zhengqilin
commited on
Commit
·
1976a91
1
Parent(s):
e000751
add init
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +4 -0
- .gitignore +26 -0
- .lightning +1 -0
- .lightningignore +32 -0
- .pylintrc +3 -0
- LICENSE.txt +663 -0
- README.md +70 -0
- app.py +107 -0
- cog.yaml +68 -0
- config.json +148 -0
- configs/alt-diffusion-inference.yaml +72 -0
- configs/instruct-pix2pix.yaml +98 -0
- configs/v1-inference.yaml +70 -0
- configs/v1-inpainting-inference.yaml +70 -0
- extensions-builtin/LDSR/ldsr_model_arch.py +253 -0
- extensions-builtin/LDSR/preload.py +6 -0
- extensions-builtin/LDSR/scripts/ldsr_model.py +69 -0
- extensions-builtin/LDSR/sd_hijack_autoencoder.py +286 -0
- extensions-builtin/LDSR/sd_hijack_ddpm_v1.py +1449 -0
- extensions-builtin/Lora/extra_networks_lora.py +26 -0
- extensions-builtin/Lora/lora.py +207 -0
- extensions-builtin/Lora/preload.py +6 -0
- extensions-builtin/Lora/scripts/lora_script.py +38 -0
- extensions-builtin/Lora/ui_extra_networks_lora.py +37 -0
- extensions-builtin/ScuNET/preload.py +6 -0
- extensions-builtin/ScuNET/scripts/scunet_model.py +87 -0
- extensions-builtin/ScuNET/scunet_model_arch.py +265 -0
- extensions-builtin/SwinIR/preload.py +6 -0
- extensions-builtin/SwinIR/scripts/swinir_model.py +178 -0
- extensions-builtin/SwinIR/swinir_model_arch.py +867 -0
- extensions-builtin/SwinIR/swinir_model_arch_v2.py +1017 -0
- extensions-builtin/prompt-bracket-checker/javascript/prompt-bracket-checker.js +110 -0
- handler.py +233 -0
- models/Lora/koreanDollLikeness_v10.safetensors +3 -0
- models/Lora/stLouisLuxuriousWheels_v1.safetensors +3 -0
- models/Lora/taiwanDollLikeness_v10.safetensors +3 -0
- models/Stable-diffusion/Put Stable Diffusion checkpoints here.txt +0 -0
- models/Stable-diffusion/chilloutmix_NiPrunedFp32Fix.safetensors +3 -0
- models/VAE-approx/model.pt +3 -0
- models/VAE/Put VAE here.txt +0 -0
- models/VAE/vae-ft-mse-840000-ema-pruned.ckpt +3 -0
- models/deepbooru/Put your deepbooru release project folder here.txt +0 -0
- modules/api/api.py +551 -0
- modules/api/models.py +269 -0
- modules/call_queue.py +109 -0
- modules/codeformer/codeformer_arch.py +278 -0
- modules/codeformer/vqgan_arch.py +437 -0
- modules/codeformer_model.py +143 -0
- modules/deepbooru.py +99 -0
- modules/deepbooru_model.py +678 -0
.gitattributes
CHANGED
@@ -4,9 +4,12 @@
|
|
4 |
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
*.ftz filter=lfs diff=lfs merge=lfs -text
|
|
|
7 |
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
10 |
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
*.model filter=lfs diff=lfs merge=lfs -text
|
@@ -19,6 +22,7 @@
|
|
19 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
*.pkl filter=lfs diff=lfs merge=lfs -text
|
|
|
22 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
*.rar filter=lfs diff=lfs merge=lfs -text
|
|
|
4 |
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gif filter=lfs diff=lfs merge=lfs -text
|
8 |
*.gz filter=lfs diff=lfs merge=lfs -text
|
9 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
10 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.ipynb filter=lfs diff=lfs merge=lfs -text
|
13 |
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
14 |
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
15 |
*.model filter=lfs diff=lfs merge=lfs -text
|
|
|
22 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
23 |
*.pickle filter=lfs diff=lfs merge=lfs -text
|
24 |
*.pkl filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
26 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
27 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
28 |
*.rar filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__
|
2 |
+
/ESRGAN/*
|
3 |
+
/SwinIR/*
|
4 |
+
/venv
|
5 |
+
/tmp
|
6 |
+
/GFPGANv1.3.pth
|
7 |
+
/gfpgan/weights/*.pth
|
8 |
+
/ui-config.json
|
9 |
+
/outputs
|
10 |
+
/log
|
11 |
+
/webui.settings.bat
|
12 |
+
