.window_size[0])
112
+ coords_w = torch.arange(self.window_size[1])
113
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
114
+ coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
115
+ relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
116
+ relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
117
+ relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
118
+ relative_coords[:, :, 1] += self.window_size[1] - 1
119
+ relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
120
+ relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
121
+ self.register_buffer("relative_position_index", relative_position_index)
122
+
123
+ self.qkv = nn.Linear(dim, dim * 3, bias=False)
124
+ if qkv_bias:
125
+ self.q_bias = nn.Parameter(torch.zeros(dim))
126
+ self.v_bias = nn.Parameter(torch.zeros(dim))
127
+ else:
128
+ self.q_bias = None
129
+ self.v_bias = None
130
+ self.attn_drop = nn.Dropout(attn_drop)
131
+ self.proj = nn.Linear(dim, dim)
132
+ self.proj_drop = nn.Dropout(proj_drop)
133
+ self.softmax = nn.Softmax(dim=-1)
134
+
135
+ def forward(self, x, mask=None):
136
+ """
137
+ Args:
138
+ x: input features with shape of (num_windows*B, N, C)
139
+ mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
140
+ """
141
+ B_, N, C = x.shape
142
+ qkv_bias = None
143
+ if self.q_bias is not None:
144
+ qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
145
+ qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
146
+ qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
147
+ q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
148
+
149
+ # cosine attention
150
+ attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1))
151
+ logit_scale = torch.clamp(self.logit_scale, max=torch.log(torch.tensor(1. / 0.01)).to(self.logit_scale.device)).exp()
152
+ attn = attn * logit_scale
153
+
154
+ relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads)
155
+ relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view(
156
+ self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
157
+ relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
158
+ relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
159
+ attn = attn + relative_position_bias.unsqueeze(0)
160
+
161
+ if mask is not None:
162
+ nW = mask.shape[0]
163
+ attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
164
+ attn = attn.view(-1, self.num_heads, N, N)
165
+ attn = self.softmax(attn)
166
+ else:
167
+ attn = self.softmax(attn)
168
+
169
+ attn = self.attn_drop(attn)
170
+
171
+ x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
172
+ x = self.proj(x)
173
+ x = self.proj_drop(x)
174
+ return x
175
+
176
+ def extra_repr(self) -> str:
177
+ return f'dim={self.dim}, window_size={self.window_size}, ' \
178
+ f'pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}'
179
+
180
+ def flops(self, N):
181
+ # calculate flops for 1 window with token length of N
182
+ flops = 0
183
+ # qkv = self.qkv(x)
184
+ flops += N * self.dim * 3 * self.dim
185
+ # attn = (q @ k.transpose(-2, -1))
186
+ flops += self.num_heads * N * (self.dim // self.num_heads) * N
187
+ # x = (attn @ v)
188
+ flops += self.num_heads * N * N * (self.dim // self.num_heads)
189
+ # x = self.proj(x)
190
+ flops += N * self.dim * self.dim
191
+ return flops
192
+
193
+ class SwinTransformerBlock(nn.Module):
194
+ r""" Swin Transformer Block.
195
+ Args:
196
+ dim (int): Number of input channels.
197
+ input_resolution (tuple[int]): Input resulotion.
198
+ num_heads (int): Number of attention heads.
199
+ window_size (int): Window size.
200
+ shift_size (int): Shift size for SW-MSA.
201
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
202
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
203
+ drop (float, optional): Dropout rate. Default: 0.0
204
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
205
+ drop_path (float, optional): Stochastic depth rate. Default: 0.0
206
+ act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
207
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
208
+ pretrained_window_size (int): Window size in pre-training.
209
+ """
210
+
211
+ def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
212
+ mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,
213
+ act_layer=nn.GELU, norm_layer=nn.LayerNorm, pretrained_window_size=0):
214
+ super().__init__()
215
+ self.dim = dim
216
+ self.input_resolution = input_resolution
217
+ self.num_heads = num_heads
218
+ self.window_size = window_size
219
+ self.shift_size = shift_size
220
+ self.mlp_ratio = mlp_ratio
221
+ if min(self.input_resolution) <= self.window_size:
222
+ # if window size is larger than input resolution, we don't partition windows
223
+ self.shift_size = 0
224
+ self.window_size = min(self.input_resolution)
225
+ assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
226
+
227
+ self.norm1 = norm_layer(dim)
228
+ self.attn = WindowAttention(
229
+ dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
230
+ qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
231
+ pretrained_window_size=to_2tuple(pretrained_window_size))
232
+
233
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
234
+ self.norm2 = norm_layer(dim)
235
+ mlp_hidden_dim = int(dim * mlp_ratio)
236
+ self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
237
+
238
+ if self.shift_size > 0:
239
+ attn_mask = self.calculate_mask(self.input_resolution)
240
+ else:
241
+ attn_mask = None
242
+
243
+ self.register_buffer("attn_mask", attn_mask)
244
+
245
+ def calculate_mask(self, x_size):
246
+ # calculate attention mask for SW-MSA
247
+ H, W = x_size
248
+ img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
249
+ h_slices = (slice(0, -self.window_size),
250
+ slice(-self.window_size, -self.shift_size),
251
+ slice(-self.shift_size, None))
252
+ w_slices = (slice(0, -self.window_size),
253
+ slice(-self.window_size, -self.shift_size),
254
+ slice(-self.shift_size, None))
255
+ cnt = 0
256
+ for h in h_slices:
257
+ for w in w_slices:
258
+ img_mask[:, h, w, :] = cnt
259
+ cnt += 1
260
+
261
+ mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
262
+ mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
263
+ attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
264
+ attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
265
+
266
+ return attn_mask
267
+
268
+ def forward(self, x, x_size):
269
+ H, W = x_size
270
+ B, L, C = x.shape
271
+ #assert L == H * W, "input feature has wrong size"
272
+
273
+ shortcut = x
274
+ x = x.view(B, H, W, C)
275
+
276
+ # cyclic shift
277
+ if self.shift_size > 0:
278
+ shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
279
+ else:
280
+ shifted_x = x
281
+
282
+ # partition windows
283
+ x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
284
+ x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
285
+
286
+ # W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size
287
+ if self.input_resolution == x_size:
288
+ attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
289
+ else:
290
+ attn_windows = self.attn(x_windows, mask=self.calculate_mask(x_size).to(x.device))
291
+
292
+ # merge windows
293
+ attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
294
+ shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
295
+
296
+ # reverse cyclic shift
297
+ if self.shift_size > 0:
298
+ x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
299
+ else:
300
+ x = shifted_x
301
+ x = x.view(B, H * W, C)
302
+ x = shortcut + self.drop_path(self.norm1(x))
303
+
304
+ # FFN
305
+ x = x + self.drop_path(self.norm2(self.mlp(x)))
306
+
307
+ return x
308
+
309
+ def extra_repr(self) -> str:
310
+ return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
311
+ f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
312
+
313
+ def flops(self):
314
+ flops = 0
315
+ H, W = self.input_resolution
316
+ # norm1
317
+ flops += self.dim * H * W
318
+ # W-MSA/SW-MSA
319
+ nW = H * W / self.window_size / self.window_size
320
+ flops += nW * self.attn.flops(self.window_size * self.window_size)
321
+ # mlp
322
+ flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
323
+ # norm2
324
+ flops += self.dim * H * W
325
+ return flops
326
+
327
+ class PatchMerging(nn.Module):
328
+ r""" Patch Merging Layer.
329
+ Args:
330
+ input_resolution (tuple[int]): Resolution of input feature.
331
+ dim (int): Number of input channels.
332
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
333
+ """
334
+
335
+ def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
336
+ super().__init__()
337
+ self.input_resolution = input_resolution
338
+ self.dim = dim
339
+ self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
340
+ self.norm = norm_layer(2 * dim)
341
+
342
+ def forward(self, x):
343
+ """
344
+ x: B, H*W, C
345
+ """
346
+ H, W = self.input_resolution
347
+ B, L, C = x.shape
348
+ assert L == H * W, "input feature has wrong size"
349
+ assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
350
+
351
+ x = x.view(B, H, W, C)
352
+
353
+ x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
354
+ x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
355
+ x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
356
+ x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
357
+ x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
358
+ x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
359
+
360
+ x = self.reduction(x)
361
+ x = self.norm(x)
362
+
363
+ return x
364
+
365
+ def extra_repr(self) -> str:
366
+ return f"input_resolution={self.input_resolution}, dim={self.dim}"
367
+
368
+ def flops(self):
369
+ H, W = self.input_resolution
370
+ flops = (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
371
+ flops += H * W * self.dim // 2
372
+ return flops
373
+
374
+ class BasicLayer(nn.Module):
375
+ """ A basic Swin Transformer layer for one stage.
376
+ Args:
377
+ dim (int): Number of input channels.
378
+ input_resolution (tuple[int]): Input resolution.
379
+ depth (int): Number of blocks.
380
+ num_heads (int): Number of attention heads.
381
+ window_size (int): Local window size.
382
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
383
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
384
+ drop (float, optional): Dropout rate. Default: 0.0
385
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
386
+ drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
387
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
388
+ downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
389
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
390
+ pretrained_window_size (int): Local window size in pre-training.
391
+ """
392
+
393
+ def __init__(self, dim, input_resolution, depth, num_heads, window_size,
394
+ mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.,
395
+ drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False,
396
+ pretrained_window_size=0):
397
+
398
+ super().__init__()
399
+ self.dim = dim
400
+ self.input_resolution = input_resolution
401
+ self.depth = depth
402
+ self.use_checkpoint = use_checkpoint
403
+
404
+ # build blocks
405
+ self.blocks = nn.ModuleList([
406
+ SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
407
+ num_heads=num_heads, window_size=window_size,
408
+ shift_size=0 if (i % 2 == 0) else window_size // 2,
409
+ mlp_ratio=mlp_ratio,
410
+ qkv_bias=qkv_bias,
411
+ drop=drop, attn_drop=attn_drop,
412
+ drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
413
+ norm_layer=norm_layer,
414
+ pretrained_window_size=pretrained_window_size)
415
+ for i in range(depth)])
416
+
417
+ # patch merging layer
418
+ if downsample is not None:
419
+ self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
420
+ else:
421
+ self.downsample = None
422
+
423
+ def forward(self, x, x_size):
424
+ for blk in self.blocks:
425
+ if self.use_checkpoint:
426
+ x = checkpoint.checkpoint(blk, x, x_size)
427
+ else:
428
+ x = blk(x, x_size)
429
+ if self.downsample is not None:
430
+ x = self.downsample(x)
431
+ return x
432
+
433
+ def extra_repr(self) -> str:
434
+ return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
435
+
436
+ def flops(self):
437
+ flops = 0
438
+ for blk in self.blocks:
439
+ flops += blk.flops()
440
+ if self.downsample is not None:
441
+ flops += self.downsample.flops()
442
+ return flops
443
+
444
+ def _init_respostnorm(self):
445
+ for blk in self.blocks:
446
+ nn.init.constant_(blk.norm1.bias, 0)
447
+ nn.init.constant_(blk.norm1.weight, 0)
448
+ nn.init.constant_(blk.norm2.bias, 0)
449
+ nn.init.constant_(blk.norm2.weight, 0)
450
+
451
+ class PatchEmbed(nn.Module):
452
+ r""" Image to Patch Embedding
453
+ Args:
454
+ img_size (int): Image size. Default: 224.
455
+ patch_size (int): Patch token size. Default: 4.
456
+ in_chans (int): Number of input image channels. Default: 3.
457
+ embed_dim (int): Number of linear projection output channels. Default: 96.
458
+ norm_layer (nn.Module, optional): Normalization layer. Default: None
459
+ """
460
+
461
+ def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
462
+ super().__init__()
463
+ img_size = to_2tuple(img_size)
464
+ patch_size = to_2tuple(patch_size)
465
+ patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
466
+ self.img_size = img_size
467
+ self.patch_size = patch_size
468
+ self.patches_resolution = patches_resolution
469
+ self.num_patches = patches_resolution[0] * patches_resolution[1]
470
+
471
+ self.in_chans = in_chans
472
+ self.embed_dim = embed_dim
473
+
474
+ self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
475
+ if norm_layer is not None:
476
+ self.norm = norm_layer(embed_dim)
477
+ else:
478
+ self.norm = None
479
+
480
+ def forward(self, x):
481
+ B, C, H, W = x.shape
482
+ # FIXME look at relaxing size constraints
483
+ # assert H == self.img_size[0] and W == self.img_size[1],
484
+ # f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
485
+ x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C
486
+ if self.norm is not None:
487
+ x = self.norm(x)
488
+ return x
489
+
490
+ def flops(self):
491
+ Ho, Wo = self.patches_resolution
492
+ flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
493
+ if self.norm is not None:
494
+ flops += Ho * Wo * self.embed_dim
495
+ return flops
496
+
497
+ class RSTB(nn.Module):
498
+ """Residual Swin Transformer Block (RSTB).
499
+
500
+ Args:
501
+ dim (int): Number of input channels.
502
+ input_resolution (tuple[int]): Input resolution.
503
+ depth (int): Number of blocks.
504
+ num_heads (int): Number of attention heads.
505
+ window_size (int): Local window size.
506
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
507
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
508
+ drop (float, optional): Dropout rate. Default: 0.0
509
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
510
+ drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
511
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
512
+ downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
513
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
514
+ img_size: Input image size.
515
+ patch_size: Patch size.
516
+ resi_connection: The convolutional block before residual connection.
517
+ """
518
+
519
+ def __init__(self, dim, input_resolution, depth, num_heads, window_size,
520
+ mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.,
521
+ drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False,
522
+ img_size=224, patch_size=4, resi_connection='1conv'):
523
+ super(RSTB, self).__init__()
524
+
525
+ self.dim = dim
526
+ self.input_resolution = input_resolution
527
+
528
+ self.residual_group = BasicLayer(dim=dim,
529
+ input_resolution=input_resolution,
530
+ depth=depth,
531
+ num_heads=num_heads,
532
+ window_size=window_size,
533
+ mlp_ratio=mlp_ratio,
534
+ qkv_bias=qkv_bias,
535
+ drop=drop, attn_drop=attn_drop,
536
+ drop_path=drop_path,
537
+ norm_layer=norm_layer,
538
+ downsample=downsample,
539
+ use_checkpoint=use_checkpoint)
540
+
541
+ if resi_connection == '1conv':
542
+ self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
543
+ elif resi_connection == '3conv':
544
+ # to save parameters and memory
545
+ self.conv = nn.Sequential(nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
546
+ nn.Conv2d(dim // 4, dim // 4, 1, 1, 0),
547
+ nn.LeakyReLU(negative_slope=0.2, inplace=True),
548
+ nn.Conv2d(dim // 4, dim, 3, 1, 1))
549
+
550
+ self.patch_embed = PatchEmbed(
551
+ img_size=img_size, patch_size=patch_size, in_chans=dim, embed_dim=dim,
552
+ norm_layer=None)
553
+
554
+ self.patch_unembed = PatchUnEmbed(
555
+ img_size=img_size, patch_size=patch_size, in_chans=dim, embed_dim=dim,
556
+ norm_layer=None)
557
+
558
+ def forward(self, x, x_size):
559
+ return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size), x_size))) + x
560
+
561
+ def flops(self):
562
+ flops = 0
563
+ flops += self.residual_group.flops()
564
+ H, W = self.input_resolution
565
+ flops += H * W * self.dim * self.dim * 9
566
+ flops += self.patch_embed.flops()
567
+ flops += self.patch_unembed.flops()
568
+
569
+ return flops
570
+
571
+ class PatchUnEmbed(nn.Module):
572
+ r""" Image to Patch Unembedding
573
+
574
+ Args:
575
+ img_size (int): Image size. Default: 224.
576
+ patch_size (int): Patch token size. Default: 4.
577
+ in_chans (int): Number of input image channels. Default: 3.
578
+ embed_dim (int): Number of linear projection output channels. Default: 96.
579
+ norm_layer (nn.Module, optional): Normalization layer. Default: None
580
+ """
581
+
582
+ def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
583
+ super().__init__()
584
+ img_size = to_2tuple(img_size)
585
+ patch_size = to_2tuple(patch_size)
586
+ patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
587
+ self.img_size = img_size
588
+ self.patch_size = patch_size
589
+ self.patches_resolution = patches_resolution
590
+ self.num_patches = patches_resolution[0] * patches_resolution[1]
591
+
592
+ self.in_chans = in_chans
593
+ self.embed_dim = embed_dim
594
+
595
+ def forward(self, x, x_size):
596
+ B, HW, C = x.shape
597
+ x = x.transpose(1, 2).view(B, self.embed_dim, x_size[0], x_size[1]) # B Ph*Pw C
598
+ return x
599
+
600
+ def flops(self):
601
+ flops = 0
602
+ return flops
603
+
604
+
605
+ class Upsample(nn.Sequential):
606
+ """Upsample module.
607
+
608
+ Args:
609
+ scale (int): Scale factor. Supported scales: 2^n and 3.
610
+ num_feat (int): Channel number of intermediate features.
611
+ """
612
+
613
+ def __init__(self, scale, num_feat):
614
+ m = []
615
+ if (scale & (scale - 1)) == 0: # scale = 2^n
616
+ for _ in range(int(math.log(scale, 2))):
617
+ m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
618
+ m.append(nn.PixelShuffle(2))
619
+ elif scale == 3:
620
+ m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
621
+ m.append(nn.PixelShuffle(3))
622
+ else:
623
+ raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
624
+ super(Upsample, self).__init__(*m)
625
+
626
+ class Upsample_hf(nn.Sequential):
627
+ """Upsample module.
628
+
629
+ Args:
630
+ scale (int): Scale factor. Supported scales: 2^n and 3.
631
+ num_feat (int): Channel number of intermediate features.
632
+ """
633
+
634
+ def __init__(self, scale, num_feat):
635
+ m = []
636
+ if (scale & (scale - 1)) == 0: # scale = 2^n
637
+ for _ in range(int(math.log(scale, 2))):
638
+ m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
639
+ m.append(nn.PixelShuffle(2))
640
+ elif scale == 3:
641
+ m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
642
+ m.append(nn.PixelShuffle(3))
643
+ else:
644
+ raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
645
+ super(Upsample_hf, self).__init__(*m)
646
+
647
+
648
+ class UpsampleOneStep(nn.Sequential):
649
+ """UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle)
650
+ Used in lightweight SR to save parameters.
651
+
652
+ Args:
653
+ scale (int): Scale factor. Supported scales: 2^n and 3.
654
+ num_feat (int): Channel number of intermediate features.
655
+
656
+ """
657
+
658
+ def __init__(self, scale, num_feat, num_out_ch, input_resolution=None):
659
+ self.num_feat = num_feat
660
+ self.input_resolution = input_resolution
661
+ m = []
662
+ m.append(nn.Conv2d(num_feat, (scale ** 2) * num_out_ch, 3, 1, 1))
663
+ m.append(nn.PixelShuffle(scale))
664
+ super(UpsampleOneStep, self).__init__(*m)
665
+
666
+ def flops(self):
667
+ H, W = self.input_resolution
668
+ flops = H * W * self.num_feat * 3 * 9
669
+ return flops
670
+
671
+
672
+
673
+ class Swin2SR(nn.Module):
674
+ r""" Swin2SR
675
+ A PyTorch impl of : `Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration`.
676
+
677
+ Args:
678
+ img_size (int | tuple(int)): Input image size. Default 64
679
+ patch_size (int | tuple(int)): Patch size. Default: 1
680
+ in_chans (int): Number of input image channels. Default: 3
681
+ embed_dim (int): Patch embedding dimension. Default: 96
682
+ depths (tuple(int)): Depth of each Swin Transformer layer.
683
+ num_heads (tuple(int)): Number of attention heads in different layers.
684
+ window_size (int): Window size. Default: 7
685
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
686
+ qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
687
+ drop_rate (float): Dropout rate. Default: 0
688
+ attn_drop_rate (float): Attention dropout rate. Default: 0
689
+ drop_path_rate (float): Stochastic depth rate. Default: 0.1
690
+ norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
691
+ ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
692
+ patch_norm (bool): If True, add normalization after patch embedding. Default: True
693
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
694
+ upscale: Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction
695
+ img_range: Image range. 1. or 255.
696
+ upsampler: The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None
697
+ resi_connection: The convolutional block before residual connection. '1conv'/'3conv'
698
+ """
699
+
700
+ def __init__(self, img_size=64, patch_size=1, in_chans=3,
701
+ embed_dim=96, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6],
702
+ window_size=7, mlp_ratio=4., qkv_bias=True,
703
+ drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
704
+ norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
705
+ use_checkpoint=False, upscale=2, img_range=1., upsampler='', resi_connection='1conv',
706
+ **kwargs):
707
+ super(Swin2SR, self).__init__()
708
+ num_in_ch = in_chans
709
+ num_out_ch = in_chans
710
+ num_feat = 64
711
+ self.img_range = img_range
712
+ if in_chans == 3:
713
+ rgb_mean = (0.4488, 0.4371, 0.4040)
714
+ self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
715
+ else:
716
+ self.mean = torch.zeros(1, 1, 1, 1)
717
+ self.upscale = upscale
718
+ self.upsampler = upsampler
719
+ self.window_size = window_size
720
+
721
+ #####################################################################################################
722
+ ################################### 1, shallow feature extraction ###################################
723
+ self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)
724
+
725
+ #####################################################################################################
726
+ ################################### 2, deep feature extraction ######################################
727
+ self.num_layers = len(depths)
728
+ self.embed_dim = embed_dim
729
+ self.ape = ape
730
+ self.patch_norm = patch_norm
731
+ self.num_features = embed_dim
732
+ self.mlp_ratio = mlp_ratio
733
+
734
+ # split image into non-overlapping patches
735
+ self.patch_embed = PatchEmbed(
736
+ img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
737
+ norm_layer=norm_layer if self.patch_norm else None)
738
+ num_patches = self.patch_embed.num_patches
739
+ patches_resolution = self.patch_embed.patches_resolution
740
+ self.patches_resolution = patches_resolution
741
+
742
+ # merge non-overlapping patches into image
743
+ self.patch_unembed = PatchUnEmbed(
744
+ img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
745
+ norm_layer=norm_layer if self.patch_norm else None)
746
+
747
+ # absolute position embedding
748
+ if self.ape:
749
+ self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
750
+ trunc_normal_(self.absolute_pos_embed, std=.02)
751
+
752
+ self.pos_drop = nn.Dropout(p=drop_rate)
753
+
754
+ # stochastic depth
755
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
756
+
757
+ # build Residual Swin Transformer blocks (RSTB)
758
+ self.layers = nn.ModuleList()
759
+ for i_layer in range(self.num_layers):
760
+ layer = RSTB(dim=embed_dim,
761
+ input_resolution=(patches_resolution[0],
762
+ patches_resolution[1]),
763
+ depth=depths[i_layer],
764
+ num_heads=num_heads[i_layer],
765
+ window_size=window_size,
766
+ mlp_ratio=self.mlp_ratio,
767
+ qkv_bias=qkv_bias,
768
+ drop=drop_rate, attn_drop=attn_drop_rate,
769
+ drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results
770
+ norm_layer=norm_layer,
771
+ downsample=None,
772
+ use_checkpoint=use_checkpoint,
773
+ img_size=img_size,
774
+ patch_size=patch_size,
775
+ resi_connection=resi_connection
776
+
777
+ )
778
+ self.layers.append(layer)
779
+
780
+ if self.upsampler == 'pixelshuffle_hf':
781
+ self.layers_hf = nn.ModuleList()
782
+ for i_layer in range(self.num_layers):
783
+ layer = RSTB(dim=embed_dim,
784
+ input_resolution=(patches_resolution[0],
785
+ patches_resolution[1]),
786
+ depth=depths[i_layer],
787
+ num_heads=num_heads[i_layer],
788
+ window_size=window_size,
789
+ mlp_ratio=self.mlp_ratio,
790
+ qkv_bias=qkv_bias,
791
+ drop=drop_rate, attn_drop=attn_drop_rate,
792
+ drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results
793
+ norm_layer=norm_layer,
794
+ downsample=None,
795
+ use_checkpoint=use_checkpoint,
796
+ img_size=img_size,
797
+ patch_size=patch_size,
798
+ resi_connection=resi_connection
799
+
800
+ )
801
+ self.layers_hf.append(layer)
802
+
803
+ self.norm = norm_layer(self.num_features)
804
+
805
+ # build the last conv layer in deep feature extraction
806
+ if resi_connection == '1conv':
807
+ self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
808
+ elif resi_connection == '3conv':
809
+ # to save parameters and memory
810
+ self.conv_after_body = nn.Sequential(nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1),
811
+ nn.LeakyReLU(negative_slope=0.2, inplace=True),
812
+ nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0),
813
+ nn.LeakyReLU(negative_slope=0.2, inplace=True),
814
+ nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1))
815
+
816
+ #####################################################################################################
817
+ ################################ 3, high quality image reconstruction ################################
818
+ if self.upsampler == 'pixelshuffle':
819
+ # for classical SR
820
+ self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
821
+ nn.LeakyReLU(inplace=True))
822
+ self.upsample = Upsample(upscale, num_feat)
823
+ self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
824
+ elif self.upsampler == 'pixelshuffle_aux':
825
+ self.conv_bicubic = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
826
+ self.conv_before_upsample = nn.Sequential(
827
+ nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
828
+ nn.LeakyReLU(inplace=True))
829
+ self.conv_aux = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
830
+ self.conv_after_aux = nn.Sequential(
831
+ nn.Conv2d(3, num_feat, 3, 1, 1),
832
+ nn.LeakyReLU(inplace=True))
833
+ self.upsample = Upsample(upscale, num_feat)
834
+ self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
835
+
836
+ elif self.upsampler == 'pixelshuffle_hf':
837
+ self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
838
+ nn.LeakyReLU(inplace=True))
839
+ self.upsample = Upsample(upscale, num_feat)
840
+ self.upsample_hf = Upsample_hf(upscale, num_feat)
841
+ self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
842
+ self.conv_first_hf = nn.Sequential(nn.Conv2d(num_feat, embed_dim, 3, 1, 1),
843
+ nn.LeakyReLU(inplace=True))
844
+ self.conv_after_body_hf = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
845
+ self.conv_before_upsample_hf = nn.Sequential(
846
+ nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
847
+ nn.LeakyReLU(inplace=True))
848
+ self.conv_last_hf = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
849
+
850
+ elif self.upsampler == 'pixelshuffledirect':
851
+ # for lightweight SR (to save parameters)
852
+ self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch,
853
+ (patches_resolution[0], patches_resolution[1]))
854
+ elif self.upsampler == 'nearest+conv':
855
+ # for real-world SR (less artifacts)
856
+ assert self.upscale == 4, 'only support x4 now.'
857
+ self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
858
+ nn.LeakyReLU(inplace=True))
859
+ self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
860
+ self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
861
+ self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
862
+ self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
863
+ self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
864
+ else:
865
+ # for image denoising and JPEG compression artifact reduction
866
+ self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1)
867
+
868
+ self.apply(self._init_weights)
869
+
870
+ def _init_weights(self, m):
871
+ if isinstance(m, nn.Linear):
872
+ trunc_normal_(m.weight, std=.02)
873
+ if isinstance(m, nn.Linear) and m.bias is not None:
874
+ nn.init.constant_(m.bias, 0)
875
+ elif isinstance(m, nn.LayerNorm):
876
+ nn.init.constant_(m.bias, 0)
877
+ nn.init.constant_(m.weight, 1.0)
878
+
879
+ @torch.jit.ignore
880
+ def no_weight_decay(self):
881
+ return {'absolute_pos_embed'}
882
+
883
+ @torch.jit.ignore
884
+ def no_weight_decay_keywords(self):
885
+ return {'relative_position_bias_table'}
886
+
887
+ def check_image_size(self, x):
888
+ _, _, h, w = x.size()
889
+ mod_pad_h = (self.window_size - h % self.window_size) % self.window_size
890
+ mod_pad_w = (self.window_size - w % self.window_size) % self.window_size
891
+ x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect')
892
+ return x
893
+
894
+ def forward_features(self, x):
895
+ x_size = (x.shape[2], x.shape[3])
896
+ x = self.patch_embed(x)
897
+ if self.ape:
898
+ x = x + self.absolute_pos_embed
899
+ x = self.pos_drop(x)
900
+
901
+ for layer in self.layers:
902
+ x = layer(x, x_size)
903
+
904
+ x = self.norm(x) # B L C
905
+ x = self.patch_unembed(x, x_size)
906
+
907
+ return x
908
+
909
+ def forward_features_hf(self, x):
910
+ x_size = (x.shape[2], x.shape[3])
911
+ x = self.patch_embed(x)
912
+ if self.ape:
913
+ x = x + self.absolute_pos_embed
914
+ x = self.pos_drop(x)
915
+
916
+ for layer in self.layers_hf:
917
+ x = layer(x, x_size)
918
+
919
+ x = self.norm(x) # B L C
920
+ x = self.patch_unembed(x, x_size)
921
+
922
+ return x
923
+
924
+ def forward(self, x):
925
+ H, W = x.shape[2:]
926
+ x = self.check_image_size(x)
927
+
928
+ self.mean = self.mean.type_as(x)
929
+ x = (x - self.mean) * self.img_range
930
+
931
+ if self.upsampler == 'pixelshuffle':
932
+ # for classical SR
933
+ x = self.conv_first(x)
934
+ x = self.conv_after_body(self.forward_features(x)) + x
935
+ x = self.conv_before_upsample(x)
936
+ x = self.conv_last(self.upsample(x))
937
+ elif self.upsampler == 'pixelshuffle_aux':
938
+ bicubic = F.interpolate(x, size=(H * self.upscale, W * self.upscale), mode='bicubic', align_corners=False)
939
+ bicubic = self.conv_bicubic(bicubic)
940
+ x = self.conv_first(x)
941
+ x = self.conv_after_body(self.forward_features(x)) + x
942
+ x = self.conv_before_upsample(x)
943
+ aux = self.conv_aux(x) # b, 3, LR_H, LR_W
944
+ x = self.conv_after_aux(aux)
945
+ x = self.upsample(x)[:, :, :H * self.upscale, :W * self.upscale] + bicubic[:, :, :H * self.upscale, :W * self.upscale]
946
+ x = self.conv_last(x)
947
+ aux = aux / self.img_range + self.mean
948
+ elif self.upsampler == 'pixelshuffle_hf':
949
+ # for classical SR with HF
950
+ x = self.conv_first(x)
951
+ x = self.conv_after_body(self.forward_features(x)) + x
952
+ x_before = self.conv_before_upsample(x)
953
+ x_out = self.conv_last(self.upsample(x_before))
954
+
955
+ x_hf = self.conv_first_hf(x_before)
956
+ x_hf = self.conv_after_body_hf(self.forward_features_hf(x_hf)) + x_hf
957
+ x_hf = self.conv_before_upsample_hf(x_hf)
958
+ x_hf = self.conv_last_hf(self.upsample_hf(x_hf))
959
+ x = x_out + x_hf
960
+ x_hf = x_hf / self.img_range + self.mean
961
+
962
+ elif self.upsampler == 'pixelshuffledirect':
963
+ # for lightweight SR
964
+ x = self.conv_first(x)
965
+ x = self.conv_after_body(self.forward_features(x)) + x
966
+ x = self.upsample(x)
967
+ elif self.upsampler == 'nearest+conv':
968
+ # for real-world SR
969
+ x = self.conv_first(x)
970
+ x = self.conv_after_body(self.forward_features(x)) + x
971
+ x = self.conv_before_upsample(x)
972
+ x = self.lrelu(self.conv_up1(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
973
+ x = self.lrelu(self.conv_up2(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
974
+ x = self.conv_last(self.lrelu(self.conv_hr(x)))
975
+ else:
976
+ # for image denoising and JPEG compression artifact reduction
977
+ x_first = self.conv_first(x)
978
+ res = self.conv_after_body(self.forward_features(x_first)) + x_first
979
+ x = x + self.conv_last(res)
980
+
981
+ x = x / self.img_range + self.mean
982
+ if self.upsampler == "pixelshuffle_aux":
983
+ return x[:, :, :H*self.upscale, :W*self.upscale], aux
984
+
985
+ elif self.upsampler == "pixelshuffle_hf":
986
+ x_out = x_out / self.img_range + self.mean
987
+ return x_out[:, :, :H*self.upscale, :W*self.upscale], x[:, :, :H*self.upscale, :W*self.upscale], x_hf[:, :, :H*self.upscale, :W*self.upscale]
988
+
989
+ else:
990
+ return x[:, :, :H*self.upscale, :W*self.upscale]
991
+
992
+ def flops(self):
993
+ flops = 0
994
+ H, W = self.patches_resolution
995
+ flops += H * W * 3 * self.embed_dim * 9
996
+ flops += self.patch_embed.flops()
997
+ for i, layer in enumerate(self.layers):
998
+ flops += layer.flops()
999
+ flops += H * W * 3 * self.embed_dim * self.embed_dim
1000
+ flops += self.upsample.flops()
1001
+ return flops
1002
+
1003
+
1004
+ if __name__ == '__main__':
1005
+ upscale = 4
1006
+ window_size = 8
1007
+ height = (1024 // upscale // window_size + 1) * window_size
1008
+ width = (720 // upscale // window_size + 1) * window_size
1009
+ model = Swin2SR(upscale=2, img_size=(height, width),
1010
+ window_size=window_size, img_range=1., depths=[6, 6, 6, 6],
1011
+ embed_dim=60, num_heads=[6, 6, 6, 6], mlp_ratio=2, upsampler='pixelshuffledirect')
1012
+ print(model)
1013
+ print(height, width, model.flops() / 1e9)
1014
+
1015
+ x = torch.randn((1, 3, height, width))
1016
+ x = model(x)
1017
+ print(x.shape)
extensions-builtin/prompt-bracket-checker/javascript/prompt-bracket-checker.js ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Stable Diffusion WebUI - Bracket checker
2
+ // Version 1.0
3
+ // By Hingashi no Florin/Bwin4L
4
+ // Counts open and closed brackets (round, square, curly) in the prompt and negative prompt text boxes in the txt2img and img2img tabs.
5
+ // If there's a mismatch, the keyword counter turns red and if you hover on it, a tooltip tells you what's wrong.
6
+
7
+ function checkBrackets(evt, textArea, counterElt) {
8
+ errorStringParen = '(...) - Different number of opening and closing parentheses detected.\n';
9
+ errorStringSquare = '[...] - Different number of opening and closing square brackets detected.\n';
10
+ errorStringCurly = '{...} - Different number of opening and closing curly brackets detected.\n';
11
+
12
+ openBracketRegExp = /\(/g;
13
+ closeBracketRegExp = /\)/g;
14
+
15
+ openSquareBracketRegExp = /\[/g;
16
+ closeSquareBracketRegExp = /\]/g;
17
+
18
+ openCurlyBracketRegExp = /\{/g;
19
+ closeCurlyBracketRegExp = /\}/g;
20
+
21
+ totalOpenBracketMatches = 0;
22
+ totalCloseBracketMatches = 0;
23
+ totalOpenSquareBracketMatches = 0;
24
+ totalCloseSquareBracketMatches = 0;
25
+ totalOpenCurlyBracketMatches = 0;
26
+ totalCloseCurlyBracketMatches = 0;
27
+
28
+ openBracketMatches = textArea.value.match(openBracketRegExp);
29
+ if(openBracketMatches) {
30
+ totalOpenBracketMatches = openBracketMatches.length;
31
+ }
32
+
33
+ closeBracketMatches = textArea.value.match(closeBracketRegExp);
34
+ if(closeBracketMatches) {
35
+ totalCloseBracketMatches = closeBracketMatches.length;
36
+ }
37
+
38
+ openSquareBracketMatches = textArea.value.match(openSquareBracketRegExp);
39
+ if(openSquareBracketMatches) {
40
+ totalOpenSquareBracketMatches = openSquareBracketMatches.length;
41
+ }
42
+
43
+ closeSquareBracketMatches = textArea.value.match(closeSquareBracketRegExp);
44
+ if(closeSquareBracketMatches) {
45
+ totalCloseSquareBracketMatches = closeSquareBracketMatches.length;
46
+ }
47
+
48
+ openCurlyBracketMatches = textArea.value.match(openCurlyBracketRegExp);
49
+ if(openCurlyBracketMatches) {
50
+ totalOpenCurlyBracketMatches = openCurlyBracketMatches.length;
51
+ }
52
+
53
+ closeCurlyBracketMatches = textArea.value.match(closeCurlyBracketRegExp);
54
+ if(closeCurlyBracketMatches) {
55
+ totalCloseCurlyBracketMatches = closeCurlyBracketMatches.length;
56
+ }
57
+
58
+ if(totalOpenBracketMatches != totalCloseBracketMatches) {
59
+ if(!counterElt.title.includes(errorStringParen)) {
60
+ counterElt.title += errorStringParen;
61
+ }
62
+ } else {
63
+ counterElt.title = counterElt.title.replace(errorStringParen, '');
64
+ }
65
+
66
+ if(totalOpenSquareBracketMatches != totalCloseSquareBracketMatches) {
67
+ if(!counterElt.title.includes(errorStringSquare)) {
68
+ counterElt.title += errorStringSquare;
69
+ }
70
+ } else {
71
+ counterElt.title = counterElt.title.replace(errorStringSquare, '');
72
+ }
73
+
74
+ if(totalOpenCurlyBracketMatches != totalCloseCurlyBracketMatches) {
75
+ if(!counterElt.title.includes(errorStringCurly)) {
76
+ counterElt.title += errorStringCurly;
77
+ }
78
+ } else {
79
+ counterElt.title = counterElt.title.replace(errorStringCurly, '');
80
+ }
81
+
82
+ if(counterElt.title != '') {
83
+ counterElt.classList.add('error');
84
+ } else {
85
+ counterElt.classList.remove('error');
86
+ }
87
+ }
88
+
89
+ function setupBracketChecking(id_prompt, id_counter){
90
+ var textarea = gradioApp().querySelector("#" + id_prompt + " > label > textarea");
91
+ var counter = gradioApp().getElementById(id_counter)
92
+ textarea.addEventListener("input", function(evt){
93
+ checkBrackets(evt, textarea, counter)
94
+ });
95
+ }
96
+
97
+ var shadowRootLoaded = setInterval(function() {
98
+ var shadowRoot = document.querySelector('gradio-app').shadowRoot;
99
+ if(! shadowRoot) return false;
100
+
101
+ var shadowTextArea = shadowRoot.querySelectorAll('#txt2img_prompt > label > textarea');
102
+ if(shadowTextArea.length < 1) return false;
103
+
104
+ clearInterval(shadowRootLoaded);
105
+
106
+ setupBracketChecking('txt2img_prompt', 'txt2img_token_counter')
107
+ setupBracketChecking('txt2img_neg_prompt', 'txt2img_negative_token_counter')
108
+ setupBracketChecking('img2img_prompt', 'imgimg_token_counter')
109
+ setupBracketChecking('img2img_neg_prompt', 'img2img_negative_token_counter')
110
+ }, 1000);
handler.py ADDED
@@ -0,0 +1,233 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # inference handler for huggingface
2
+ import os
3
+ import sys
4
+ import time
5
+ import importlib
6
+ import signal
7
+ import re
8
+ from typing import Dict, List, Any
9
+ # from fastapi import FastAPI
10
+ # from fastapi.middleware.cors import CORSMiddleware
11
+ # from fastapi.middleware.gzip import GZipMiddleware
12
+ from packaging import version
13
+
14
+ import logging
15
+ logging.getLogger("xformers").addFilter(lambda record: 'A matching Triton is not available' not in record.getMessage())
16
+
17
+ from modules import errors
18
+ from modules.call_queue import wrap_queued_call, queue_lock, wrap_gradio_gpu_call
19
+
20
+ import torch
21
+
22
+ # Truncate version number of nightly/local build of PyTorch to not cause exceptions with CodeFormer or Safetensors
23
+ if ".dev" in torch.__version__ or "+git" in torch.__version__:
24
+ torch.__long_version__ = torch.__version__
25
+ torch.__version__ = re.search(r'[\d.]+[\d]', torch.__version__).group(0)
26
+
27
+ from modules import shared, devices, ui_tempdir
28
+ import modules.codeformer_model as codeformer
29
+ import modules.face_restoration
30
+ import modules.gfpgan_model as gfpgan
31
+ import modules.img2img
32
+
33
+ import modules.lowvram
34
+ import modules.paths
35
+ import modules.scripts
36
+ import modules.sd_hijack
37
+ import modules.sd_models
38
+ import modules.sd_vae
39
+ import modules.txt2img
40
+ import modules.script_callbacks
41
+ import modules.textual_inversion.textual_inversion
42
+ import modules.progress
43
+
44
+ import modules.ui
45
+ from modules import modelloader
46
+ from modules.shared import cmd_opts, opts
47
+ import modules.hypernetworks.hypernetwork
48
+
49
+ from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
50
+ import base64
51
+ import io
52
+ from fastapi import HTTPException
53
+ from io import BytesIO
54
+ import piexif
55
+ import piexif.helper
56
+ from PIL import PngImagePlugin,Image
57
+
58
+
59
+ def initialize():
60
+ # check_versions()
61
+
62
+ # extensions.list_extensions()
63
+ # localization.list_localizations(cmd_opts.localizations_dir)
64
+
65
+ # if cmd_opts.ui_debug_mode:
66
+ # shared.sd_upscalers = upscaler.UpscalerLanczos().scalers
67
+ # modules.scripts.load_scripts()
68
+ # return
69
+
70
+ modelloader.cleanup_models()
71
+ modules.sd_models.setup_model()
72
+ codeformer.setup_model(cmd_opts.codeformer_models_path)
73
+ gfpgan.setup_model(cmd_opts.gfpgan_models_path)
74
+
75
+ modelloader.list_builtin_upscalers()
76
+ # modules.scripts.load_scripts()
77
+ modelloader.load_upscalers()
78
+
79
+ modules.sd_vae.refresh_vae_list()
80
+
81
+ # modules.textual_inversion.textual_inversion.list_textual_inversion_templates()
82
+
83
+ try:
84
+ modules.sd_models.load_model()
85
+ except Exception as e:
86
+ errors.display(e, "loading stable diffusion model")
87
+ print("", file=sys.stderr)
88
+ print("Stable diffusion model failed to load, exiting", file=sys.stderr)
89
+ exit(1)
90
+
91
+ shared.opts.data["sd_model_checkpoint"] = shared.sd_model.sd_checkpoint_info.title
92
+
93
+ shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights()))
94
+ shared.opts.onchange("sd_vae", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
95
+ shared.opts.onchange("sd_vae_as_default", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
96
+ shared.opts.onchange("temp_dir", ui_tempdir.on_tmpdir_changed)
97
+
98
+ # shared.reload_hypernetworks()
99
+
100
+ # ui_extra_networks.intialize()
101
+ # ui_extra_networks.register_page(ui_extra_networks_textual_inversion.ExtraNetworksPageTextualInversion())
102
+ # ui_extra_networks.register_page(ui_extra_networks_hypernets.ExtraNetworksPageHypernetworks())
103
+ # ui_extra_networks.register_page(ui_extra_networks_checkpoints.ExtraNetworksPageCheckpoints())
104
+
105
+ # extra_networks.initialize()
106
+ # extra_networks.register_extra_network(extra_networks_hypernet.ExtraNetworkHypernet())
107
+
108
+ # if cmd_opts.tls_keyfile is not None and cmd_opts.tls_keyfile is not None:
109
+
110
+ # try:
111
+ # if not os.path.exists(cmd_opts.tls_keyfile):
112
+ # print("Invalid path to TLS keyfile given")
113
+ # if not os.path.exists(cmd_opts.tls_certfile):
114
+ # print(f"Invalid path to TLS certfile: '{cmd_opts.tls_certfile}'")
115
+ # except TypeError:
116
+ # cmd_opts.tls_keyfile = cmd_opts.tls_certfile = None
117
+ # print("TLS setup invalid, running webui without TLS")
118
+ # else:
119
+ # print("Running with TLS")
120
+
121
+ # make the program just exit at ctrl+c without waiting for anything
122
+ def sigint_handler(sig, frame):
123
+ print(f'Interrupted with signal {sig} in {frame}')
124
+ os._exit(0)
125
+
126
+ signal.signal(signal.SIGINT, sigint_handler)
127
+
128
+
129
+ class EndpointHandler():
130
+ def __init__(self, path=""):
131
+ # Preload all the elements you are going to need at inference.