/embeddings
|
13 |
+
/styles.csv
|
14 |
+
/params.txt
|
15 |
+
/styles.csv.bak
|
16 |
+
/interrogate
|
17 |
+
/user.css
|
18 |
+
/.idea
|
19 |
+
notification.mp3
|
20 |
+
/SwinIR
|
21 |
+
/textual_inversion
|
22 |
+
.vscode
|
23 |
+
/extensions
|
24 |
+
/test/stdout.txt
|
25 |
+
/test/stderr.txt
|
26 |
+
/cache.json
|
.lightning
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
name: famous-carson-8575
|
.lightningignore
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__
|
2 |
+
/ESRGAN/*
|
3 |
+
/SwinIR/*
|
4 |
+
/venv
|
5 |
+
/tmp
|
6 |
+
/GFPGANv1.3.pth
|
7 |
+
/gfpgan/weights/*.pth
|
8 |
+
/ui-config.json
|
9 |
+
/outputs
|
10 |
+
/log
|
11 |
+
/webui.settings.bat
|
12 |
+
/embeddings
|
13 |
+
/styles.csv
|
14 |
+
/params.txt
|
15 |
+
/styles.csv.bak
|
16 |
+
/interrogate
|
17 |
+
/user.css
|
18 |
+
/.idea
|
19 |
+
notification.mp3
|
20 |
+
/SwinIR
|
21 |
+
/textual_inversion
|
22 |
+
.vscode
|
23 |
+
/extensions
|
24 |
+
/test/stdout.txt
|
25 |
+
/test/stderr.txt
|
26 |
+
/cache.json
|
27 |
+
.git
|
28 |
+
*/chilloutmix_NiPrunedFp32Fix.safetensors
|
29 |
+
*/vae-ft-mse-840000-ema-pruned.ckpt
|
30 |
+
*/stLouisLuxuriousWheels_v1.safetensors
|
31 |
+
*/taiwanDollLikeness_v10.safetensors
|
32 |
+
*/koreanDollLikeness_v10.safetensors
|
.pylintrc
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# See https://pylint.pycqa.org/en/latest/user_guide/messages/message_control.html
|
2 |
+
[MESSAGES CONTROL]
|
3 |
+
disable=C,R,W,E,I
|
LICENSE.txt
ADDED
@@ -0,0 +1,663 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
GNU AFFERO GENERAL PUBLIC LICENSE
|
2 |
+
Version 3, 19 November 2007
|
3 |
+
|
4 |
+
Copyright (c) 2023 AUTOMATIC1111
|
5 |
+
|
6 |
+
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
7 |
+
Everyone is permitted to copy and distribute verbatim copies
|
8 |
+
of this license document, but changing it is not allowed.
|
9 |
+
|
10 |
+
Preamble
|
11 |
+
|
12 |
+
The GNU Affero General Public License is a free, copyleft license for
|
13 |
+
software and other kinds of works, specifically designed to ensure
|
14 |
+
cooperation with the community in the case of network server software.
|
15 |
+
|
16 |
+
The licenses for most software and other practical works are designed
|
17 |
+
to take away your freedom to share and change the works. By contrast,
|
18 |
+
our General Public Licenses are intended to guarantee your freedom to
|
19 |
+
share and change all versions of a program--to make sure it remains free
|
20 |
+
software for all its users.
|
21 |
+
|
22 |
+
When we speak of free software, we are referring to freedom, not
|
23 |
+
price. Our General Public Licenses are designed to make sure that you
|
24 |
+
have the freedom to distribute copies of free software (and charge for
|
25 |
+
them if you wish), that you receive source code or can get it if you
|
26 |
+
want it, that you can change the software or use pieces of it in new
|
27 |
+
free programs, and that you know you can do these things.
|
28 |
+
|
29 |
+
Developers that use our General Public Licenses protect your rights
|
30 |
+
with two steps: (1) assert copyright on the software, and (2) offer
|
31 |
+
you this License which gives you legal permission to copy, distribute
|
32 |
+
and/or modify the software.
|
33 |
+
|
34 |
+
A secondary benefit of defending all users' freedom is that
|
35 |
+
improvements made in alternate versions of the program, if they
|
36 |
+
receive widespread use, become available for other developers to
|
37 |
+
incorporate. Many developers of free software are heartened and
|
38 |
+
encouraged by the resulting cooperation. However, in the case of
|
39 |
+
software used on network servers, this result may fail to come about.
|
40 |
+
The GNU General Public License permits making a modified version and
|
41 |
+
letting the public access it on a server without ever releasing its
|
42 |
+
source code to the public.