132
+ # pseudo:
133
+ # self.model= load_model(path)
134
+ initialize()
135
+ self.shared = shared
136
+
137
+ def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
138
+ """
139
+ data args:
140
+ inputs (:obj: `str` | `PIL.Image` | `np.array`)
141
+ kwargs
142
+ Return:
143
+ A :obj:`list` | `dict`: will be serialized and returned
144
+ """
145
+ args = {
146
+ "do_not_save_samples": True,
147
+ "do_not_save_grid": True,
148
+ "outpath_samples": "./output",
149
+ "prompt": "lora:koreanDollLikeness_v15:0.66, best quality, ultra high res, (photorealistic:1.4), 1girl, beige sweater, black choker, smile, laughing, bare shoulders, solo focus, ((full body), (brown hair:1), looking at viewer",
150
+ "negative_prompt": "paintings, sketches, (worst quality:2), (low quality:2), (normal quality:2), lowres, normal quality, ((monochrome)), ((grayscale)), skin spots, acnes, skin blemishes, age spot, glans, (ugly:1.331), (duplicate:1.331), (morbid:1.21), (mutilated:1.21), (tranny:1.331), mutated hands, (poorly drawn hands:1.331), blurry, 3hands,4fingers,3arms, bad anatomy, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts,poorly drawn face,mutation,deformed",
151
+ "sampler_name": "DPM++ SDE Karras",
152
+ "steps": 20, # 25
153
+ "cfg_scale": 8,
154
+ "width": 512,
155
+ "height": 768,
156
+ "seed": -1,
157
+ }
158
+ if data["inputs"]:
159
+ if "prompt" in data["inputs"].keys():
160
+ prompt = data["inputs"]["prompt"]
161
+ print("get prompt from request: ", prompt)
162
+ args["prompt"] = prompt
163
+ p = StableDiffusionProcessingTxt2Img(sd_model=self.shared.sd_model, **args)
164
+ processed = process_images(p)
165
+ single_image_b64 = encode_pil_to_base64(processed.images[0]).decode('utf-8')
166
+ return {
167
+ "img_data": single_image_b64,
168
+ "parameters": processed.images[0].info.get('parameters', ""),
169
+ }
170
+
171
+
172
+ def manual_hack():
173
+ initialize()
174
+ args = {
175
+ # todo: don't output res
176
+ "outpath_samples": "C:\\Users\\wolvz\\Desktop",
177
+ "prompt": "lora:koreanDollLikeness_v15:0.66, best quality, ultra high res, (photorealistic:1.4), 1girl, beige sweater, black choker, smile, laughing, bare shoulders, solo focus, ((full body), (brown hair:1), looking at viewer",
178
+ "negative_prompt": "paintings, sketches, (worst quality:2), (low quality:2), (normal quality:2), lowres, normal quality, ((monochrome)), ((grayscale)), skin spots, acnes, skin blemishes, age spot, glans",
179
+ "sampler_name": "DPM++ SDE Karras",
180
+ "steps": 20, # 25
181
+ "cfg_scale": 8,
182
+ "width": 512,
183
+ "height": 768,
184
+ "seed": -1,
185
+ }
186
+ p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args)
187
+ processed = process_images(p)
188
+
189
+
190
+ def decode_base64_to_image(encoding):
191
+ if encoding.startswith("data:image/"):
192
+ encoding = encoding.split(";")[1].split(",")[1]
193
+ try:
194
+ image = Image.open(BytesIO(base64.b64decode(encoding)))
195
+ return image
196
+ except Exception as err:
197
+ raise HTTPException(status_code=500, detail="Invalid encoded image")
198
+
199
+ def encode_pil_to_base64(image):
200
+ with io.BytesIO() as output_bytes:
201
+
202
+ if opts.samples_format.lower() == 'png':
203
+ use_metadata = False
204
+ metadata = PngImagePlugin.PngInfo()
205
+ for key, value in image.info.items():
206
+ if isinstance(key, str) and isinstance(value, str):
207
+ metadata.add_text(key, value)
208
+ use_metadata = True
209
+ image.save(output_bytes, format="PNG", pnginfo=(metadata if use_metadata else None), quality=opts.jpeg_quality)
210
+
211
+ elif opts.samples_format.lower() in ("jpg", "jpeg", "webp"):
212
+ parameters = image.info.get('parameters', None)
213
+ exif_bytes = piexif.dump({
214
+ "Exif": { piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(parameters or "", encoding="unicode") }
215
+ })
216
+ if opts.samples_format.lower() in ("jpg", "jpeg"):
217
+ image.save(output_bytes, format="JPEG", exif = exif_bytes, quality=opts.jpeg_quality)
218
+ else:
219
+ image.save(output_bytes, format="WEBP", exif = exif_bytes, quality=opts.jpeg_quality)
220
+
221
+ else:
222
+ raise HTTPException(status_code=500, detail="Invalid image format")
223
+
224
+ bytes_data = output_bytes.getvalue()
225
+
226
+ return base64.b64encode(bytes_data)
227
+
228
+
229
+ if __name__ == "__main__":
230
+ # manual_hack()
231
+ handler = EndpointHandler("./")
232
+ res = handler.__call__({})
233
+ # print(res)
models/Lora/koreanDollLikeness_v10.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62efe75048d55a096a238c6e8c4e12d61b36bf59e388a90589335f750923954c
3
+ size 151116540
models/Lora/stLouisLuxuriousWheels_v1.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1efd7b748634120b70343bc3c3b425c06c51548431a1264a2fcb5368352349f
3
+ size 151112068
models/Lora/taiwanDollLikeness_v10.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5bbaabc04553d5821a3a45e4de5a02b2e66ecb00da677dd8ae862efd8ba59050
3
+ size 151116105
models/Stable-diffusion/Put Stable Diffusion checkpoints here.txt ADDED
File without changes
models/Stable-diffusion/chilloutmix_NiPrunedFp32Fix.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc2511737a54c5e80b89ab03e0ab4b98d051ab187f92860f3cd664dc9d08b271
3
+ size 4265097179
models/VAE-approx/model.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f88c9078bb2238cdd0d8864671dd33e3f42e091e41f08903f3c15e4a54a9b39
3
+ size 213777
models/VAE/Put VAE here.txt ADDED
File without changes
models/VAE/vae-ft-mse-840000-ema-pruned.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6a580b13a5bc05a5e16e4dbb80608ff2ec251a162311590c1f34c013d7f3dab
3
+ size 334695179
models/deepbooru/Put your deepbooru release project folder here.txt ADDED
File without changes
modules/api/api.py ADDED
@@ -0,0 +1,551 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import base64
2
+ import io
3
+ import time
4
+ import datetime
5
+ import uvicorn
6
+ from threading import Lock
7
+ from io import BytesIO
8
+ from gradio.processing_utils import decode_base64_to_file
9
+ from fastapi import APIRouter, Depends, FastAPI, HTTPException, Request, Response
10
+ from fastapi.security import HTTPBasic, HTTPBasicCredentials
11
+ from secrets import compare_digest
12
+
13
+ import modules.shared as shared
14
+ from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui, postprocessing
15
+ from modules.api.models import *
16
+ from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
17
+ from modules.textual_inversion.textual_inversion import create_embedding, train_embedding
18
+ from modules.textual_inversion.preprocess import preprocess
19
+ from modules.hypernetworks.hypernetwork import create_hypernetwork, train_hypernetwork
20
+ from PIL import PngImagePlugin,Image
21
+ from modules.sd_models import checkpoints_list
22
+ from modules.sd_models_config import find_checkpoint_config_near_filename
23
+ from modules.realesrgan_model import get_realesrgan_models
24
+ from modules import devices
25
+ from typing import List
26
+ import piexif
27
+ import piexif.helper
28
+
29
+ def upscaler_to_index(name: str):
30
+ try:
31
+ return [x.name.lower() for x in shared.sd_upscalers].index(name.lower())
32
+ except:
33
+ raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be one of these: {' , '.join([x.name for x in sd_upscalers])}")
34
+
35
+ def script_name_to_index(name, scripts):
36
+ try:
37
+ return [script.title().lower() for script in scripts].index(name.lower())
38
+ except:
39
+ raise HTTPException(status_code=422, detail=f"Script '{name}' not found")
40
+
41
+ def validate_sampler_name(name):
42
+ config = sd_samplers.all_samplers_map.get(name, None)
43
+ if config is None:
44
+ raise HTTPException(status_code=404, detail="Sampler not found")
45
+
46
+ return name
47
+
48
+ def setUpscalers(req: dict):
49
+ reqDict = vars(req)
50
+ reqDict['extras_upscaler_1'] = reqDict.pop('upscaler_1', None)
51
+ reqDict['extras_upscaler_2'] = reqDict.pop('upscaler_2', None)
52
+ return reqDict
53
+
54
+ def decode_base64_to_image(encoding):
55
+ if encoding.startswith("data:image/"):
56
+ encoding = encoding.split(";")[1].split(",")[1]
57
+ try:
58
+ image = Image.open(BytesIO(base64.b64decode(encoding)))
59
+ return image
60
+ except Exception as err:
61
+ raise HTTPException(status_code=500, detail="Invalid encoded image")
62
+
63
+ def encode_pil_to_base64(image):
64
+ with io.BytesIO() as output_bytes:
65
+
66
+ if opts.samples_format.lower() == 'png':
67
+ use_metadata = False
68
+ metadata = PngImagePlugin.PngInfo()
69
+ for key, value in image.info.items():
70
+ if isinstance(key, str) and isinstance(value, str):
71
+ metadata.add_text(key, value)
72
+ use_metadata = True
73
+ image.save(output_bytes, format="PNG", pnginfo=(metadata if use_metadata else None), quality=opts.jpeg_quality)
74
+
75
+ elif opts.samples_format.lower() in ("jpg", "jpeg", "webp"):
76
+ parameters = image.info.get('parameters', None)
77
+ exif_bytes = piexif.dump({
78
+ "Exif": { piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(parameters or "", encoding="unicode") }
79
+ })
80
+ if opts.samples_format.lower() in ("jpg", "jpeg"):
81
+ image.save(output_bytes, format="JPEG", exif = exif_bytes, quality=opts.jpeg_quality)
82
+ else:
83
+ image.save(output_bytes, format="WEBP", exif = exif_bytes, quality=opts.jpeg_quality)
84
+
85
+ else:
86
+ raise HTTPException(status_code=500, detail="Invalid image format")
87
+
88
+ bytes_data = output_bytes.getvalue()
89
+
90
+ return base64.b64encode(bytes_data)
91
+
92
+ def api_middleware(app: FastAPI):
93
+ @app.middleware("http")
94
+ async def log_and_time(req: Request, call_next):
95
+ ts = time.time()
96
+ res: Response = await call_next(req)
97
+ duration = str(round(time.time() - ts, 4))
98
+ res.headers["X-Process-Time"] = duration
99
+ endpoint = req.scope.get('path', 'err')
100
+ if shared.cmd_opts.api_log and endpoint.startswith('/sdapi'):
101
+ print('API {t} {code} {prot}/{ver} {method} {endpoint} {cli} {duration}'.format(
102
+ t = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f"),
103
+ code = res.status_code,
104
+ ver = req.scope.get('http_version', '0.0'),
105
+ cli = req.scope.get('client', ('0:0.0.0', 0))[0],
106
+ prot = req.scope.get('scheme', 'err'),
107
+ method = req.scope.get('method', 'err'),
108
+ endpoint = endpoint,
109
+ duration = duration,
110
+ ))
111
+ return res
112
+
113
+
114
+ class Api:
115
+ def __init__(self, app: FastAPI, queue_lock: Lock):
116
+ if shared.cmd_opts.api_auth:
117
+ self.credentials = dict()
118
+ for auth in shared.cmd_opts.api_auth.split(","):
119
+ user, password = auth.split(":")
120
+ self.credentials[user] = password
121
+
122
+ self.router = APIRouter()
123
+ self.app = app
124
+ self.queue_lock = queue_lock
125
+ api_middleware(self.app)
126
+ self.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=TextToImageResponse)
127
+ self.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=ImageToImageResponse)
128
+ self.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse)
129
+ self.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse)
130
+ self.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=PNGInfoResponse)
131
+ self.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=ProgressResponse)
132
+ self.add_api_route("/sdapi/v1/interrogate", self.interrogateapi, methods=["POST"])
133
+ self.add_api_route("/sdapi/v1/interrupt", self.interruptapi, methods=["POST"])
134
+ self.add_api_route("/sdapi/v1/skip", self.skip, methods=["POST"])
135
+ self.add_api_route("/sdapi/v1/options", self.get_config, methods=["GET"], response_model=OptionsModel)
136
+ self.add_api_route("/sdapi/v1/options", self.set_config, methods=["POST"])
137
+ self.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=FlagsModel)
138
+ self.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=List[SamplerItem])
139
+ self.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=List[UpscalerItem])
140
+ self.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=List[SDModelItem])
141
+ self.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=List[HypernetworkItem])
142
+ self.add_api_route("/sdapi/v1/face-restorers", self.get_face_restorers, methods=["GET"], response_model=List[FaceRestorerItem])
143
+ self.add_api_route("/sdapi/v1/realesrgan-models", self.get_realesrgan_models, methods=["GET"], response_model=List[RealesrganItem])
144
+ self.add_api_route("/sdapi/v1/prompt-styles", self.get_prompt_styles, methods=["GET"], response_model=List[PromptStyleItem])
145
+ self.add_api_route("/sdapi/v1/embeddings", self.get_embeddings, methods=["GET"], response_model=EmbeddingsResponse)
146
+ self.add_api_route("/sdapi/v1/refresh-checkpoints", self.refresh_checkpoints, methods=["POST"])
147
+ self.add_api_route("/sdapi/v1/create/embedding", self.create_embedding, methods=["POST"], response_model=CreateResponse)
148
+ self.add_api_route("/sdapi/v1/create/hypernetwork", self.create_hypernetwork, methods=["POST"], response_model=CreateResponse)
149
+ self.add_api_route("/sdapi/v1/preprocess", self.preprocess, methods=["POST"], response_model=PreprocessResponse)
150
+ self.add_api_route("/sdapi/v1/train/embedding", self.train_embedding, methods=["POST"], response_model=TrainResponse)
151
+ self.add_api_route("/sdapi/v1/train/hypernetwork", self.train_hypernetwork, methods=["POST"], response_model=TrainResponse)
152
+ self.add_api_route("/sdapi/v1/memory", self.get_memory, methods=["GET"], response_model=MemoryResponse)
153
+
154
+ def add_api_route(self, path: str, endpoint, **kwargs):
155
+ if shared.cmd_opts.api_auth:
156
+ return self.app.add_api_route(path, endpoint, dependencies=[Depends(self.auth)], **kwargs)
157
+ return self.app.add_api_route(path, endpoint, **kwargs)
158
+
159
+ def auth(self, credentials: HTTPBasicCredentials = Depends(HTTPBasic())):
160
+ if credentials.username in self.credentials:
161
+ if compare_digest(credentials.password, self.credentials[credentials.username]):
162
+ return True
163
+
164
+ raise HTTPException(status_code=401, detail="Incorrect username or password", headers={"WWW-Authenticate": "Basic"})
165
+
166
+ def get_script(self, script_name, script_runner):
167
+ if script_name is None:
168
+ return None, None
169
+
170
+ if not script_runner.scripts:
171
+ script_runner.initialize_scripts(False)
172
+ ui.create_ui()
173
+
174
+ script_idx = script_name_to_index(script_name, script_runner.selectable_scripts)
175
+ script = script_runner.selectable_scripts[script_idx]
176
+ return script, script_idx
177
+
178
+ def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
179
+ script, script_idx = self.get_script(txt2imgreq.script_name, scripts.scripts_txt2img)
180
+
181
+ populate = txt2imgreq.copy(update={ # Override __init__ params
182
+ "sampler_name": validate_sampler_name(txt2imgreq.sampler_name or txt2imgreq.sampler_index),
183
+ "do_not_save_samples": True,
184
+ "do_not_save_grid": True
185
+ }
186
+ )
187
+ if populate.sampler_name:
188
+ populate.sampler_index = None # prevent a warning later on
189
+
190
+ args = vars(populate)
191
+ args.pop('script_name', None)
192
+
193
+ with self.queue_lock:
194
+ p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args)
195
+
196
+ shared.state.begin()
197
+ if script is not None:
198
+ p.outpath_grids = opts.outdir_txt2img_grids
199
+ p.outpath_samples = opts.outdir_txt2img_samples
200
+ p.script_args = [script_idx + 1] + [None] * (script.args_from - 1) + p.script_args
201
+ processed = scripts.scripts_txt2img.run(p, *p.script_args)
202
+ else:
203
+ processed = process_images(p)
204
+ shared.state.end()
205
+
206
+ b64images = list(map(encode_pil_to_base64, processed.images))
207
+
208
+ return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js())
209
+
210
+ def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI):
211
+ init_images = img2imgreq.init_images
212
+ if init_images is None:
213
+ raise HTTPException(status_code=404, detail="Init image not found")
214
+
215
+ script, script_idx = self.get_script(img2imgreq.script_name, scripts.scripts_img2img)
216
+
217
+ mask = img2imgreq.mask
218
+ if mask:
219
+ mask = decode_base64_to_image(mask)
220
+
221
+ populate = img2imgreq.copy(update={ # Override __init__ params
222
+ "sampler_name": validate_sampler_name(img2imgreq.sampler_name or img2imgreq.sampler_index),
223
+ "do_not_save_samples": True,
224
+ "do_not_save_grid": True,
225
+ "mask": mask
226
+ }
227
+ )
228
+ if populate.sampler_name:
229
+ populate.sampler_index = None # prevent a warning later on
230
+
231
+ args = vars(populate)
232
+ args.pop('include_init_images', None) # this is meant to be done by "exclude": True in model, but it's for a reason that I cannot determine.
233
+ args.pop('script_name', None)
234
+
235
+ with self.queue_lock:
236
+ p = StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args)
237
+ p.init_images = [decode_base64_to_image(x) for x in init_images]
238
+
239
+ shared.state.begin()
240
+ if script is not None:
241
+ p.outpath_grids = opts.outdir_img2img_grids
242
+ p.outpath_samples = opts.outdir_img2img_samples
243
+ p.script_args = [script_idx + 1] + [None] * (script.args_from - 1) + p.script_args
244
+ processed = scripts.scripts_img2img.run(p, *p.script_args)
245
+ else:
246
+ processed = process_images(p)
247
+ shared.state.end()
248
+
249
+ b64images = list(map(encode_pil_to_base64, processed.images))
250
+
251
+ if not img2imgreq.include_init_images:
252
+ img2imgreq.init_images = None
253
+ img2imgreq.mask = None
254
+
255
+ return ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.js())
256
+
257
+ def extras_single_image_api(self, req: ExtrasSingleImageRequest):
258
+ reqDict = setUpscalers(req)
259
+
260
+ reqDict['image'] = decode_base64_to_image(reqDict['image'])
261
+
262
+ with self.queue_lock:
263
+ result = postprocessing.run_extras(extras_mode=0, image_folder="", input_dir="", output_dir="", save_output=False, **reqDict)
264
+
265
+ return ExtrasSingleImageResponse(image=encode_pil_to_base64(result[0][0]), html_info=result[1])
266
+
267
+ def extras_batch_images_api(self, req: ExtrasBatchImagesRequest):
268
+ reqDict = setUpscalers(req)
269
+
270
+ def prepareFiles(file):
271
+ file = decode_base64_to_file(file.data, file_path=file.name)
272
+ file.orig_name = file.name
273
+ return file
274
+
275
+ reqDict['image_folder'] = list(map(prepareFiles, reqDict['imageList']))
276
+ reqDict.pop('imageList')
277
+
278
+ with self.queue_lock:
279
+ result = postprocessing.run_extras(extras_mode=1, image="", input_dir="", output_dir="", save_output=False, **reqDict)
280
+
281
+ return ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1])
282
+
283
+ def pnginfoapi(self, req: PNGInfoRequest):
284
+ if(not req.image.strip()):
285
+ return PNGInfoResponse(info="")
286
+
287
+ image = decode_base64_to_image(req.image.strip())
288
+ if image is None:
289
+ return PNGInfoResponse(info="")
290
+
291
+ geninfo, items = images.read_info_from_image(image)
292
+ if geninfo is None:
293
+ geninfo = ""
294
+
295
+ items = {**{'parameters': geninfo}, **items}
296
+
297
+ return PNGInfoResponse(info=geninfo, items=items)
298
+
299
+ def progressapi(self, req: ProgressRequest = Depends()):
300
+ # copy from check_progress_call of ui.py
301
+
302
+ if shared.state.job_count == 0:
303
+ return ProgressResponse(progress=0, eta_relative=0, state=shared.state.dict(), textinfo=shared.state.textinfo)
304
+
305
+ # avoid dividing zero
306
+ progress = 0.01
307
+
308
+ if shared.state.job_count > 0:
309
+ progress += shared.state.job_no / shared.state.job_count
310
+ if shared.state.sampling_steps > 0:
311
+ progress += 1 / shared.state.job_count * shared.state.sampling_step / shared.state.sampling_steps
312
+
313
+ time_since_start = time.time() - shared.state.time_start
314
+ eta = (time_since_start/progress)
315
+ eta_relative = eta-time_since_start
316
+
317
+ progress = min(progress, 1)
318
+
319
+ shared.state.set_current_image()
320
+
321
+ current_image = None
322
+ if shared.state.current_image and not req.skip_current_image:
323
+ current_image = encode_pil_to_base64(shared.state.current_image)
324
+
325
+ return ProgressResponse(progress=progress, eta_relative=eta_relative, state=shared.state.dict(), current_image=current_image, textinfo=shared.state.textinfo)
326
+
327
+ def interrogateapi(self, interrogatereq: InterrogateRequest):
328
+ image_b64 = interrogatereq.image
329
+ if image_b64 is None:
330
+ raise HTTPException(status_code=404, detail="Image not found")
331
+
332
+ img = decode_base64_to_image(image_b64)
333
+ img = img.convert('RGB')
334
+
335
+ # Override object param
336
+ with self.queue_lock:
337
+ if interrogatereq.model == "clip":
338
+ processed = shared.interrogator.interrogate(img)
339
+ elif interrogatereq.model == "deepdanbooru":
340
+ processed = deepbooru.model.tag(img)
341
+ else:
342
+ raise HTTPException(status_code=404, detail="Model not found")
343
+
344
+ return InterrogateResponse(caption=processed)
345
+
346
+ def interruptapi(self):
347
+ shared.state.interrupt()
348
+
349
+ return {}
350
+
351
+ def skip(self):
352
+ shared.state.skip()
353
+
354
+ def get_config(self):
355
+ options = {}
356
+ for key in shared.opts.data.keys():
357
+ metadata = shared.opts.data_labels.get(key)
358
+ if(metadata is not None):
359
+ options.update({key: shared.opts.data.get(key, shared.opts.data_labels.get(key).default)})
360
+ else:
361
+ options.update({key: shared.opts.data.get(key, None)})
362
+
363
+ return options
364
+
365
+ def set_config(self, req: Dict[str, Any]):
366
+ for k, v in req.items():
367
+ shared.opts.set(k, v)
368
+
369
+ shared.opts.save(shared.config_filename)
370
+ return
371
+
372
+ def get_cmd_flags(self):
373
+ return vars(shared.cmd_opts)
374
+
375
+ def get_samplers(self):
376
+ return [{"name": sampler[0], "aliases":sampler[2], "options":sampler[3]} for sampler in sd_samplers.all_samplers]
377
+
378
+ def get_upscalers(self):
379
+ return [
380
+ {
381
+ "name": upscaler.name,
382
+ "model_name": upscaler.scaler.model_name,
383
+ "model_path": upscaler.data_path,
384
+ "model_url": None,
385
+ "scale": upscaler.scale,
386
+ }
387
+ for upscaler in shared.sd_upscalers
388
+ ]
389
+
390
+ def get_sd_models(self):
391
+ return [{"title": x.title, "model_name": x.model_name, "hash": x.shorthash, "sha256": x.sha256, "filename": x.filename, "config": find_checkpoint_config_near_filename(x)} for x in checkpoints_list.values()]
392
+
393
+ def get_hypernetworks(self):
394
+ return [{"name": name, "path": shared.hypernetworks[name]} for name in shared.hypernetworks]
395
+
396
+ def get_face_restorers(self):
397
+ return [{"name":x.name(), "cmd_dir": getattr(x, "cmd_dir", None)} for x in shared.face_restorers]
398
+
399
+ def get_realesrgan_models(self):
400
+ return [{"name":x.name,"path":x.data_path, "scale":x.scale} for x in get_realesrgan_models(None)]
401
+
402
+ def get_prompt_styles(self):
403
+ styleList = []
404
+ for k in shared.prompt_styles.styles:
405
+ style = shared.prompt_styles.styles[k]
406
+ styleList.append({"name":style[0], "prompt": style[1], "negative_prompt": style[2]})
407
+
408
+ return styleList
409
+
410
+ def get_embeddings(self):
411
+ db = sd_hijack.model_hijack.embedding_db
412
+
413
+ def convert_embedding(embedding):
414
+ return {
415
+ "step": embedding.step,
416
+ "sd_checkpoint": embedding.sd_checkpoint,
417
+ "sd_checkpoint_name": embedding.sd_checkpoint_name,
418
+ "shape": embedding.shape,
419
+ "vectors": embedding.vectors,
420
+ }
421
+
422
+ def convert_embeddings(embeddings):
423
+ return {embedding.name: convert_embedding(embedding) for embedding in embeddings.values()}
424
+
425
+ return {
426
+ "loaded": convert_embeddings(db.word_embeddings),
427
+ "skipped": convert_embeddings(db.skipped_embeddings),
428
+ }
429
+
430
+ def refresh_checkpoints(self):
431
+ shared.refresh_checkpoints()
432
+
433
+ def create_embedding(self, args: dict):
434
+ try:
435
+ shared.state.begin()
436
+ filename = create_embedding(**args) # create empty embedding
437
+ sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings() # reload embeddings so new one can be immediately used
438
+ shared.state.end()
439
+ return CreateResponse(info = "create embedding filename: {filename}".format(filename = filename))
440
+ except AssertionError as e:
441
+ shared.state.end()
442
+ return TrainResponse(info = "create embedding error: {error}".format(error = e))
443
+
444
+ def create_hypernetwork(self, args: dict):
445
+ try:
446
+ shared.state.begin()
447
+ filename = create_hypernetwork(**args) # create empty embedding
448
+ shared.state.end()
449
+ return CreateResponse(info = "create hypernetwork filename: {filename}".format(filename = filename))
450
+ except AssertionError as e:
451
+ shared.state.end()
452
+ return TrainResponse(info = "create hypernetwork error: {error}".format(error = e))
453
+
454
+ def preprocess(self, args: dict):
455
+ try:
456
+ shared.state.begin()
457
+ preprocess(**args) # quick operation unless blip/booru interrogation is enabled
458
+ shared.state.end()
459
+ return PreprocessResponse(info = 'preprocess complete')
460
+ except KeyError as e:
461
+ shared.state.end()
462
+ return PreprocessResponse(info = "preprocess error: invalid token: {error}".format(error = e))
463
+ except AssertionError as e:
464
+ shared.state.end()
465
+ return PreprocessResponse(info = "preprocess error: {error}".format(error = e))
466
+ except FileNotFoundError as e:
467
+ shared.state.end()
468
+ return PreprocessResponse(info = 'preprocess error: {error}'.format(error = e))
469
+
470
+ def train_embedding(self, args: dict):
471
+ try:
472
+ shared.state.begin()
473
+ apply_optimizations = shared.opts.training_xattention_optimizations
474
+ error = None
475
+ filename = ''
476
+ if not apply_optimizations:
477
+ sd_hijack.undo_optimizations()
478
+ try:
479
+ embedding, filename = train_embedding(**args) # can take a long time to complete
480
+ except Exception as e:
481
+ error = e
482
+ finally:
483
+ if not apply_optimizations:
484
+ sd_hijack.apply_optimizations()
485
+ shared.state.end()
486
+ return TrainResponse(info = "train embedding complete: filename: {filename} error: {error}".format(filename = filename, error = error))
487
+ except AssertionError as msg:
488
+ shared.state.end()
489
+ return TrainResponse(info = "train embedding error: {msg}".format(msg = msg))
490
+
491
+ def train_hypernetwork(self, args: dict):
492
+ try:
493
+ shared.state.begin()
494
+ shared.loaded_hypernetworks = []
495
+ apply_optimizations = shared.opts.training_xattention_optimizations
496
+ error = None
497
+ filename = ''
498
+ if not apply_optimizations:
499
+ sd_hijack.undo_optimizations()
500
+ try:
501
+ hypernetwork, filename = train_hypernetwork(**args)
502
+ except Exception as e:
503
+ error = e
504
+ finally:
505
+ shared.sd_model.cond_stage_model.to(devices.device)
506
+ shared.sd_model.first_stage_model.to(devices.device)
507
+ if not apply_optimizations:
508
+ sd_hijack.apply_optimizations()
509
+ shared.state.end()
510
+ return TrainResponse(info="train embedding complete: filename: {filename} error: {error}".format(filename=filename, error=error))
511
+ except AssertionError as msg:
512
+ shared.state.end()
513
+ return TrainResponse(info="train embedding error: {error}".format(error=error))
514
+
515
+ def get_memory(self):
516
+ try:
517
+ import os, psutil
518
+ process = psutil.Process(os.getpid())
519
+ res = process.memory_info() # only rss is cross-platform guaranteed so we dont rely on other values
520
+ ram_total = 100 * res.rss / process.memory_percent() # and total memory is calculated as actual value is not cross-platform safe
521
+ ram = { 'free': ram_total - res.rss, 'used': res.rss, 'total': ram_total }
522
+ except Exception as err:
523
+ ram = { 'error': f'{err}' }
524
+ try:
525
+ import torch
526
+ if torch.cuda.is_available():
527
+ s = torch.cuda.mem_get_info()
528
+ system = { 'free': s[0], 'used': s[1] - s[0], 'total': s[1] }
529
+ s = dict(torch.cuda.memory_stats(shared.device))
530
+ allocated = { 'current': s['allocated_bytes.all.current'], 'peak': s['allocated_bytes.all.peak'] }
531
+ reserved = { 'current': s['reserved_bytes.all.current'], 'peak': s['reserved_bytes.all.peak'] }
532
+ active = { 'current': s['active_bytes.all.current'], 'peak': s['active_bytes.all.peak'] }
533
+ inactive = { 'current': s['inactive_split_bytes.all.current'], 'peak': s['inactive_split_bytes.all.peak'] }
534
+ warnings = { 'retries': s['num_alloc_retries'], 'oom': s['num_ooms'] }
535
+ cuda = {
536
+ 'system': system,
537
+ 'active': active,
538
+ 'allocated': allocated,
539
+ 'reserved': reserved,
540
+ 'inactive': inactive,
541
+ 'events': warnings,
542
+ }
543
+ else:
544
+ cuda = { 'error': 'unavailable' }
545
+ except Exception as err:
546
+ cuda = { 'error': f'{err}' }
547
+ return MemoryResponse(ram = ram, cuda = cuda)
548
+
549
+ def launch(self, server_name, port):
550
+ self.app.include_router(self.router)
551
+ uvicorn.run(self.app, host=server_name, port=port)
modules/api/models.py ADDED
@@ -0,0 +1,269 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import inspect
2
+ from pydantic import BaseModel, Field, create_model
3
+ from typing import Any, Optional
4
+ from typing_extensions import Literal
5
+ from inflection import underscore
6
+ from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img
7
+ from modules.shared import sd_upscalers, opts, parser
8
+ from typing import Dict, List
9
+
10
+ API_NOT_ALLOWED = [
11
+ "self",
12
+ "kwargs",
13
+ "sd_model",
14
+ "outpath_samples",
15
+ "outpath_grids",
16
+ "sampler_index",
17
+ "do_not_save_samples",
18
+ "do_not_save_grid",
19
+ "extra_generation_params",
20
+ "overlay_images",
21
+ "do_not_reload_embeddings",
22
+ "seed_enable_extras",
23
+ "prompt_for_display",
24
+ "sampler_noise_scheduler_override",
25
+ "ddim_discretize"
26
+ ]
27
+
28
+ class ModelDef(BaseModel):
29
+ """Assistance Class for Pydantic Dynamic Model Generation"""
30
+
31
+ field: str
32
+ field_alias: str
33
+ field_type: Any
34
+ field_value: Any
35
+ field_exclude: bool = False
36
+
37
+
38
+ class PydanticModelGenerator:
39
+ """
40
+ Takes in created classes and stubs them out in a way FastAPI/Pydantic is happy about:
41
+ source_data is a snapshot of the default values produced by the class
42
+ params are the names of the actual keys required by __init__
43
+ """
44
+
45
+ def __init__(
46
+ self,
47
+ model_name: str = None,
48
+ class_instance = None,
49
+ additional_fields = None,
50
+ ):
51
+ def field_type_generator(k, v):
52
+ # field_type = str if not overrides.get(k) else overrides[k]["type"]
53
+ # print(k, v.annotation, v.default)
54
+ field_type = v.annotation
55
+
56
+ return Optional[field_type]
57
+
58
+ def merge_class_params(class_):
59
+ all_classes = list(filter(lambda x: x is not object, inspect.getmro(class_)))
60
+ parameters = {}
61
+ for classes in all_classes:
62
+ parameters = {**parameters, **inspect.signature(classes.__init__).parameters}
63
+ return parameters
64
+
65
+
66
+ self._model_name = model_name
67
+ self._class_data = merge_class_params(class_instance)
68
+
69
+ self._model_def = [
70
+ ModelDef(
71
+ field=underscore(k),
72
+ field_alias=k,
73
+ field_type=field_type_generator(k, v),
74
+ field_value=v.default
75
+ )
76
+ for (k,v) in self._class_data.items() if k not in API_NOT_ALLOWED
77
+ ]
78
+
79
+ for fields in additional_fields:
80
+ self._model_def.append(ModelDef(
81
+ field=underscore(fields["key"]),
82
+ field_alias=fields["key"],
83
+ field_type=fields["type"],
84
+ field_value=fields["default"],
85
+ field_exclude=fields["exclude"] if "exclude" in fields else False))
86
+
87
+ def generate_model(self):
88
+ """
89
+ Creates a pydantic BaseModel
90
+ from the json and overrides provided at initialization
91
+ """
92
+ fields = {
93
+ d.field: (d.field_type, Field(default=d.field_value, alias=d.field_alias, exclude=d.field_exclude)) for d in self._model_def
94
+ }
95
+ DynamicModel = create_model(self._model_name, **fields)
96
+ DynamicModel.__config__.allow_population_by_field_name = True
97
+ DynamicModel.__config__.allow_mutation = True
98
+ return DynamicModel
99
+
100
+ StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator(
101
+ "StableDiffusionProcessingTxt2Img",
102
+ StableDiffusionProcessingTxt2Img,
103
+ [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}]
104
+ ).generate_model()
105
+
106
+ StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator(
107
+ "StableDiffusionProcessingImg2Img",
108
+ StableDiffusionProcessingImg2Img,
109
+ [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}]
110
+ ).generate_model()
111
+
112
+ class TextToImageResponse(BaseModel):
113
+ images: List[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
114
+ parameters: dict
115
+ info: str
116
+
117
+ class ImageToImageResponse(BaseModel):
118
+ images: List[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
119
+ parameters: dict
120
+ info: str
121
+
122
+ class ExtrasBaseRequest(BaseModel):
123
+ resize_mode: Literal[0, 1] = Field(default=0, title="Resize Mode", description="Sets the resize mode: 0 to upscale by upscaling_resize amount, 1 to upscale up to upscaling_resize_h x upscaling_resize_w.")
124
+ show_extras_results: bool = Field(default=True, title="Show results", description="Should the backend return the generated image?")
125
+ gfpgan_visibility: float = Field(default=0, title="GFPGAN Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of GFPGAN, values should be between 0 and 1.")
126
+ codeformer_visibility: float = Field(default=0, title="CodeFormer Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of CodeFormer, values should be between 0 and 1.")
127
+ codeformer_weight: float = Field(default=0, title="CodeFormer Weight", ge=0, le=1, allow_inf_nan=False, description="Sets the weight of CodeFormer, values should be between 0 and 1.")
128
+ upscaling_resize: float = Field(default=2, title="Upscaling Factor", ge=1, le=8, description="By how much to upscale the image, only used when resize_mode=0.")
129
+ upscaling_resize_w: int = Field(default=512, title="Target Width", ge=1, description="Target width for the upscaler to hit. Only used when resize_mode=1.")
130
+ upscaling_resize_h: int = Field(default=512, title="Target Height", ge=1, description="Target height for the upscaler to hit. Only used when resize_mode=1.")
131
+ upscaling_crop: bool = Field(default=True, title="Crop to fit", description="Should the upscaler crop the image to fit in the chosen size?")
132
+ upscaler_1: str = Field(default="None", title="Main upscaler", description=f"The name of the main upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}")
133
+ upscaler_2: str = Field(default="None", title="Secondary upscaler", description=f"The name of the secondary upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}")
134
+ extras_upscaler_2_visibility: float = Field(default=0, title="Secondary upscaler visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of secondary upscaler, values should be between 0 and 1.")
135
+ upscale_first: bool = Field(default=False, title="Upscale first", description="Should the upscaler run before restoring faces?")
136
+
137
+ class ExtraBaseResponse(BaseModel):
138
+ html_info: str = Field(title="HTML info", description="A series of HTML tags containing the process info.")
139
+
140
+ class ExtrasSingleImageRequest(ExtrasBaseRequest):
141
+ image: str = Field(default="", title="Image", description="Image to work on, must be a Base64 string containing the image's data.")
142
+
143
+ class ExtrasSingleImageResponse(ExtraBaseResponse):
144
+ image: str = Field(default=None, title="Image", description="The generated image in base64 format.")
145
+
146
+ class FileData(BaseModel):
147
+ data: str = Field(title="File data", description="Base64 representation of the file")
148
+ name: str = Field(title="File name")
149
+
150
+ class ExtrasBatchImagesRequest(ExtrasBaseRequest):
151
+ imageList: List[FileData] = Field(title="Images", description="List of images to work on. Must be Base64 strings")
152
+
153
+ class ExtrasBatchImagesResponse(ExtraBaseResponse):
154
+ images: List[str] = Field(title="Images", description="The generated images in base64 format.")
155
+
156
+ class PNGInfoRequest(BaseModel):
157
+ image: str = Field(title="Image", description="The base64 encoded PNG image")
158
+
159
+ class PNGInfoResponse(BaseModel):
160
+ info: str = Field(title="Image info", description="A string with the parameters used to generate the image")
161
+ items: dict = Field(title="Items", description="An object containing all the info the image had")
162
+
163
+ class ProgressRequest(BaseModel):
164
+ skip_current_image: bool = Field(default=False, title="Skip current image", description="Skip current image serialization")
165
+
166
+ class ProgressResponse(BaseModel):
167
+ progress: float = Field(title="Progress", description="The progress with a range of 0 to 1")
168
+ eta_relative: float = Field(title="ETA in secs")
169
+ state: dict = Field(title="State", description="The current state snapshot")
170
+ current_image: str = Field(default=None, title="Current image", description="The current image in base64 format. opts.show_progress_every_n_steps is required for this to work.")
171
+ textinfo: str = Field(default=None, title="Info text", description="Info text used by WebUI.")
172
+
173
+ class InterrogateRequest(BaseModel):
174
+ image: str = Field(default="", title="Image", description="Image to work on, must be a Base64 string containing the image's data.")
175
+ model: str = Field(default="clip", title="Model", description="The interrogate model used.")
176
+
177
+ class InterrogateResponse(BaseModel):
178
+ caption: str = Field(default=None, title="Caption", description="The generated caption for the image.")
179
+
180
+ class TrainResponse(BaseModel):
181
+ info: str = Field(title="Train info", description="Response string from train embedding or hypernetwork task.")
182
+
183
+ class CreateResponse(BaseModel):
184
+ info: str = Field(title="Create info", description="Response string from create embedding or hypernetwork task.")
185
+
186
+ class PreprocessResponse(BaseModel):
187
+ info: str = Field(title="Preprocess info", description="Response string from preprocessing task.")