|
43 |
+
|
44 |
+
The GNU Affero General Public License is designed specifically to
|
45 |
+
ensure that, in such cases, the modified source code becomes available
|
46 |
+
to the community. It requires the operator of a network server to
|
47 |
+
provide the source code of the modified version running there to the
|
48 |
+
users of that server. Therefore, public use of a modified version, on
|
49 |
+
a publicly accessible server, gives the public access to the source
|
50 |
+
code of the modified version.
|
51 |
+
|
52 |
+
An older license, called the Affero General Public License and
|
53 |
+
published by Affero, was designed to accomplish similar goals. This is
|
54 |
+
a different license, not a version of the Affero GPL, but Affero has
|
55 |
+
released a new version of the Affero GPL which permits relicensing under
|
56 |
+
this license.
|
57 |
+
|
58 |
+
The precise terms and conditions for copying, distribution and
|
59 |
+
modification follow.
|
60 |
+
|
61 |
+
TERMS AND CONDITIONS
|
62 |
+
|
63 |
+
0. Definitions.
|
64 |
+
|
65 |
+
"This License" refers to version 3 of the GNU Affero General Public License.
|
66 |
+
|
67 |
+
"Copyright" also means copyright-like laws that apply to other kinds of
|
68 |
+
works, such as semiconductor masks.
|
69 |
+
|
70 |
+
"The Program" refers to any copyrightable work licensed under this
|
71 |
+
License. Each licensee is addressed as "you". "Licensees" and
|
72 |
+
"recipients" may be individuals or organizations.
|
73 |
+
|
74 |
+
To "modify" a work means to copy from or adapt all or part of the work
|
75 |
+
in a fashion requiring copyright permission, other than the making of an
|
76 |
+
exact copy. The resulting work is called a "modified version" of the
|
77 |
+
earlier work or a work "based on" the earlier work.
|
78 |
+
|
79 |
+
A "covered work" means either the unmodified Program or a work based
|
80 |
+
on the Program.
|
81 |
+
|
82 |
+
To "propagate" a work means to do anything with it that, without
|
83 |
+
permission, would make you directly or secondarily liable for
|
84 |
+
infringement under applicable copyright law, except executing it on a
|
85 |
+
computer or modifying a private copy. Propagation includes copying,
|
86 |
+
distribution (with or without modification), making available to the
|
87 |
+
public, and in some countries other activities as well.
|
88 |
+
|
89 |
+
To "convey" a work means any kind of propagation that enables other
|
90 |
+
parties to make or receive copies. Mere interaction with a user through
|
91 |
+
a computer network, with no transfer of a copy, is not conveying.
|
92 |
+
|
93 |
+
An interactive user interface displays "Appropriate Legal Notices"
|
94 |
+
to the extent that it includes a convenient and prominently visible
|
95 |
+
feature that (1) displays an appropriate copyright notice, and (2)
|
96 |
+
tells the user that there is no warranty for the work (except to the
|
97 |
+
extent that warranties are provided), that licensees may convey the
|
98 |
+
work under this License, and how to view a copy of this License. If
|
99 |
+
the interface presents a list of user commands or options, such as a
|
100 |
+
menu, a prominent item in the list meets this criterion.
|
101 |
+
|
102 |
+
1. Source Code.
|
103 |
+
|
104 |
+
The "source code" for a work means the preferred form of the work
|
105 |
+
for making modifications to it. "Object code" means any non-source
|
106 |
+
form of a work.
|
107 |
+
|
108 |
+
A "Standard Interface" means an interface that either is an official
|
109 |
+
standard defined by a recognized standards body, or, in the case of
|
110 |
+
interfaces specified for a particular programming language, one that
|
111 |
+
is widely used among developers working in that language.
|
112 |
+
|
113 |
+
The "System Libraries" of an executable work include anything, other
|
114 |
+
than the work as a whole, that (a) is included in the normal form of
|
115 |
+
packaging a Major Component, but which is not part of that Major
|
116 |
+
Component, and (b) serves only to enable use of the work with that
|
117 |
+
Major Component, or to implement a Standard Interface for which an
|
118 |
+
implementation is available to the public in source code form. A
|
119 |
+
"Major Component", in this context, means a major essential component
|
120 |
+
(kernel, window system, and so on) of the specific operating system
|
121 |
+
(if any) on which the executable work runs, or a compiler used to
|
122 |
+
produce the work, or an object code interpreter used to run it.
|
123 |
+
|
124 |
+
The "Corresponding Source" for a work in object code form means all
|
125 |
+
the source code needed to generate, install, and (for an executable
|
126 |
+
work) run the object code and to modify the work, including scripts to
|
127 |
+
control those activities. However, it does not include the work's
|
128 |
+
System Libraries, or general-purpose tools or generally available free
|
129 |
+
programs which are used unmodified in performing those activities but
|
130 |
+
which are not part of the work. For example, Corresponding Source
|
131 |
+
includes interface definition files associated with source files for
|
132 |
+
the work, and the source code for shared libraries and dynamically
|
133 |
+
linked subprograms that the work is specifically designed to require,
|
134 |
+
such as by intimate data communication or control flow between those
|
135 |
+
subprograms and other parts of the work.
|
136 |
+
|
137 |
+
The Corresponding Source need not include anything that users
|
138 |
+
can regenerate automatically from other parts of the Corresponding
|
139 |
+
Source.
|
140 |
+
|
141 |
+
The Corresponding Source for a work in source code form is that
|
142 |
+
same work.
|
143 |
+
|
144 |
+
2. Basic Permissions.
|
145 |
+
|
146 |
+
All rights granted under this License are granted for the term of
|
147 |
+
copyright on the Program, and are irrevocable provided the stated
|
148 |
+
conditions are met. This License explicitly affirms your unlimited
|
149 |
+
permission to run the unmodified Program. The output from running a
|
150 |
+
covered work is covered by this License only if the output, given its
|
151 |
+
content, constitutes a covered work. This License acknowledges your
|
152 |
+
rights of fair use or other equivalent, as provided by copyright law.
|
153 |
+
|
154 |
+
You may make, run and propagate covered works that you do not
|
155 |
+
convey, without conditions so long as your license otherwise remains
|
156 |
+
in force. You may convey covered works to others for the sole purpose
|
157 |
+
of having them make modifications exclusively for you, or provide you
|
158 |
+
with facilities for running those works, provided that you comply with
|
159 |
+
the terms of this License in conveying all material for which you do
|
160 |
+
not control copyright. Those thus making or running the covered works
|
161 |
+
for you must do so exclusively on your behalf, under your direction
|
162 |
+
and control, on terms that prohibit them from making any copies of
|
163 |
+
your copyrighted material outside their relationship with you.
|
164 |
+
|
165 |
+
Conveying under any other circumstances is permitted solely under
|
166 |
+
the conditions stated below. Sublicensing is not allowed; section 10
|
167 |
+
makes it unnecessary.
|
168 |
+
|
169 |
+
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
170 |
+
|
171 |
+
No covered work shall be deemed part of an effective technological
|
172 |
+
measure under any applicable law fulfilling obligations under article
|
173 |
+
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
174 |
+
similar laws prohibiting or restricting circumvention of such
|
175 |
+
measures.
|
176 |
+
|
177 |
+
When you convey a covered work, you waive any legal power to forbid
|
178 |
+
circumvention of technological measures to the extent such circumvention
|
179 |
+
is effected by exercising rights under this License with respect to
|
180 |
+
the covered work, and you disclaim any intention to limit operation or
|
181 |
+
modification of the work as a means of enforcing, against the work's
|
182 |
+
users, your or third parties' legal rights to forbid circumvention of
|
183 |
+
technological measures.
|
184 |
+
|
185 |
+
4. Conveying Verbatim Copies.
|
186 |
+
|
187 |
+
You may convey verbatim copies of the Program's source code as you
|
188 |
+
receive it, in any medium, provided that you conspicuously and
|
189 |
+
appropriately publish on each copy an appropriate copyright notice;
|
190 |
+
keep intact all notices stating that this License and any
|
191 |
+
non-permissive terms added in accord with section 7 apply to the code;
|
192 |
+
keep intact all notices of the absence of any warranty; and give all
|
193 |
+
recipients a copy of this License along with the Program.
|
194 |
+
|
195 |
+
You may charge any price or no price for each copy that you convey,
|
196 |
+
and you may offer support or warranty protection for a fee.
|
197 |
+
|
198 |
+
5. Conveying Modified Source Versions.
|
199 |
+
|
200 |
+
You may convey a work based on the Program, or the modifications to
|
201 |
+
produce it from the Program, in the form of source code under the
|
202 |
+
terms of section 4, provided that you also meet all of these conditions:
|
203 |
+
|
204 |
+
a) The work must carry prominent notices stating that you modified
|
205 |
+
it, and giving a relevant date.
|
206 |
+
|
207 |
+
b) The work must carry prominent notices stating that it is
|
208 |
+
released under this License and any conditions added under section
|
209 |
+
7. This requirement modifies the requirement in section 4 to
|
210 |
+
"keep intact all notices".