188
+
189
+ fields = {}
190
+ for key, metadata in opts.data_labels.items():
191
+ value = opts.data.get(key)
192
+ optType = opts.typemap.get(type(metadata.default), type(value))
193
+
194
+ if (metadata is not None):
195
+ fields.update({key: (Optional[optType], Field(
196
+ default=metadata.default ,description=metadata.label))})
197
+ else:
198
+ fields.update({key: (Optional[optType], Field())})
199
+
200
+ OptionsModel = create_model("Options", **fields)
201
+
202
+ flags = {}
203
+ _options = vars(parser)['_option_string_actions']
204
+ for key in _options:
205
+ if(_options[key].dest != 'help'):
206
+ flag = _options[key]
207
+ _type = str
208
+ if _options[key].default is not None: _type = type(_options[key].default)
209
+ flags.update({flag.dest: (_type,Field(default=flag.default, description=flag.help))})
210
+
211
+ FlagsModel = create_model("Flags", **flags)
212
+
213
+ class SamplerItem(BaseModel):
214
+ name: str = Field(title="Name")
215
+ aliases: List[str] = Field(title="Aliases")
216
+ options: Dict[str, str] = Field(title="Options")
217
+
218
+ class UpscalerItem(BaseModel):
219
+ name: str = Field(title="Name")
220
+ model_name: Optional[str] = Field(title="Model Name")
221
+ model_path: Optional[str] = Field(title="Path")
222
+ model_url: Optional[str] = Field(title="URL")
223
+ scale: Optional[float] = Field(title="Scale")
224
+
225
+ class SDModelItem(BaseModel):
226
+ title: str = Field(title="Title")
227
+ model_name: str = Field(title="Model Name")
228
+ hash: Optional[str] = Field(title="Short hash")
229
+ sha256: Optional[str] = Field(title="sha256 hash")
230
+ filename: str = Field(title="Filename")
231
+ config: Optional[str] = Field(title="Config file")
232
+
233
+ class HypernetworkItem(BaseModel):
234
+ name: str = Field(title="Name")
235
+ path: Optional[str] = Field(title="Path")
236
+
237
+ class FaceRestorerItem(BaseModel):
238
+ name: str = Field(title="Name")
239
+ cmd_dir: Optional[str] = Field(title="Path")
240
+
241
+ class RealesrganItem(BaseModel):
242
+ name: str = Field(title="Name")
243
+ path: Optional[str] = Field(title="Path")
244
+ scale: Optional[int] = Field(title="Scale")
245
+
246
+ class PromptStyleItem(BaseModel):
247
+ name: str = Field(title="Name")
248
+ prompt: Optional[str] = Field(title="Prompt")
249
+ negative_prompt: Optional[str] = Field(title="Negative Prompt")
250
+
251
+ class ArtistItem(BaseModel):
252
+ name: str = Field(title="Name")
253
+ score: float = Field(title="Score")
254
+ category: str = Field(title="Category")
255
+
256
+ class EmbeddingItem(BaseModel):
257
+ step: Optional[int] = Field(title="Step", description="The number of steps that were used to train this embedding, if available")
258
+ sd_checkpoint: Optional[str] = Field(title="SD Checkpoint", description="The hash of the checkpoint this embedding was trained on, if available")
259
+ sd_checkpoint_name: Optional[str] = Field(title="SD Checkpoint Name", description="The name of the checkpoint this embedding was trained on, if available. Note that this is the name that was used by the trainer; for a stable identifier, use `sd_checkpoint` instead")
260
+ shape: int = Field(title="Shape", description="The length of each individual vector in the embedding")
261
+ vectors: int = Field(title="Vectors", description="The number of vectors in the embedding")
262
+
263
+ class EmbeddingsResponse(BaseModel):
264
+ loaded: Dict[str, EmbeddingItem] = Field(title="Loaded", description="Embeddings loaded for the current model")
265
+ skipped: Dict[str, EmbeddingItem] = Field(title="Skipped", description="Embeddings skipped for the current model (likely due to architecture incompatibility)")
266
+
267
+ class MemoryResponse(BaseModel):
268
+ ram: dict = Field(title="RAM", description="System memory stats")
269
+ cuda: dict = Field(title="CUDA", description="nVidia CUDA memory stats")
modules/call_queue.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import html
2
+ import sys
3
+ import threading
4
+ import traceback
5
+ import time
6
+
7
+ from modules import shared, progress
8
+
9
+ queue_lock = threading.Lock()
10
+
11
+
12
+ def wrap_queued_call(func):
13
+ def f(*args, **kwargs):
14
+ with queue_lock:
15
+ res = func(*args, **kwargs)
16
+
17
+ return res
18
+
19
+ return f
20
+
21
+
22
+ def wrap_gradio_gpu_call(func, extra_outputs=None):
23
+ def f(*args, **kwargs):
24
+
25
+ # if the first argument is a string that says "task(...)", it is treated as a job id
26
+ if len(args) > 0 and type(args[0]) == str and args[0][0:5] == "task(" and args[0][-1] == ")":
27
+ id_task = args[0]
28
+ progress.add_task_to_queue(id_task)
29
+ else:
30
+ id_task = None
31
+
32
+ with queue_lock:
33
+ shared.state.begin()
34
+ progress.start_task(id_task)
35
+
36
+ try:
37
+ res = func(*args, **kwargs)
38
+ finally:
39
+ progress.finish_task(id_task)
40
+
41
+ shared.state.end()
42
+
43
+ return res
44
+
45
+ return wrap_gradio_call(f, extra_outputs=extra_outputs, add_stats=True)
46
+
47
+
48
+ def wrap_gradio_call(func, extra_outputs=None, add_stats=False):
49
+ def f(*args, extra_outputs_array=extra_outputs, **kwargs):
50
+ run_memmon = shared.opts.memmon_poll_rate > 0 and not shared.mem_mon.disabled and add_stats
51
+ if run_memmon:
52
+ shared.mem_mon.monitor()
53
+ t = time.perf_counter()
54
+
55
+ try:
56
+ res = list(func(*args, **kwargs))
57
+ except Exception as e:
58
+ # When printing out our debug argument list, do not print out more than a MB of text
59
+ max_debug_str_len = 131072 # (1024*1024)/8
60
+
61
+ print("Error completing request", file=sys.stderr)
62
+ argStr = f"Arguments: {str(args)} {str(kwargs)}"
63
+ print(argStr[:max_debug_str_len], file=sys.stderr)
64
+ if len(argStr) > max_debug_str_len:
65
+ print(f"(Argument list truncated at {max_debug_str_len}/{len(argStr)} characters)", file=sys.stderr)
66
+
67
+ print(traceback.format_exc(), file=sys.stderr)
68
+
69
+ shared.state.job = ""
70
+ shared.state.job_count = 0
71
+
72
+ if extra_outputs_array is None:
73
+ extra_outputs_array = [None, '']
74
+
75
+ res = extra_outputs_array + [f"<div class='error'>{html.escape(type(e).__name__+': '+str(e))}</div>"]
76
+
77
+ shared.state.skipped = False
78
+ shared.state.interrupted = False
79
+ shared.state.job_count = 0
80
+
81
+ if not add_stats:
82
+ return tuple(res)
83
+
84
+ elapsed = time.perf_counter() - t
85
+ elapsed_m = int(elapsed // 60)
86
+ elapsed_s = elapsed % 60
87
+ elapsed_text = f"{elapsed_s:.2f}s"
88
+ if elapsed_m > 0:
89
+ elapsed_text = f"{elapsed_m}m "+elapsed_text
90
+
91
+ if run_memmon:
92
+ mem_stats = {k: -(v//-(1024*1024)) for k, v in shared.mem_mon.stop().items()}
93
+ active_peak = mem_stats['active_peak']
94
+ reserved_peak = mem_stats['reserved_peak']
95
+ sys_peak = mem_stats['system_peak']
96
+ sys_total = mem_stats['total']
97
+ sys_pct = round(sys_peak/max(sys_total, 1) * 100, 2)
98
+
99
+ vram_html = f"<p class='vram'>Torch active/reserved: {active_peak}/{reserved_peak} MiB, <wbr>Sys VRAM: {sys_peak}/{sys_total} MiB ({sys_pct}%)</p>"
100
+ else:
101
+ vram_html = ''
102
+
103
+ # last item is always HTML
104
+ res[-1] += f"<div class='performance'><p class='time'>Time taken: <wbr>{elapsed_text}</p>{vram_html}</div>"
105
+
106
+ return tuple(res)
107
+
108
+ return f
109
+
modules/codeformer/codeformer_arch.py ADDED
@@ -0,0 +1,278 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # this file is copied from CodeFormer repository. Please see comment in modules/codeformer_model.py
2
+
3
+ import math
4
+ import numpy as np
5
+ import torch
6
+ from torch import nn, Tensor
7
+ import torch.nn.functional as F
8
+ from typing import Optional, List
9
+
10
+ from modules.codeformer.vqgan_arch import *
11
+ from basicsr.utils import get_root_logger
12
+ from basicsr.utils.registry import ARCH_REGISTRY
13
+
14
+ def calc_mean_std(feat, eps=1e-5):
15
+ """Calculate mean and std for adaptive_instance_normalization.
16
+
17
+ Args:
18
+ feat (Tensor): 4D tensor.
19
+ eps (float): A small value added to the variance to avoid
20
+ divide-by-zero. Default: 1e-5.
21
+ """
22
+ size = feat.size()
23
+ assert len(size) == 4, 'The input feature should be 4D tensor.'
24
+ b, c = size[:2]
25
+ feat_var = feat.view(b, c, -1).var(dim=2) + eps
26
+ feat_std = feat_var.sqrt().view(b, c, 1, 1)
27
+ feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1)
28
+ return feat_mean, feat_std
29
+
30
+
31
+ def adaptive_instance_normalization(content_feat, style_feat):
32
+ """Adaptive instance normalization.
33
+
34
+ Adjust the reference features to have the similar color and illuminations
35
+ as those in the degradate features.
36
+
37
+ Args:
38
+ content_feat (Tensor): The reference feature.
39
+ style_feat (Tensor): The degradate features.
40
+ """
41
+ size = content_feat.size()
42
+ style_mean, style_std = calc_mean_std(style_feat)
43
+ content_mean, content_std = calc_mean_std(content_feat)
44
+ normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size)
45
+ return normalized_feat * style_std.expand(size) + style_mean.expand(size)
46
+
47
+
48
+ class PositionEmbeddingSine(nn.Module):
49
+ """
50
+ This is a more standard version of the position embedding, very similar to the one
51
+ used by the Attention is all you need paper, generalized to work on images.
52
+ """
53
+
54
+ def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
55
+ super().__init__()
56
+ self.num_pos_feats = num_pos_feats
57
+ self.temperature = temperature
58
+ self.normalize = normalize
59
+ if scale is not None and normalize is False:
60
+ raise ValueError("normalize should be True if scale is passed")
61
+ if scale is None:
62
+ scale = 2 * math.pi
63
+ self.scale = scale
64
+
65
+ def forward(self, x, mask=None):
66
+ if mask is None:
67
+ mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool)
68
+ not_mask = ~mask
69
+ y_embed = not_mask.cumsum(1, dtype=torch.float32)
70
+ x_embed = not_mask.cumsum(2, dtype=torch.float32)
71
+ if self.normalize:
72
+ eps = 1e-6
73
+ y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
74
+ x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
75
+
76
+ dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
77
+ dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
78
+
79
+ pos_x = x_embed[:, :, :, None] / dim_t
80
+ pos_y = y_embed[:, :, :, None] / dim_t
81
+ pos_x = torch.stack(
82
+ (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
83
+ ).flatten(3)
84
+ pos_y = torch.stack(
85
+ (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
86
+ ).flatten(3)
87
+ pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
88
+ return pos
89
+
90
+ def _get_activation_fn(activation):
91
+ """Return an activation function given a string"""
92
+ if activation == "relu":
93
+ return F.relu
94
+ if activation == "gelu":
95
+ return F.gelu
96
+ if activation == "glu":
97
+ return F.glu
98
+ raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
99
+
100
+
101
+ class TransformerSALayer(nn.Module):
102
+ def __init__(self, embed_dim, nhead=8, dim_mlp=2048, dropout=0.0, activation="gelu"):
103
+ super().__init__()
104
+ self.self_attn = nn.MultiheadAttention(embed_dim, nhead, dropout=dropout)
105
+ # Implementation of Feedforward model - MLP
106
+ self.linear1 = nn.Linear(embed_dim, dim_mlp)
107
+ self.dropout = nn.Dropout(dropout)
108
+ self.linear2 = nn.Linear(dim_mlp, embed_dim)
109
+
110
+ self.norm1 = nn.LayerNorm(embed_dim)
111
+ self.norm2 = nn.LayerNorm(embed_dim)
112
+ self.dropout1 = nn.Dropout(dropout)
113
+ self.dropout2 = nn.Dropout(dropout)
114
+
115
+ self.activation = _get_activation_fn(activation)
116
+
117
+ def with_pos_embed(self, tensor, pos: Optional[Tensor]):
118
+ return tensor if pos is None else tensor + pos
119
+
120
+ def forward(self, tgt,
121
+ tgt_mask: Optional[Tensor] = None,
122
+ tgt_key_padding_mask: Optional[Tensor] = None,
123
+ query_pos: Optional[Tensor] = None):
124
+
125
+ # self attention
126
+ tgt2 = self.norm1(tgt)
127
+ q = k = self.with_pos_embed(tgt2, query_pos)
128
+ tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
129
+ key_padding_mask=tgt_key_padding_mask)[0]
130
+ tgt = tgt + self.dropout1(tgt2)
131
+
132
+ # ffn
133
+ tgt2 = self.norm2(tgt)
134
+ tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
135
+ tgt = tgt + self.dropout2(tgt2)
136
+ return tgt
137
+
138
+ class Fuse_sft_block(nn.Module):
139
+ def __init__(self, in_ch, out_ch):
140
+ super().__init__()
141
+ self.encode_enc = ResBlock(2*in_ch, out_ch)
142
+
143
+ self.scale = nn.Sequential(
144
+ nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
145
+ nn.LeakyReLU(0.2, True),
146
+ nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1))
147
+
148
+ self.shift = nn.Sequential(
149
+ nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
150
+ nn.LeakyReLU(0.2, True),
151
+ nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1))
152
+
153
+ def forward(self, enc_feat, dec_feat, w=1):
154
+ enc_feat = self.encode_enc(torch.cat([enc_feat, dec_feat], dim=1))
155
+ scale = self.scale(enc_feat)
156
+ shift = self.shift(enc_feat)
157
+ residual = w * (dec_feat * scale + shift)
158
+ out = dec_feat + residual
159
+ return out
160
+
161
+
162
+ @ARCH_REGISTRY.register()
163
+ class CodeFormer(VQAutoEncoder):
164
+ def __init__(self, dim_embd=512, n_head=8, n_layers=9,
165
+ codebook_size=1024, latent_size=256,
166
+ connect_list=['32', '64', '128', '256'],
167
+ fix_modules=['quantize','generator']):
168
+ super(CodeFormer, self).__init__(512, 64, [1, 2, 2, 4, 4, 8], 'nearest',2, [16], codebook_size)
169
+
170
+ if fix_modules is not None:
171
+ for module in fix_modules:
172
+ for param in getattr(self, module).parameters():
173
+ param.requires_grad = False
174
+
175
+ self.connect_list = connect_list
176
+ self.n_layers = n_layers
177
+ self.dim_embd = dim_embd
178
+ self.dim_mlp = dim_embd*2
179
+
180
+ self.position_emb = nn.Parameter(torch.zeros(latent_size, self.dim_embd))
181
+ self.feat_emb = nn.Linear(256, self.dim_embd)
182
+
183
+ # transformer
184
+ self.ft_layers = nn.Sequential(*[TransformerSALayer(embed_dim=dim_embd, nhead=n_head, dim_mlp=self.dim_mlp, dropout=0.0)
185
+ for _ in range(self.n_layers)])
186
+
187
+ # logits_predict head
188
+ self.idx_pred_layer = nn.Sequential(
189
+ nn.LayerNorm(dim_embd),
190
+ nn.Linear(dim_embd, codebook_size, bias=False))
191
+
192
+ self.channels = {
193
+ '16': 512,
194
+ '32': 256,
195
+ '64': 256,
196
+ '128': 128,
197
+ '256': 128,
198
+ '512': 64,
199
+ }
200
+
201
+ # after second residual block for > 16, before attn layer for ==16
202
+ self.fuse_encoder_block = {'512':2, '256':5, '128':8, '64':11, '32':14, '16':18}
203
+ # after first residual block for > 16, before attn layer for ==16
204
+ self.fuse_generator_block = {'16':6, '32': 9, '64':12, '128':15, '256':18, '512':21}
205
+
206
+ # fuse_convs_dict
207
+ self.fuse_convs_dict = nn.ModuleDict()
208
+ for f_size in self.connect_list:
209
+ in_ch = self.channels[f_size]
210
+ self.fuse_convs_dict[f_size] = Fuse_sft_block(in_ch, in_ch)
211
+
212
+ def _init_weights(self, module):
213
+ if isinstance(module, (nn.Linear, nn.Embedding)):
214
+ module.weight.data.normal_(mean=0.0, std=0.02)
215
+ if isinstance(module, nn.Linear) and module.bias is not None:
216
+ module.bias.data.zero_()
217
+ elif isinstance(module, nn.LayerNorm):
218
+ module.bias.data.zero_()
219
+ module.weight.data.fill_(1.0)
220
+
221
+ def forward(self, x, w=0, detach_16=True, code_only=False, adain=False):
222
+ # ################### Encoder #####################
223
+ enc_feat_dict = {}
224
+ out_list = [self.fuse_encoder_block[f_size] for f_size in self.connect_list]
225
+ for i, block in enumerate(self.encoder.blocks):
226
+ x = block(x)
227
+ if i in out_list:
228
+ enc_feat_dict[str(x.shape[-1])] = x.clone()
229
+
230
+ lq_feat = x
231
+ # ################# Transformer ###################
232
+ # quant_feat, codebook_loss, quant_stats = self.quantize(lq_feat)
233
+ pos_emb = self.position_emb.unsqueeze(1).repeat(1,x.shape[0],1)
234
+ # BCHW -> BC(HW) -> (HW)BC
235
+ feat_emb = self.feat_emb(lq_feat.flatten(2).permute(2,0,1))
236
+ query_emb = feat_emb
237
+ # Transformer encoder
238
+ for layer in self.ft_layers:
239
+ query_emb = layer(query_emb, query_pos=pos_emb)
240
+
241
+ # output logits
242
+ logits = self.idx_pred_layer(query_emb) # (hw)bn
243
+ logits = logits.permute(1,0,2) # (hw)bn -> b(hw)n
244
+
245
+ if code_only: # for training stage II
246
+ # logits doesn't need softmax before cross_entropy loss
247
+ return logits, lq_feat
248
+
249
+ # ################# Quantization ###################
250
+ # if self.training:
251
+ # quant_feat = torch.einsum('btn,nc->btc', [soft_one_hot, self.quantize.embedding.weight])
252
+ # # b(hw)c -> bc(hw) -> bchw
253
+ # quant_feat = quant_feat.permute(0,2,1).view(lq_feat.shape)
254
+ # ------------
255
+ soft_one_hot = F.softmax(logits, dim=2)
256
+ _, top_idx = torch.topk(soft_one_hot, 1, dim=2)
257
+ quant_feat = self.quantize.get_codebook_feat(top_idx, shape=[x.shape[0],16,16,256])
258
+ # preserve gradients
259
+ # quant_feat = lq_feat + (quant_feat - lq_feat).detach()
260
+
261
+ if detach_16:
262
+ quant_feat = quant_feat.detach() # for training stage III
263
+ if adain:
264
+ quant_feat = adaptive_instance_normalization(quant_feat, lq_feat)
265
+
266
+ # ################## Generator ####################
267
+ x = quant_feat
268
+ fuse_list = [self.fuse_generator_block[f_size] for f_size in self.connect_list]
269
+
270
+ for i, block in enumerate(self.generator.blocks):
271
+ x = block(x)
272
+ if i in fuse_list: # fuse after i-th block
273
+ f_size = str(x.shape[-1])
274
+ if w>0:
275
+ x = self.fuse_convs_dict[f_size](enc_feat_dict[f_size].detach(), x, w)
276
+ out = x
277
+ # logits doesn't need softmax before cross_entropy loss
278
+ return out, logits, lq_feat
modules/codeformer/vqgan_arch.py ADDED
@@ -0,0 +1,437 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # this file is copied from CodeFormer repository. Please see comment in modules/codeformer_model.py
2
+
3
+ '''
4
+ VQGAN code, adapted from the original created by the Unleashing Transformers authors:
5
+ https://github.com/samb-t/unleashing-transformers/blob/master/models/vqgan.py
6
+
7
+ '''
8
+ import numpy as np
9
+ import torch
10
+ import torch.nn as nn
11
+ import torch.nn.functional as F
12
+ import copy
13
+ from basicsr.utils import get_root_logger
14
+ from basicsr.utils.registry import ARCH_REGISTRY
15
+
16
+ def normalize(in_channels):
17
+ return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
18
+
19
+
20
+ @torch.jit.script
21
+ def swish(x):
22
+ return x*torch.sigmoid(x)
23
+
24
+
25
+ # Define VQVAE classes
26
+ class VectorQuantizer(nn.Module):
27
+ def __init__(self, codebook_size, emb_dim, beta):
28
+ super(VectorQuantizer, self).__init__()
29
+ self.codebook_size = codebook_size # number of embeddings
30
+ self.emb_dim = emb_dim # dimension of embedding
31
+ self.beta = beta # commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2
32
+ self.embedding = nn.Embedding(self.codebook_size, self.emb_dim)
33
+ self.embedding.weight.data.uniform_(-1.0 / self.codebook_size, 1.0 / self.codebook_size)
34
+
35
+ def forward(self, z):
36
+ # reshape z -> (batch, height, width, channel) and flatten
37
+ z = z.permute(0, 2, 3, 1).contiguous()
38
+ z_flattened = z.view(-1, self.emb_dim)
39
+
40
+ # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
41
+ d = (z_flattened ** 2).sum(dim=1, keepdim=True) + (self.embedding.weight**2).sum(1) - \
42
+ 2 * torch.matmul(z_flattened, self.embedding.weight.t())
43
+
44
+ mean_distance = torch.mean(d)
45
+ # find closest encodings
46
+ # min_encoding_indices = torch.argmin(d, dim=1).unsqueeze(1)
47
+ min_encoding_scores, min_encoding_indices = torch.topk(d, 1, dim=1, largest=False)
48
+ # [0-1], higher score, higher confidence
49
+ min_encoding_scores = torch.exp(-min_encoding_scores/10)
50
+
51
+ min_encodings = torch.zeros(min_encoding_indices.shape[0], self.codebook_size).to(z)
52
+ min_encodings.scatter_(1, min_encoding_indices, 1)
53
+
54
+ # get quantized latent vectors
55
+ z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape)
56
+ # compute loss for embedding
57
+ loss = torch.mean((z_q.detach()-z)**2) + self.beta * torch.mean((z_q - z.detach()) ** 2)
58
+ # preserve gradients
59
+ z_q = z + (z_q - z).detach()
60
+
61
+ # perplexity
62
+ e_mean = torch.mean(min_encodings, dim=0)
63
+ perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10)))
64
+ # reshape back to match original input shape
65
+ z_q = z_q.permute(0, 3, 1, 2).contiguous()
66
+
67
+ return z_q, loss, {
68
+ "perplexity": perplexity,
69
+ "min_encodings": min_encodings,
70
+ "min_encoding_indices": min_encoding_indices,
71
+ "min_encoding_scores": min_encoding_scores,
72
+ "mean_distance": mean_distance
73
+ }
74
+
75
+ def get_codebook_feat(self, indices, shape):
76
+ # input indices: batch*token_num -> (batch*token_num)*1
77
+ # shape: batch, height, width, channel
78
+ indices = indices.view(-1,1)
79
+ min_encodings = torch.zeros(indices.shape[0], self.codebook_size).to(indices)
80
+ min_encodings.scatter_(1, indices, 1)
81
+ # get quantized latent vectors
82
+ z_q = torch.matmul(min_encodings.float(), self.embedding.weight)
83
+
84
+ if shape is not None: # reshape back to match original input shape
85
+ z_q = z_q.view(shape).permute(0, 3, 1, 2).contiguous()
86
+
87
+ return z_q
88
+
89
+
90
+ class GumbelQuantizer(nn.Module):
91
+ def __init__(self, codebook_size, emb_dim, num_hiddens, straight_through=False, kl_weight=5e-4, temp_init=1.0):
92
+ super().__init__()
93
+ self.codebook_size = codebook_size # number of embeddings
94
+ self.emb_dim = emb_dim # dimension of embedding
95
+ self.straight_through = straight_through
96
+ self.temperature = temp_init
97
+ self.kl_weight = kl_weight
98
+ self.proj = nn.Conv2d(num_hiddens, codebook_size, 1) # projects last encoder layer to quantized logits
99
+ self.embed = nn.Embedding(codebook_size, emb_dim)
100
+
101
+ def forward(self, z):
102
+ hard = self.straight_through if self.training else True
103
+
104
+ logits = self.proj(z)
105
+
106
+ soft_one_hot = F.gumbel_softmax(logits, tau=self.temperature, dim=1, hard=hard)
107
+
108
+ z_q = torch.einsum("b n h w, n d -> b d h w", soft_one_hot, self.embed.weight)
109
+
110
+ # + kl divergence to the prior loss
111
+ qy = F.softmax(logits, dim=1)
112
+ diff = self.kl_weight * torch.sum(qy * torch.log(qy * self.codebook_size + 1e-10), dim=1).mean()
113
+ min_encoding_indices = soft_one_hot.argmax(dim=1)
114
+
115
+ return z_q, diff, {
116
+ "min_encoding_indices": min_encoding_indices
117
+ }
118
+
119
+
120
+ class Downsample(nn.Module):
121
+ def __init__(self, in_channels):
122
+ super().__init__()
123
+ self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
124
+
125
+ def forward(self, x):
126
+ pad = (0, 1, 0, 1)
127
+ x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
128
+ x = self.conv(x)
129
+ return x
130
+
131
+
132
+ class Upsample(nn.Module):
133
+ def __init__(self, in_channels):
134
+ super().__init__()
135
+ self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
136
+
137
+ def forward(self, x):
138
+ x = F.interpolate(x, scale_factor=2.0, mode="nearest")
139
+ x = self.conv(x)
140
+
141
+ return x
142
+
143
+
144
+ class ResBlock(nn.Module):
145
+ def __init__(self, in_channels, out_channels=None):
146
+ super(ResBlock, self).__init__()
147
+ self.in_channels = in_channels
148
+ self.out_channels = in_channels if out_channels is None else out_channels
149
+ self.norm1 = normalize(in_channels)
150
+ self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
151
+ self.norm2 = normalize(out_channels)
152
+ self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
153
+ if self.in_channels != self.out_channels:
154
+ self.conv_out = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
155
+
156
+ def forward(self, x_in):
157
+ x = x_in
158
+ x = self.norm1(x)
159
+ x = swish(x)
160
+ x = self.conv1(x)
161
+ x = self.norm2(x)
162
+ x = swish(x)
163
+ x = self.conv2(x)
164
+ if self.in_channels != self.out_channels:
165
+ x_in = self.conv_out(x_in)
166
+
167
+ return x + x_in
168
+
169
+
170
+ class AttnBlock(nn.Module):
171
+ def __init__(self, in_channels):
172
+ super().__init__()
173
+ self.in_channels = in_channels
174
+
175
+ self.norm = normalize(in_channels)
176
+ self.q = torch.nn.Conv2d(
177
+ in_channels,
178
+ in_channels,
179
+ kernel_size=1,
180
+ stride=1,
181
+ padding=0
182
+ )
183
+ self.k = torch.nn.Conv2d(
184
+ in_channels,
185
+ in_channels,
186
+ kernel_size=1,
187
+ stride=1,
188
+ padding=0
189
+ )
190
+ self.v = torch.nn.Conv2d(
191
+ in_channels,
192
+ in_channels,
193
+ kernel_size=1,
194
+ stride=1,
195
+ padding=0
196
+ )
197
+ self.proj_out = torch.nn.Conv2d(
198
+ in_channels,
199
+ in_channels,
200
+ kernel_size=1,
201
+ stride=1,
202
+ padding=0
203
+ )
204
+
205
+ def forward(self, x):
206
+ h_ = x
207
+ h_ = self.norm(h_)
208
+ q = self.q(h_)
209
+ k = self.k(h_)
210
+ v = self.v(h_)
211
+
212
+ # compute attention
213
+ b, c, h, w = q.shape
214
+ q = q.reshape(b, c, h*w)
215
+ q = q.permute(0, 2, 1)
216
+ k = k.reshape(b, c, h*w)
217
+ w_ = torch.bmm(q, k)
218
+ w_ = w_ * (int(c)**(-0.5))
219
+ w_ = F.softmax(w_, dim=2)
220
+
221
+ # attend to values
222
+ v = v.reshape(b, c, h*w)
223
+ w_ = w_.permute(0, 2, 1)
224
+ h_ = torch.bmm(v, w_)
225
+ h_ = h_.reshape(b, c, h, w)
226
+
227
+ h_ = self.proj_out(h_)
228
+
229
+ return x+h_
230
+
231
+
232
+ class Encoder(nn.Module):
233
+ def __init__(self, in_channels, nf, emb_dim, ch_mult, num_res_blocks, resolution, attn_resolutions):
234
+ super().__init__()
235
+ self.nf = nf
236
+ self.num_resolutions = len(ch_mult)
237
+ self.num_res_blocks = num_res_blocks
238
+ self.resolution = resolution
239
+ self.attn_resolutions = attn_resolutions
240
+
241
+ curr_res = self.resolution
242
+ in_ch_mult = (1,)+tuple(ch_mult)
243
+
244
+ blocks = []
245
+ # initial convultion
246
+ blocks.append(nn.Conv2d(in_channels, nf, kernel_size=3, stride=1, padding=1))
247
+
248
+ # residual and downsampling blocks, with attention on smaller res (16x16)
249
+ for i in range(self.num_resolutions):
250
+ block_in_ch = nf * in_ch_mult[i]
251
+ block_out_ch = nf * ch_mult[i]
252
+ for _ in range(self.num_res_blocks):
253
+ blocks.append(ResBlock(block_in_ch, block_out_ch))
254
+ block_in_ch = block_out_ch
255
+ if curr_res in attn_resolutions:
256
+ blocks.append(AttnBlock(block_in_ch))
257
+
258
+ if i != self.num_resolutions - 1:
259
+ blocks.append(Downsample(block_in_ch))
260
+ curr_res = curr_res // 2
261
+
262
+ # non-local attention block
263
+ blocks.append(ResBlock(block_in_ch, block_in_ch))
264
+ blocks.append(AttnBlock(block_in_ch))
265
+ blocks.append(ResBlock(block_in_ch, block_in_ch))
266
+
267
+ # normalise and convert to latent size
268
+ blocks.append(normalize(block_in_ch))
269
+ blocks.append(nn.Conv2d(block_in_ch, emb_dim, kernel_size=3, stride=1, padding=1))
270
+ self.blocks = nn.ModuleList(blocks)
271
+
272
+ def forward(self, x):
273
+ for block in self.blocks:
274
+ x = block(x)
275
+
276
+ return x
277
+
278
+
279
+ class Generator(nn.Module):
280
+ def __init__(self, nf, emb_dim, ch_mult, res_blocks, img_size, attn_resolutions):
281
+ super().__init__()
282
+ self.nf = nf
283
+ self.ch_mult = ch_mult
284
+ self.num_resolutions = len(self.ch_mult)
285
+ self.num_res_blocks = res_blocks
286
+ self.resolution = img_size
287
+ self.attn_resolutions = attn_resolutions
288
+ self.in_channels = emb_dim
289
+ self.out_channels = 3
290
+ block_in_ch = self.nf * self.ch_mult[-1]
291
+ curr_res = self.resolution // 2 ** (self.num_resolutions-1)
292
+
293
+ blocks = []
294
+ # initial conv
295
+ blocks.append(nn.Conv2d(self.in_channels, block_in_ch, kernel_size=3, stride=1, padding=1))
296
+
297
+ # non-local attention block
298
+ blocks.append(ResBlock(block_in_ch, block_in_ch))
299
+ blocks.append(AttnBlock(block_in_ch))
300
+ blocks.append(ResBlock(block_in_ch, block_in_ch))
301
+
302
+ for i in reversed(range(self.num_resolutions)):
303
+ block_out_ch = self.nf * self.ch_mult[i]
304
+
305
+ for _ in range(self.num_res_blocks):
306
+ blocks.append(ResBlock(block_in_ch, block_out_ch))
307
+ block_in_ch = block_out_ch
308
+
309
+ if curr_res in self.attn_resolutions:
310
+ blocks.append(AttnBlock(block_in_ch))
311
+
312
+ if i != 0:
313
+ blocks.append(Upsample(block_in_ch))
314
+ curr_res = curr_res * 2
315
+
316
+ blocks.append(normalize(block_in_ch))
317
+ blocks.append(nn.Conv2d(block_in_ch, self.out_channels, kernel_size=3, stride=1, padding=1))
318
+
319
+ self.blocks = nn.ModuleList(blocks)
320
+
321
+
322
+ def forward(self, x):
323
+ for block in self.blocks:
324
+ x = block(x)
325
+
326
+ return x
327
+
328
+
329
+ @ARCH_REGISTRY.register()
330
+ class VQAutoEncoder(nn.Module):
331
+ def __init__(self, img_size, nf, ch_mult, quantizer="nearest", res_blocks=2, attn_resolutions=[16], codebook_size=1024, emb_dim=256,
332
+ beta=0.25, gumbel_straight_through=False, gumbel_kl_weight=1e-8, model_path=None):
333
+ super().__init__()
334
+ logger = get_root_logger()
335
+ self.in_channels = 3
336
+ self.nf = nf
337
+ self.n_blocks = res_blocks
338
+ self.codebook_size = codebook_size
339
+ self.embed_dim = emb_dim
340
+ self.ch_mult = ch_mult
341
+ self.resolution = img_size
342
+ self.attn_resolutions = attn_resolutions
343
+ self.quantizer_type = quantizer
344
+ self.encoder = Encoder(
345
+ self.in_channels,
346
+ self.nf,
347
+ self.embed_dim,
348
+ self.ch_mult,
349
+ self.n_blocks,
350
+ self.resolution,
351
+ self.attn_resolutions
352
+ )
353
+ if self.quantizer_type == "nearest":
354
+ self.beta = beta #0.25
355
+ self.quantize = VectorQuantizer(self.codebook_size, self.embed_dim, self.beta)
356
+ elif self.quantizer_type == "gumbel":
357
+ self.gumbel_num_hiddens = emb_dim
358
+ self.straight_through = gumbel_straight_through
359
+ self.kl_weight = gumbel_kl_weight
360
+ self.quantize = GumbelQuantizer(
361
+ self.codebook_size,
362
+ self.embed_dim,
363
+ self.gumbel_num_hiddens,
364
+ self.straight_through,
365
+ self.kl_weight
366
+ )
367
+ self.generator = Generator(
368
+ self.nf,
369
+ self.embed_dim,
370
+ self.ch_mult,
371
+ self.n_blocks,
372
+ self.resolution,
373
+ self.attn_resolutions
374
+ )
375
+
376
+ if model_path is not None:
377
+ chkpt = torch.load(model_path, map_location='cpu')
378
+ if 'params_ema' in chkpt:
379
+ self.load_state_dict(torch.load(model_path, map_location='cpu')['params_ema'])
380
+ logger.info(f'vqgan is loaded from: {model_path} [params_ema]')
381
+ elif 'params' in chkpt:
382
+ self.load_state_dict(torch.load(model_path, map_location='cpu')['params'])
383
+ logger.info(f'vqgan is loaded from: {model_path} [params]')
384
+ else:
385
+ raise ValueError('Wrong params!')
386
+
387
+
388
+ def forward(self, x):
389
+ x = self.encoder(x)
390
+ quant, codebook_loss, quant_stats = self.quantize(x)
391
+ x = self.generator(quant)
392
+ return x, codebook_loss, quant_stats
393
+
394
+
395
+
396
+ # patch based discriminator
397
+ @ARCH_REGISTRY.register()
398
+ class VQGANDiscriminator(nn.Module):
399
+ def __init__(self, nc=3, ndf=64, n_layers=4, model_path=None):
400
+ super().__init__()
401
+
402
+ layers = [nn.Conv2d(nc, ndf, kernel_size=4, stride=2, padding=1), nn.LeakyReLU(0.2, True)]
403
+ ndf_mult = 1
404
+ ndf_mult_prev = 1
405
+ for n in range(1, n_layers): # gradually increase the number of filters
406
+ ndf_mult_prev = ndf_mult
407
+ ndf_mult = min(2 ** n, 8)
408
+ layers += [
409
+ nn.Conv2d(ndf * ndf_mult_prev, ndf * ndf_mult, kernel_size=4, stride=2, padding=1, bias=False),
410
+ nn.BatchNorm2d(ndf * ndf_mult),
411
+ nn.LeakyReLU(0.2, True)
412
+ ]
413
+
414
+ ndf_mult_prev = ndf_mult
415
+ ndf_mult = min(2 ** n_layers, 8)
416
+
417
+ layers += [
418
+ nn.Conv2d(ndf * ndf_mult_prev, ndf * ndf_mult, kernel_size=4, stride=1, padding=1, bias=False),
419
+ nn.BatchNorm2d(ndf * ndf_mult),
420
+ nn.LeakyReLU(0.2, True)
421
+ ]
422
+
423
+ layers += [
424
+ nn.Conv2d(ndf * ndf_mult, 1, kernel_size=4, stride=1, padding=1)] # output 1 channel prediction map
425
+ self.main = nn.Sequential(*layers)
426
+
427
+ if model_path is not None:
428
+ chkpt = torch.load(model_path, map_location='cpu')
429
+ if 'params_d' in chkpt:
430
+ self.load_state_dict(torch.load(model_path, map_location='cpu')['params_d'])
431
+ elif 'params' in chkpt:
432
+ self.load_state_dict(torch.load(model_path, map_location='cpu')['params'])
433
+ else:
434
+ raise ValueError('Wrong params!')
435
+
436
+ def forward(self, x):
437
+ return self.main(x)
modules/codeformer_model.py ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ import traceback
4
+
5
+ import cv2
6
+ import torch
7
+
8
+ import modules.face_restoration
9
+ import modules.shared
10
+ from modules import shared, devices, modelloader
11
+ from modules.paths import models_path
12
+
13
+ # codeformer people made a choice to include modified basicsr library to their project which makes
14
+ # it utterly impossible to use it alongside with other libraries that also use basicsr, like GFPGAN.
15
+ # I am making a choice to include some files from codeformer to work around this issue.
16
+ model_dir = "Codeformer"
17
+ model_path = os.path.join(models_path, model_dir)
18
+ model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth'
19
+
20
+ have_codeformer = False
21
+ codeformer = None
22
+
23
+
24
+ def setup_model(dirname):
25
+ global model_path
26
+ if not os.path.exists(model_path):
27
+ os.makedirs(model_path)
28
+
29
+ path = modules.paths.paths.get("CodeFormer", None)
30
+ if path is None:
31
+ return
32
+
33
+ try:
34
+ from torchvision.transforms.functional import normalize
35
+ from modules.codeformer.codeformer_arch import CodeFormer
36
+ from basicsr.utils.download_util import load_file_from_url
37
+ from basicsr.utils import imwrite, img2tensor, tensor2img
38
+ from facelib.utils.face_restoration_helper import FaceRestoreHelper
39
+ from facelib.detection.retinaface import retinaface
40
+ from modules.shared import cmd_opts
41
+
42
+ net_class = CodeFormer
43
+
44
+ class FaceRestorerCodeFormer(modules.face_restoration.FaceRestoration):
45
+ def name(self):
46
+ return "CodeFormer"
47
+
48
+ def __init__(self, dirname):
49
+ self.net = None
50
+ self.face_helper = None
51
+ self.cmd_dir = dirname
52
+
53
+ def create_models(self):
54
+
55
+ if self.net is not None and self.face_helper is not None:
56
+ self.net.to(devices.device_codeformer)
57
+ return self.net, self.face_helper
58
+ model_paths = modelloader.load_models(model_path, model_url, self.cmd_dir, download_name='codeformer-v0.1.0.pth')
59
+ if len(model_paths) != 0:
60
+ ckpt_path = model_paths[0]
61
+ else:
62
+ print("Unable to load codeformer model.")
63
+ return None, None
64
+ net = net_class(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9, connect_list=['32', '64', '128', '256']).to(devices.device_codeformer)
65
+ checkpoint = torch.load(ckpt_path)['params_ema']
66
+ net.load_state_dict(checkpoint)
67
+ net.eval()
68
+
69
+ if hasattr(retinaface, 'device'):
70
+ retinaface.device = devices.device_codeformer
71
+ face_helper = FaceRestoreHelper(1, face_size=512, crop_ratio=(1, 1), det_model='retinaface_resnet50', save_ext='png', use_parse=True, device=devices.device_codeformer)
72
+
73
+ self.net = net
74
+ self.face_helper = face_helper
75
+
76
+ return net, face_helper
77
+
78
+ def send_model_to(self, device):
79
+ self.net.to(device)
80
+ self.face_helper.face_det.to(device)
81
+ self.face_helper.face_parse.to(device)
82
+
83
+ def restore(self, np_image, w=None):
84
+ np_image = np_image[:, :, ::-1]
85
+
86
+ original_resolution = np_image.shape[0:2]
87
+
88
+ self.create_models()
89
+ if self.net is None or self.face_helper is None:
90
+ return np_image
91
+
92
+ self.send_model_to(devices.device_codeformer)
93
+
94
+ self.face_helper.clean_all()
95
+ self.face_helper.read_image(np_image)
96
+ self.face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5)
97
+ self.face_helper.align_warp_face()
98
+
99
+ for idx, cropped_face in enumerate(self.face_helper.cropped_faces):
100
+ cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
101
+ normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
102
+ cropped_face_t = cropped_face_t.unsqueeze(0).to(devices.device_codeformer)
103
+
104
+ try:
105
+ with torch.no_grad():
106
+ output = self.net(cropped_face_t, w=w if w is not None else shared.opts.code_former_weight, adain=True)[0]
107
+ restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
108
+ del output
109
+ torch.cuda.empty_cache()
110
+ except Exception as error:
111
+ print(f'\tFailed inference for CodeFormer: {error}', file=sys.stderr)
112
+ restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1))
113
+
114
+ restored_face = restored_face.astype('uint8')
115
+ self.face_helper.add_restored_face(restored_face)
116
+
117
+ self.face_helper.get_inverse_affine(None)
118
+
119
+ restored_img = self.face_helper.paste_faces_to_input_image()
120
+ restored_img = restored_img[:, :, ::-1]
121
+
122
+ if original_resolution != restored_img.shape[0:2]:
123
+ restored_img = cv2.resize(restored_img, (0, 0), fx=original_resolution[1]/restored_img.shape[1], fy=original_resolution[0]/restored_img.shape[0], interpolation=cv2.INTER_LINEAR)
124
+
125
+ self.face_helper.clean_all()
126
+
127
+ if shared.opts.face_restoration_unload:
128
+ self.send_model_to(devices.cpu)
129
+
130
+ return restored_img
131
+
132
+ global have_codeformer
133
+ have_codeformer = True
134
+
135
+ global codeformer
136
+ codeformer = FaceRestorerCodeFormer(dirname)
137
+ shared.face_restorers.append(codeformer)
138
+
139
+ except Exception:
140
+ print("Error setting up CodeFormer:", file=sys.stderr)
141
+ print(traceback.format_exc(), file=sys.stderr)
142
+
143
+ # sys.path = stored_sys_path
modules/deepbooru.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+
4
+ import torch
5
+ from PIL import Image
6
+ import numpy as np
7
+
8
+ from modules import modelloader, paths, deepbooru_model, devices, images, shared
9
+
10
+ re_special = re.compile(r'([\\()])')
11
+
12
+
13
+ class DeepDanbooru:
14
+ def __init__(self):
15
+ self.model = None
16
+
17
+ def load(self):
18
+ if self.model is not None:
19
+ return
20
+
21
+ files = modelloader.load_models(
22
+ model_path=os.path.join(paths.models_path, "torch_deepdanbooru"),
23
+ model_url='https://github.com/AUTOMATIC1111/TorchDeepDanbooru/releases/download/v1/model-resnet_custom_v3.pt',
24
+ ext_filter=[".pt"],
25
+ download_name='model-resnet_custom_v3.pt',
26
+ )
27
+
28
+ self.model = deepbooru_model.DeepDanbooruModel()
29
+ self.model.load_state_dict(torch.load(files[0], map_location="cpu"))
30
+
31
+ self.model.eval()
32
+ self.model.to(devices.cpu, devices.dtype)
33
+
34
+ def start(self):
35
+ self.load()
36
+ self.model.to(devices.device)
37
+
38
+ def stop(self):
39
+ if not shared.opts.interrogate_keep_models_in_memory:
40
+ self.model.to(devices.cpu)
41
+ devices.torch_gc()
42
+
43
+ def tag(self, pil_image):
44
+ self.start()
45
+ res = self.tag_multi(pil_image)
46
+ self.stop()
47
+
48
+ return res
49
+
50
+ def tag_multi(self, pil_image, force_disable_ranks=False):
51
+ threshold = shared.opts.interrogate_deepbooru_score_threshold
52
+ use_spaces = shared.opts.deepbooru_use_spaces
53
+ use_escape = shared.opts.deepbooru_escape
54
+ alpha_sort = shared.opts.deepbooru_sort_alpha
55
+ include_ranks = shared.opts.interrogate_return_ranks and not force_disable_ranks
56
+
57
+ pic = images.resize_image(2, pil_image.convert("RGB"), 512, 512)
58
+ a = np.expand_dims(np.array(pic, dtype=np.float32), 0) / 255
59
+
60
+ with torch.no_grad(), devices.autocast():
61
+ x = torch.from_numpy(a).to(devices.device)
62
+ y = self.model(x)[0].detach().cpu().numpy()
63
+
64
+ probability_dict = {}
65
+
66
+ for tag, probability in zip(self.model.tags, y):
67
+ if probability < threshold:
68
+ continue
69
+
70
+ if tag.startswith("rating:"):
71
+ continue
72
+
73
+ probability_dict[tag] = probability
74
+
75
+ if alpha_sort:
76
+ tags = sorted(probability_dict)
77
+ else:
78
+ tags = [tag for tag, _ in sorted(probability_dict.items(), key=lambda x: -x[1])]
79
+
80
+ res = []
81
+
82
+ filtertags = set([x.strip().replace(' ', '_') for x in shared.opts.deepbooru_filter_tags.split(",")])
83
+
84
+ for tag in [x for x in tags if x not in filtertags]:
85
+ probability = probability_dict[tag]
86
+ tag_outformat = tag
87
+ if use_spaces:
88
+ tag_outformat = tag_outformat.replace('_', ' ')
89
+ if use_escape:
90
+ tag_outformat = re.sub(re_special, r'\\\1', tag_outformat)
91
+ if include_ranks:
92
+ tag_outformat = f"({tag_outformat}:{probability:.3f})"
93
+
94
+ res.append(tag_outformat)
95
+
96
+ return ", ".join(res)
97
+
98
+
99
+ model = DeepDanbooru()
modules/deepbooru_model.py ADDED
@@ -0,0 +1,678 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+ from modules import devices
6
+
7
+ # see https://github.com/AUTOMATIC1111/TorchDeepDanbooru for more
8
+
9
+
10
+ class DeepDanbooruModel(nn.Module):
11
+ def __init__(self):
12
+ super(DeepDanbooruModel, self).__init__()
13
+
14
+ self.tags = []
15
+
16
+ self.n_Conv_0 = nn.Conv2d(kernel_size=(7, 7), in_channels=3, out_channels=64, stride=(2, 2))
17
+ self.n_MaxPool_0 = nn.MaxPool2d(kernel_size=(3, 3), stride=(2, 2))
18
+ self.n_Conv_1 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
19
+ self.n_Conv_2 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=64)
20
+ self.n_Conv_3 = nn.Conv2d(kernel_size=(3, 3), in_channels=64, out_channels=64)
21
+ self.n_Conv_4 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
22
+ self.n_Conv_5 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=64)
23
+ self.n_Conv_6 = nn.Conv2d(kernel_size=(3, 3), in_channels=64, out_channels=64)
24
+ self.n_Conv_7 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
25
+ self.n_Conv_8 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=64)
26
+ self.n_Conv_9 = nn.Conv2d(kernel_size=(3, 3), in_channels=64, out_channels=64)
27
+ self.n_Conv_10 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
28
+ self.n_Conv_11 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=512, stride=(2, 2))
29
+ self.n_Conv_12 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=128)
30
+ self.n_Conv_13 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128, stride=(2, 2))
31
+ self.n_Conv_14 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
32
+ self.n_Conv_15 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
33
+ self.n_Conv_16 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
34
+ self.n_Conv_17 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
35
+ self.n_Conv_18 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
36
+ self.n_Conv_19 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
37
+ self.n_Conv_20 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
38
+ self.n_Conv_21 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
39
+ self.n_Conv_22 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
40
+ self.n_Conv_23 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
41
+ self.n_Conv_24 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
42
+ self.n_Conv_25 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
43
+ self.n_Conv_26 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
44
+ self.n_Conv_27 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
45
+ self.n_Conv_28 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
46
+ self.n_Conv_29 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
47
+ self.n_Conv_30 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
48
+ self.n_Conv_31 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
49
+ self.n_Conv_32 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
50
+ self.n_Conv_33 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
51
+ self.n_Conv_34 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
52
+ self.n_Conv_35 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
53
+ self.n_Conv_36 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=1024, stride=(2, 2))
54
+ self.n_Conv_37 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=256)
55
+ self.n_Conv_38 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256, stride=(2, 2))
56
+ self.n_Conv_39 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
57
+ self.n_Conv_40 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
58
+ self.n_Conv_41 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
59
+ self.n_Conv_42 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
60
+ self.n_Conv_43 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
61
+ self.n_Conv_44 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
62
+ self.n_Conv_45 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
63
+ self.n_Conv_46 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
64
+ self.n_Conv_47 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
65
+ self.n_Conv_48 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
66
+ self.n_Conv_49 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
67
+ self.n_Conv_50 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
68
+ self.n_Conv_51 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
69
+ self.n_Conv_52 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
70
+ self.n_Conv_53 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
71
+ self.n_Conv_54 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
72
+ self.n_Conv_55 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
73
+ self.n_Conv_56 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
74
+ self.n_Conv_57 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
75
+ self.n_Conv_58 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
76
+ self.n_Conv_59 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
77
+ self.n_Conv_60 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
78
+ self.n_Conv_61 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
79
+ self.n_Conv_62 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
80
+ self.n_Conv_63 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
81
+ self.n_Conv_64 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
82
+ self.n_Conv_65 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
83
+ self.n_Conv_66 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
84
+ self.n_Conv_67 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
85
+ self.n_Conv_68 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
86
+ self.n_Conv_69 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
87
+ self.n_Conv_70 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
88
+ self.n_Conv_71 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
89
+ self.n_Conv_72 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
90
+ self.n_Conv_73 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
91
+ self.n_Conv_74 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
92
+ self.n_Conv_75 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
93
+ self.n_Conv_76 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
94
+ self.n_Conv_77 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
95
+ self.n_Conv_78 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
96
+ self.n_Conv_79 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
97
+ self.n_Conv_80 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
98
+ self.n_Conv_81 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
99
+ self.n_Conv_82 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
100
+ self.n_Conv_83 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
101
+ self.n_Conv_84 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
102
+ self.n_Conv_85 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
103
+ self.n_Conv_86 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
104
+ self.n_Conv_87 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
105
+ self.n_Conv_88 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
106
+ self.n_Conv_89 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
107
+ self.n_Conv_90 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
108
+ self.n_Conv_91 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
109
+ self.n_Conv_92 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
110
+ self.n_Conv_93 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
111
+ self.n_Conv_94 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
112
+ self.n_Conv_95 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
113
+ self.n_Conv_96 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
114
+ self.n_Conv_97 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
115
+ self.n_Conv_98 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256, stride=(2, 2))
116
+ self.n_Conv_99 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
117
+ self.n_Conv_100 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=1024, stride=(2, 2))
118
+ self.n_Conv_101 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
119
+ self.n_Conv_102 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
120
+ self.n_Conv_103 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
121
+ self.n_Conv_104 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
122
+ self.n_Conv_105 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
123
+ self.n_Conv_106 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
124
+ self.n_Conv_107 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
125
+ self.n_Conv_108 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
126
+ self.n_Conv_109 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
127
+ self.n_Conv_110 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
128
+ self.n_Conv_111 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
129
+ self.n_Conv_112 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
130
+ self.n_Conv_113 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
131
+ self.n_Conv_114 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
132
+ self.n_Conv_115 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
133
+ self.n_Conv_116 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
134
+ self.n_Conv_117 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
135
+ self.n_Conv_118 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
136
+ self.n_Conv_119 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
137
+ self.n_Conv_120 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
138
+ self.n_Conv_121 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
139
+ self.n_Conv_122 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
140
+ self.n_Conv_123 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
141
+ self.n_Conv_124 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
142
+ self.n_Conv_125 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
143
+ self.n_Conv_126 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
144
+ self.n_Conv_127 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
145
+ self.n_Conv_128 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
146
+ self.n_Conv_129 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
147
+ self.n_Conv_130 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
148
+ self.n_Conv_131 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
149
+ self.n_Conv_132 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
150
+ self.n_Conv_133 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
151
+ self.n_Conv_134 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
152
+ self.n_Conv_135 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
153
+ self.n_Conv_136 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
154
+ self.n_Conv_137 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
155
+ self.n_Conv_138 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
156
+ self.n_Conv_139 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
157
+ self.n_Conv_140 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
158
+ self.n_Conv_141 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
159
+ self.n_Conv_142 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
160
+ self.n_Conv_143 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
161
+ self.n_Conv_144 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
162
+ self.n_Conv_145 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
163
+ self.n_Conv_146 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
164
+ self.n_Conv_147 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
165
+ self.n_Conv_148 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
166
+ self.n_Conv_149 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
167
+ self.n_Conv_150 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
168
+ self.n_Conv_151 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
169
+ self.n_Conv_152 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
170
+ self.n_Conv_153 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
171
+ self.n_Conv_154 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
172
+ self.n_Conv_155 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
173
+ self.n_Conv_156 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
174
+ self.n_Conv_157 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
175
+ self.n_Conv_158 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=2048, stride=(2, 2))
176
+ self.n_Conv_159 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=512)
177
+ self.n_Conv_160 = nn.Conv2d(kernel_size=(3, 3), in_channels=512, out_channels=512, stride=(2, 2))
178
+ self.n_Conv_161 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=2048)
179
+ self.n_Conv_162 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=512)
180
+ self.n_Conv_163 = nn.Conv2d(kernel_size=(3, 3), in_channels=512, out_channels=512)
181
+ self.n_Conv_164 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=2048)
182
+ self.n_Conv_165 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=512)
183
+ self.n_Conv_166 = nn.Conv2d(kernel_size=(3, 3), in_channels=512, out_channels=512)
184
+ self.n_Conv_167 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=2048)
185
+ self.n_Conv_168 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=4096, stride=(2, 2))
186
+ self.n_Conv_169 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=1024)
187
+ self.n_Conv_170 = nn.Conv2d(kernel_size=(3, 3), in_channels=1024, out_channels=1024, stride=(2, 2))
188
+ self.n_Conv_171 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=4096)
189
+ self.n_Conv_172 = nn.Conv2d(kernel_size=(1, 1), in_channels=4096, out_channels=1024)
190
+ self.n_Conv_173 = nn.Conv2d(kernel_size=(3, 3), in_channels=1024, out_channels=1024)
191
+ self.n_Conv_174 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=4096)
192
+ self.n_Conv_175 = nn.Conv2d(kernel_size=(1, 1), in_channels=4096, out_channels=1024)
193
+ self.n_Conv_176 = nn.Conv2d(kernel_size=(3, 3), in_channels=1024, out_channels=1024)
194
+ self.n_Conv_177 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=4096)
195
+ self.n_Conv_178 = nn.Conv2d(kernel_size=(1, 1), in_channels=4096, out_channels=9176, bias=False)
196
+
197
+ def forward(self, *inputs):
198
+ t_358, = inputs
199
+ t_359 = t_358.permute(*[0, 3, 1, 2])
200
+ t_359_padded = F.pad(t_359, [2, 3, 2, 3], value=0)
201
+ t_360 = self.n_Conv_0(t_359_padded.to(self.n_Conv_0.bias.dtype) if devices.unet_needs_upcast else t_359_padded)
202
+ t_361 = F.relu(t_360)
203
+ t_361 = F.pad(t_361, [0, 1, 0, 1], value=float('-inf'))
204
+ t_362 = self.n_MaxPool_0(t_361)
205
+ t_363 = self.n_Conv_1(t_362)
206
+ t_364 = self.n_Conv_2(t_362)
207
+ t_365 = F.relu(t_364)
208
+ t_365_padded = F.pad(t_365, [1, 1, 1, 1], value=0)
209
+ t_366 = self.n_Conv_3(t_365_padded)
210
+ t_367 = F.relu(t_366)
211
+ t_368 = self.n_Conv_4(t_367)
212
+ t_369 = torch.add(t_368, t_363)
213
+ t_370 = F.relu(t_369)
214
+ t_371 = self.n_Conv_5(t_370)
215
+ t_372 = F.relu(t_371)
216
+ t_372_padded = F.pad(t_372, [1, 1, 1, 1], value=0)
217
+ t_373 = self.n_Conv_6(t_372_padded)
218
+ t_374 = F.relu(t_373)
219
+ t_375 = self.n_Conv_7(t_374)
220
+ t_376 = torch.add(t_375, t_370)
221
+ t_377 = F.relu(t_376)
222
+ t_378 = self.n_Conv_8(t_377)
223
+ t_379 = F.relu(t_378)
224
+ t_379_padded = F.pad(t_379, [1, 1, 1, 1], value=0)
225
+ t_380 = self.n_Conv_9(t_379_padded)
226
+ t_381 = F.relu(t_380)
227
+ t_382 = self.n_Conv_10(t_381)
228
+ t_383 = torch.add(t_382, t_377)
229
+ t_384 = F.relu(t_383)
230
+ t_385 = self.n_Conv_11(t_384)
231
+ t_386 = self.n_Conv_12(t_384)
232
+ t_387 = F.relu(t_386)
233
+ t_387_padded = F.pad(t_387, [0, 1, 0, 1], value=0)
234
+ t_388 = self.n_Conv_13(t_387_padded)
235
+ t_389 = F.relu(t_388)
236
+ t_390 = self.n_Conv_14(t_389)
237
+ t_391 = torch.add(t_390, t_385)
238
+ t_392 = F.relu(t_391)
239
+ t_393 = self.n_Conv_15(t_392)
240
+ t_394 = F.relu(t_393)
241
+ t_394_padded = F.pad(t_394, [1, 1, 1, 1], value=0)
242
+ t_395 = self.n_Conv_16(t_394_padded)
243
+ t_396 = F.relu(t_395)
244
+ t_397 = self.n_Conv_17(t_396)
245
+ t_398 = torch.add(t_397, t_392)
246
+ t_399 = F.relu(t_398)
247
+ t_400 = self.n_Conv_18(t_399)
248
+ t_401 = F.relu(t_400)
249
+ t_401_padded = F.pad(t_401, [1, 1, 1, 1], value=0)
250
+ t_402 = self.n_Conv_19(t_401_padded)
251
+ t_403 = F.relu(t_402)
252
+ t_404 = self.n_Conv_20(t_403)
253
+ t_405 = torch.add(t_404, t_399)
254
+ t_406 = F.relu(t_405)
255
+ t_407 = self.n_Conv_21(t_406)
256
+ t_408 = F.relu(t_407)
257
+ t_408_padded = F.pad(t_408, [1, 1, 1, 1], value=0)
258
+ t_409 = self.n_Conv_22(t_408_padded)
259
+ t_410 = F.relu(t_409)
260
+ t_411 = self.n_Conv_23(t_410)
261
+ t_412 = torch.add(t_411, t_406)
262
+ t_413 = F.relu(t_412)
263
+ t_414 = self.n_Conv_24(t_413)
264
+ t_415 = F.relu(t_414)
265
+ t_415_padded = F.pad(t_415, [1, 1, 1, 1], value=0)
266
+ t_416 = self.n_Conv_25(t_415_padded)
267
+ t_417 = F.relu(t_416)
268
+ t_418 = self.n_Conv_26(t_417)
269
+ t_419 = torch.add(t_418, t_413)
270
+ t_420 = F.relu(t_419)
271
+ t_421 = self.n_Conv_27(t_420)
272
+ t_422 = F.relu(t_421)
273
+ t_422_padded = F.pad(t_422, [1, 1, 1, 1], value=0)
274
+ t_423 = self.n_Conv_28(t_422_padded)
275
+ t_424 = F.relu(t_423)
276
+ t_425 = self.n_Conv_29(t_424)
277
+ t_426 = torch.add(t_425, t_420)
278
+ t_427 = F.relu(t_426)
279
+ t_428 = self.n_Conv_30(t_427)
280
+ t_429 = F.relu(t_428)
281
+ t_429_padded = F.pad(t_429, [1, 1, 1, 1], value=0)
282
+ t_430 = self.n_Conv_31(t_429_padded)
283
+ t_431 = F.relu(t_430)
284
+ t_432 = self.n_Conv_32(t_431)
285
+ t_433 = torch.add(t_432, t_427)
286
+ t_434 = F.relu(t_433)
287
+ t_435 = self.n_Conv_33(t_434)
288
+ t_436 = F.relu(t_435)
289
+ t_436_padded = F.pad(t_436, [1, 1, 1, 1], value=0)
290
+ t_437 = self.n_Conv_34(t_436_padded)
291
+ t_438 = F.relu(t_437)
292
+ t_439 = self.n_Conv_35(t_438)
293
+ t_440 = torch.add(t_439, t_434)
294
+ t_441 = F.relu(t_440)
295
+ t_442 = self.n_Conv_36(t_441)
296
+ t_443 = self.n_Conv_37(t_441)
297
+ t_444 = F.relu(t_443)
298
+ t_444_padded = F.pad(t_444, [0, 1, 0, 1], value=0)
299
+ t_445 = self.n_Conv_38(t_444_padded)
300
+ t_446 = F.relu(t_445)
301
+ t_447 = self.n_Conv_39(t_446)
302
+ t_448 = torch.add(t_447, t_442)
303
+ t_449 = F.relu(t_448)
304
+ t_450 = self.n_Conv_40(t_449)
305
+ t_451 = F.relu(t_450)
306
+ t_451_padded = F.pad(t_451, [1, 1, 1, 1], value=0)
307
+ t_452 = self.n_Conv_41(t_451_padded)
308
+ t_453 = F.relu(t_452)
309
+ t_454 = self.n_Conv_42(t_453)
310
+ t_455 = torch.add(t_454, t_449)
311
+ t_456 = F.relu(t_455)
312
+ t_457 = self.n_Conv_43(t_456)
313
+ t_458 = F.relu(t_457)
314
+ t_458_padded = F.pad(t_458, [1, 1, 1, 1], value=0)
315
+ t_459 = self.n_Conv_44(t_458_padded)
316
+ t_460 = F.relu(t_459)
317
+ t_461 = self.n_Conv_45(t_460)
318
+ t_462 = torch.add(t_461, t_456)
319
+ t_463 = F.relu(t_462)
320
+ t_464 = self.n_Conv_46(t_463)
321
+ t_465 = F.relu(t_464)
322
+ t_465_padded = F.pad(t_465, [1, 1, 1, 1], value=0)
323
+ t_466 = self.n_Conv_47(t_465_padded)
324
+ t_467 = F.relu(t_466)
325
+ t_468 = self.n_Conv_48(t_467)
326
+ t_469 = torch.add(t_468, t_463)
327
+ t_470 = F.relu(t_469)
328
+ t_471 = self.n_Conv_49(t_470)
329
+ t_472 = F.relu(t_471)
330
+ t_472_padded = F.pad(t_472, [1, 1, 1, 1], value=0)
331
+ t_473 = self.n_Conv_50(t_472_padded)
332
+ t_474 = F.relu(t_473)
333
+ t_475 = self.n_Conv_51(t_474)
334
+ t_476 = torch.add(t_475, t_470)
335
+ t_477 = F.relu(t_476)
336
+ t_478 = self.n_Conv_52(t_477)
337
+ t_479 = F.relu(t_478)
338
+ t_479_padded = F.pad(t_479, [1, 1, 1, 1], value=0)
339
+ t_480 = self.n_Conv_53(t_479_padded)
340
+ t_481 = F.relu(t_480)
341
+ t_482 = self.n_Conv_54(t_481)
342
+ t_483 = torch.add(t_482, t_477)
343
+ t_484 = F.relu(t_483)
344
+ t_485 = self.n_Conv_55(t_484)
345
+ t_486 = F.relu(t_485)
346
+ t_486_padded = F.pad(t_486, [1, 1, 1, 1], value=0)
347
+ t_487 = self.n_Conv_56(t_486_padded)
348
+ t_488 = F.relu(t_487)
349
+ t_489 = self.n_Conv_57(t_488)
350
+ t_490 = torch.add(t_489, t_484)
351
+ t_491 = F.relu(t_490)
352
+ t_492 = self.n_Conv_58(t_491)
353
+ t_493 = F.relu(t_492)
354
+ t_493_padded = F.pad(t_493, [1, 1, 1, 1], value=0)
355
+ t_494 = self.n_Conv_59(t_493_padded)
356
+ t_495 = F.relu(t_494)
357
+ t_496 = self.n_Conv_60(t_495)
358
+ t_497 = torch.add(t_496, t_491)
359
+ t_498 = F.relu(t_497)
360
+ t_499 = self.n_Conv_61(t_498)
361
+ t_500 = F.relu(t_499)
362
+ t_500_padded = F.pad(t_500, [1, 1, 1, 1], value=0)
363
+ t_501 = self.n_Conv_62(t_500_padded)
364
+ t_502 = F.relu(t_501)
365
+ t_503 = self.n_Conv_63(t_502)
366
+ t_504 = torch.add(t_503, t_498)
367
+ t_505 = F.relu(t_504)
368
+ t_506 = self.n_Conv_64(t_505)
369
+ t_507 = F.relu(t_506)
370
+ t_507_padded = F.pad(t_507, [1, 1, 1, 1], value=0)
371
+ t_508 = self.n_Conv_65(t_507_padded)
372
+ t_509 = F.relu(t_508)
373
+ t_510 = self.n_Conv_66(t_509)
374
+ t_511 = torch.add(t_510, t_505)
375
+ t_512 = F.relu(t_511)
376
+ t_513 = self.n_Conv_67(t_512)
377
+ t_514 = F.relu(t_513)
378
+ t_514_padded = F.pad(t_514, [1, 1, 1, 1], value=0)
379
+ t_515 = self.n_Conv_68(t_514_padded)
380
+ t_516 = F.relu(t_515)
381
+ t_517 = self.n_Conv_69(t_516)
382
+ t_518 = torch.add(t_517, t_512)
383
+ t_519 = F.relu(t_518)
384
+ t_520 = self.n_Conv_70(t_519)
385
+ t_521 = F.relu(t_520)
386
+ t_521_padded = F.pad(t_521, [1, 1, 1, 1], value=0)
387
+ t_522 = self.n_Conv_71(t_521_padded)
388
+ t_523 = F.relu(t_522)
389
+ t_524 = self.n_Conv_72(t_523)
390
+ t_525 = torch.add(t_524, t_519)
391
+ t_526 = F.relu(t_525)
392
+ t_527 = self.n_Conv_73(t_526)
393
+ t_528 = F.relu(t_527)
394
+ t_528_padded = F.pad(t_528, [1, 1, 1, 1], value=0)
395
+ t_529 = self.n_Conv_74(t_528_padded)
396
+ t_530 = F.relu(t_529)
397
+ t_531 = self.n_Conv_75(t_530)
398
+ t_532 = torch.add(t_531, t_526)
399
+ t_533 = F.relu(t_532)
400
+ t_534 = self.n_Conv_76(t_533)
401
+ t_535 = F.relu(t_534)
402
+ t_535_padded = F.pad(t_535, [1, 1, 1, 1], value=0)
403
+ t_536 = self.n_Conv_77(t_535_padded)
404
+ t_537 = F.relu(t_536)
405
+ t_538 = self.n_Conv_78(t_537)
406
+ t_539 = torch.add(t_538, t_533)
407
+ t_540 = F.relu(t_539)
408
+ t_541 = self.n_Conv_79(t_540)
409
+ t_542 = F.relu(t_541)
410
+ t_542_padded = F.pad(t_542, [1, 1, 1, 1], value=0)
411
+ t_543 = self.n_Conv_80(t_542_padded)
412
+ t_544 = F.relu(t_543)
413
+ t_545 = self.n_Conv_81(t_544)
414
+ t_546 = torch.add(t_545, t_540)
415
+ t_547 = F.relu(t_546)
416
+ t_548 = self.n_Conv_82(t_547)
417
+ t_549 = F.relu(t_548)
418
+ t_549_padded = F.pad(t_549, [1, 1, 1, 1], value=0)
419
+ t_550 = self.n_Conv_83(t_549_padded)
420
+ t_551 = F.relu(t_550)
421
+ t_552 = self.n_Conv_84(t_551)
422
+ t_553 = torch.add(t_552, t_547)
423
+ t_554 = F.relu(t_553)
424
+ t_555 = self.n_Conv_85(t_554)
425
+ t_556 = F.relu(t_555)
426
+ t_556_padded = F.pad(t_556, [1, 1, 1, 1], value=0)
427
+ t_557 = self.n_Conv_86(t_556_padded)
428
+ t_558 = F.relu(t_557)
429
+ t_559 = self.n_Conv_87(t_558)
430
+ t_560 = torch.add(t_559, t_554)
431
+ t_561 = F.relu(t_560)
432
+ t_562 = self.n_Conv_88(t_561)
433
+ t_563 = F.relu(t_562)
434
+ t_563_padded = F.pad(t_563, [1, 1, 1, 1], value=0)
435
+ t_564 = self.n_Conv_89(t_563_padded)
436
+ t_565 = F.relu(t_564)
437
+ t_566 = self.n_Conv_90(t_565)
438
+ t_567 = torch.add(t_566, t_561)
439
+ t_568 = F.relu(t_567)
440
+ t_569 = self.n_Conv_91(t_568)
441
+ t_570 = F.relu(t_569)
442
+ t_570_padded = F.pad(t_570, [1, 1, 1, 1], value=0)
443
+ t_571 = self.n_Conv_92(t_570_padded)
444
+ t_572 = F.relu(t_571)
445
+ t_573 = self.n_Conv_93(t_572)
446
+ t_574 = torch.add(t_573, t_568)
447
+ t_575 = F.relu(t_574)
448
+ t_576 = self.n_Conv_94(t_575)
449
+ t_577 = F.relu(t_576)
450
+ t_577_padded = F.pad(t_577, [1, 1, 1, 1], value=0)
451
+ t_578 = self.n_Conv_95(t_577_padded)
452
+ t_579 = F.relu(t_578)
453
+ t_580 = self.n_Conv_96(t_579)
454
+ t_581 = torch.add(t_580, t_575)
455
+ t_582 = F.relu(t_581)
456
+ t_583 = self.n_Conv_97(t_582)
457
+ t_584 = F.relu(t_583)
458
+ t_584_padded = F.pad(t_584, [0, 1, 0, 1], value=0)
459
+ t_585 = self.n_Conv_98(t_584_padded)
460
+ t_586 = F.relu(t_585)
461
+ t_587 = self.n_Conv_99(t_586)
462
+ t_588 = self.n_Conv_100(t_582)
463
+ t_589 = torch.add(t_587, t_588)
464
+ t_590 = F.relu(t_589)
465
+ t_591 = self.n_Conv_101(t_590)
466
+ t_592 = F.relu(t_591)
467
+ t_592_padded = F.pad(t_592, [1, 1, 1, 1], value=0)
468
+ t_593 = self.n_Conv_102(t_592_padded)
469
+ t_594 = F.relu(t_593)
470
+ t_595 = self.n_Conv_103(t_594)
471
+ t_596 = torch.add(t_595, t_590)
472
+ t_597 = F.relu(t_596)
473
+ t_598 = self.n_Conv_104(t_597)
474
+ t_599 = F.relu(t_598)
475
+ t_599_padded = F.pad(t_599, [1, 1, 1, 1], value=0)
476
+ t_600 = self.n_Conv_105(t_599_padded)
477
+ t_601 = F.relu(t_600)
478
+ t_602 = self.n_Conv_106(t_601)
479
+ t_603 = torch.add(t_602, t_597)
480
+ t_604 = F.relu(t_603)
481
+ t_605 = self.n_Conv_107(t_604)
482
+ t_606 = F.relu(t_605)
483
+ t_606_padded = F.pad(t_606, [1, 1, 1, 1], value=0)
484
+ t_607 = self.n_Conv_108(t_606_padded)
485
+ t_608 = F.relu(t_607)
486
+ t_609 = self.n_Conv_109(t_608)
487
+ t_610 = torch.add(t_609, t_604)
488
+ t_611 = F.relu(t_610)
489
+ t_612 = self.n_Conv_110(t_611)
490
+ t_613 = F.relu(t_612)
491
+ t_613_padded = F.pad(t_613, [1, 1, 1, 1], value=0)
492
+ t_614 = self.n_Conv_111(t_613_padded)
493
+ t_615 = F.relu(t_614)
494
+ t_616 = self.n_Conv_112(t_615)
495
+ t_617 = torch.add(t_616, t_611)
496
+ t_618 = F.relu(t_617)
497
+ t_619 = self.n_Conv_113(t_618)
498
+ t_620 = F.relu(t_619)
499
+ t_620_padded = F.pad(t_620, [1, 1, 1, 1], value=0)
500
+ t_621 = self.n_Conv_114(t_620_padded)
501
+ t_622 = F.relu(t_621)
502
+ t_623 = self.n_Conv_115(t_622)
503
+ t_624 = torch.add(t_623, t_618)
504
+ t_625 = F.relu(t_624)
505
+ t_626 = self.n_Conv_116(t_625)
506
+ t_627 = F.relu(t_626)
507
+ t_627_padded = F.pad(t_627, [1, 1, 1, 1], value=0)
508
+ t_628 = self.n_Conv_117(t_627_padded)
509
+ t_629 = F.relu(t_628)
510
+ t_630 = self.n_Conv_118(t_629)
511
+ t_631 = torch.add(t_630, t_625)
512
+ t_632 = F.relu(t_631)
513
+ t_633 = self.n_Conv_119(t_632)
514
+ t_634 = F.relu(t_633)
515
+ t_634_padded = F.pad(t_634, [1, 1, 1, 1], value=0)
516
+ t_635 = self.n_Conv_120(t_634_padded)
517
+ t_636 = F.relu(t_635)
518
+ t_637 = self.n_Conv_121(t_636)
519
+ t_638 = torch.add(t_637, t_632)
520
+ t_639 = F.relu(t_638)
521
+ t_640 = self.n_Conv_122(t_639)
522
+ t_641 = F.relu(t_640)
523
+ t_641_padded = F.pad(t_641, [1, 1, 1, 1], value=0)
524
+ t_642 = self.n_Conv_123(t_641_padded)
525
+ t_643 = F.relu(t_642)
526
+ t_644 = self.n_Conv_124(t_643)
527
+ t_645 = torch.add(t_644, t_639)
528
+ t_646 = F.relu(t_645)
529
+ t_647 = self.n_Conv_125(t_646)
530
+ t_648 = F.relu(t_647)
531
+ t_648_padded = F.pad(t_648, [1, 1, 1, 1], value=0)
532
+ t_649 = self.n_Conv_126(t_648_padded)
533
+ t_650 = F.relu(t_649)
534
+ t_651 = self.n_Conv_127(t_650)
535
+ t_652 = torch.add(t_651, t_646)
536
+ t_653 = F.relu(t_652)
537
+ t_654 = self.n_Conv_128(t_653)
538
+ t_655 = F.relu(t_654)
539
+ t_655_padded = F.pad(t_655, [1, 1, 1, 1], value=0)
540
+ t_656 = self.n_Conv_129(t_655_padded)
541
+ t_657 = F.relu(t_656)
542
+ t_658 = self.n_Conv_130(t_657)
543
+ t_659 = torch.add(t_658, t_653)
544
+ t_660 = F.relu(t_659)
545
+ t_661 = self.n_Conv_131(t_660)
546
+ t_662 = F.relu(t_661)
547
+ t_662_padded = F.pad(t_662, [1, 1, 1, 1], value=0)
548
+ t_663 = self.n_Conv_132(t_662_padded)
549
+ t_664 = F.relu(t_663)
550
+ t_665 = self.n_Conv_133(t_664)
551
+ t_666 = torch.add(t_665, t_660)
552
+ t_667 = F.relu(t_666)
553
+ t_668 = self.n_Conv_134(t_667)
554
+ t_669 = F.relu(t_668)
555
+ t_669_padded = F.pad(t_669, [1, 1, 1, 1], value=0)
556
+ t_670 = self.n_Conv_135(t_669_padded)
557
+ t_671 = F.relu(t_670)
558
+ t_672 = self.n_Conv_136(t_671)
559
+ t_673 = torch.add(t_672, t_667)
560
+ t_674 = F.relu(t_673)
561
+ t_675 = self.n_Conv_137(t_674)
562
+ t_676 = F.relu(t_675)
563
+ t_676_padded = F.pad(t_676, [1, 1, 1, 1], value=0)
564
+ t_677 = self.n_Conv_138(t_676_padded)
565
+ t_678 = F.relu(t_677)
566
+ t_679 = self.n_Conv_139(t_678)
567
+ t_680 = torch.add(t_679, t_674)
568
+ t_681 = F.relu(t_680)
569
+ t_682 = self.n_Conv_140(t_681)
570
+ t_683 = F.relu(t_682)
571
+ t_683_padded = F.pad(t_683, [1, 1, 1, 1], value=0)
572
+ t_684 = self.n_Conv_141(t_683_padded)
573
+ t_685 = F.relu(t_684)
574
+ t_686 = self.n_Conv_142(t_685)
575
+ t_687 = torch.add(t_686, t_681)
576
+ t_688 = F.relu(t_687)
577
+ t_689 = self.n_Conv_143(t_688)
578
+ t_690 = F.relu(t_689)
579
+ t_690_padded = F.pad(t_690, [1, 1, 1, 1], value=0)
580
+ t_691 = self.n_Conv_144(t_690_padded)
581
+ t_692 = F.relu(t_691)
582
+ t_693 = self.n_Conv_145(t_692)
583
+ t_694 = torch.add(t_693, t_688)
584
+ t_695 = F.relu(t_694)
585
+ t_696 = self.n_Conv_146(t_695)
586
+ t_697 = F.relu(t_696)
587
+ t_697_padded = F.pad(t_697, [1, 1, 1, 1], value=0)
588
+ t_698 = self.n_Conv_147(t_697_padded)
589
+ t_699 = F.relu(t_698)
590
+ t_700 = self.n_Conv_148(t_699)
591
+ t_701 = torch.add(t_700, t_695)
592
+ t_702 = F.relu(t_701)
593
+ t_703 = self.n_Conv_149(t_702)
594
+ t_704 = F.relu(t_703)
595
+ t_704_padded = F.pad(t_704, [1, 1, 1, 1], value=0)
596
+ t_705 = self.n_Conv_150(t_704_padded)
597
+ t_706 = F.relu(t_705)
598
+ t_707 = self.n_Conv_151(t_706)
599
+ t_708 = torch.add(t_707, t_702)
600
+ t_709 = F.relu(t_708)
601
+ t_710 = self.n_Conv_152(t_709)
602
+ t_711 = F.relu(t_710)
603
+ t_711_padded = F.pad(t_711, [1, 1, 1, 1], value=0)
604
+ t_712 = self.n_Conv_153(t_711_padded)
605
+ t_713 = F.relu(t_712)
606
+ t_714 = self.n_Conv_154(t_713)
607
+ t_715 = torch.add(t_714, t_709)
608
+ t_716 = F.relu(t_715)
609
+ t_717 = self.n_Conv_155(t_716)
610
+ t_718 = F.relu(t_717)
611
+ t_718_padded = F.pad(t_718, [1, 1, 1, 1], value=0)
612
+ t_719 = self.n_Conv_156(t_718_padded)
613
+ t_720 = F.relu(t_719)
614
+ t_721 = self.n_Conv_157(t_720)
615
+ t_722 = torch.add(t_721, t_716)
616
+ t_723 = F.relu(t_722)
617
+ t_724 = self.n_Conv_158(t_723)
618
+ t_725 = self.n_Conv_159(t_723)
619
+ t_726 = F.relu(t_725)
620
+ t_726_padded = F.pad(t_726, [0, 1, 0, 1], value=0)
621
+ t_727 = self.n_Conv_160(t_726_padded)
622
+ t_728 = F.relu(t_727)
623
+ t_729 = self.n_Conv_161(t_728)
624
+ t_730 = torch.add(t_729, t_724)
625
+ t_731 = F.relu(t_730)
626
+ t_732 = self.n_Conv_162(t_731)
627
+ t_733 = F.relu(t_732)
628
+ t_733_padded = F.pad(t_733, [1, 1, 1, 1], value=0)
629
+ t_734 = self.n_Conv_163(t_733_padded)
630
+ t_735 = F.relu(t_734)
631
+ t_736 = self.n_Conv_164(t_735)
632
+ t_737 = torch.add(t_736, t_731)
633
+ t_738 = F.relu(t_737)
634
+ t_739 = self.n_Conv_165(t_738)
635
+ t_740 = F.relu(t_739)
636
+ t_740_padded = F.pad(t_740, [1, 1, 1, 1], value=0)
637
+ t_741 = self.n_Conv_166(t_740_padded)
638
+ t_742 = F.relu(t_741)
639
+ t_743 = self.n_Conv_167(t_742)
640
+ t_744 = torch.add(t_743, t_738)
641
+ t_745 = F.relu(t_744)
642
+ t_746 = self.n_Conv_168(t_745)
643
+ t_747 = self.n_Conv_169(t_745)
644
+ t_748 = F.relu(t_747)
645
+ t_748_padded = F.pad(t_748, [0, 1, 0, 1], value=0)
646
+ t_749 = self.n_Conv_170(t_748_padded)
647
+ t_750 = F.relu(t_749)
648
+ t_751 = self.n_Conv_171(t_750)
649
+ t_752 = torch.add(t_751, t_746)
650
+ t_753 = F.relu(t_752)
651
+ t_754 = self.n_Conv_172(t_753)
652
+ t_755 = F.relu(t_754)
653
+ t_755_padded = F.pad(t_755, [1, 1, 1, 1], value=0)
654
+ t_756 = self.n_Conv_173(t_755_padded)
655
+ t_757 = F.relu(t_756)
656
+ t_758 = self.n_Conv_174(t_757)
657
+ t_759 = torch.add(t_758, t_753)
658
+ t_760 = F.relu(t_759)
659
+ t_761 = self.n_Conv_175(t_760)
660
+ t_762 = F.relu(t_761)
661
+ t_762_padded = F.pad(t_762, [1, 1, 1, 1], value=0)
662
+ t_763 = self.n_Conv_176(t_762_padded)
663
+ t_764 = F.relu(t_763)
664
+ t_765 = self.n_Conv_177(t_764)
665
+ t_766 = torch.add(t_765, t_760)
666
+ t_767 = F.relu(t_766)
667
+ t_768 = self.n_Conv_178(t_767)
668
+ t_769 = F.avg_pool2d(t_768, kernel_size=t_768.shape[-2:])
669
+ t_770 = torch.squeeze(t_769, 3)
670
+ t_770 = torch.squeeze(t_770, 2)
671
+ t_771 = torch.sigmoid(t_770)
672
+ return t_771
673
+
674
+ def load_state_dict(self, state_dict, **kwargs):
675
+ self.tags = state_dict.get('tags', [])
676
+
677
+ super(DeepDanbooruModel, self).load_state_dict({k: v for k, v in state_dict.items() if k != 'tags'})
678
+