|
211 |
+
|
212 |
+
c) You must license the entire work, as a whole, under this
|
213 |
+
License to anyone who comes into possession of a copy. This
|
214 |
+
License will therefore apply, along with any applicable section 7
|
215 |
+
additional terms, to the whole of the work, and all its parts,
|
216 |
+
regardless of how they are packaged. This License gives no
|
217 |
+
permission to license the work in any other way, but it does not
|
218 |
+
invalidate such permission if you have separately received it.
|
219 |
+
|
220 |
+
d) If the work has interactive user interfaces, each must display
|
221 |
+
Appropriate Legal Notices; however, if the Program has interactive
|
222 |
+
interfaces that do not display Appropriate Legal Notices, your
|
223 |
+
work need not make them do so.
|
224 |
+
|
225 |
+
A compilation of a covered work with other separate and independent
|
226 |
+
works, which are not by their nature extensions of the covered work,
|
227 |
+
and which are not combined with it such as to form a larger program,
|
228 |
+
in or on a volume of a storage or distribution medium, is called an
|
229 |
+
"aggregate" if the compilation and its resulting copyright are not
|
230 |
+
used to limit the access or legal rights of the compilation's users
|
231 |
+
beyond what the individual works permit. Inclusion of a covered work
|
232 |
+
in an aggregate does not cause this License to apply to the other
|
233 |
+
parts of the aggregate.
|
234 |
+
|
235 |
+
6. Conveying Non-Source Forms.
|
236 |
+
|
237 |
+
You may convey a covered work in object code form under the terms
|
238 |
+
of sections 4 and 5, provided that you also convey the
|
239 |
+
machine-readable Corresponding Source under the terms of this License,
|
240 |
+
in one of these ways:
|
241 |
+
|
242 |
+
a) Convey the object code in, or embodied in, a physical product
|
243 |
+
(including a physical distribution medium), accompanied by the
|
244 |
+
Corresponding Source fixed on a durable physical medium
|
245 |
+
customarily used for software interchange.
|
246 |
+
|
247 |
+
b) Convey the object code in, or embodied in, a physical product
|
248 |
+
(including a physical distribution medium), accompanied by a
|
249 |
+
written offer, valid for at least three years and valid for as
|
250 |
+
long as you offer spare parts or customer support for that product
|
251 |
+
model, to give anyone who possesses the object code either (1) a
|
252 |
+
copy of the Corresponding Source for all the software in the
|
253 |
+
product that is covered by this License, on a durable physical
|
254 |
+
medium customarily used for software interchange, for a price no
|
255 |
+
more than your reasonable cost of physically performing this
|
256 |
+
conveying of source, or (2) access to copy the
|
257 |
+
Corresponding Source from a network server at no charge.
|
258 |
+
|
259 |
+
c) Convey individual copies of the object code with a copy of the
|
260 |
+
written offer to provide the Corresponding Source. This
|
261 |
+
alternative is allowed only occasionally and noncommercially, and
|
262 |
+
only if you received the object code with such an offer, in accord
|
263 |
+
with subsection 6b.
|
264 |
+
|
265 |
+
d) Convey the object code by offering access from a designated
|
266 |
+
place (gratis or for a charge), and offer equivalent access to the
|
267 |
+
Corresponding Source in the same way through the same place at no
|
268 |
+
further charge. You need not require recipients to copy the
|
269 |
+
Corresponding Source along with the object code. If the place to
|
270 |
+
copy the object code is a network server, the Corresponding Source
|
271 |
+
may be on a different server (operated by you or a third party)
|
272 |
+
that supports equivalent copying facilities, provided you maintain
|
273 |
+
clear directions next to the object code saying where to find the
|
274 |
+
Corresponding Source. Regardless of what server hosts the
|
275 |
+
Corresponding Source, you remain obligated to ensure that it is
|
276 |
+
available for as long as needed to satisfy these requirements.
|
277 |
+
|
278 |
+
e) Convey the object code using peer-to-peer transmission, provided
|
279 |
+
you inform other peers where the object code and Corresponding
|
280 |
+
Source of the work are being offered to the general public at no
|
281 |
+
charge under subsection 6d.
|
282 |
+
|
283 |
+
A separable portion of the object code, whose source code is excluded
|
284 |
+
from the Corresponding Source as a System Library, need not be
|
285 |
+
included in conveying the object code work.
|
286 |
+
|
287 |
+
A "User Product" is either (1) a "consumer product", which means any
|
288 |
+
tangible personal property which is normally used for personal, family,
|
289 |
+
or household purposes, or (2) anything designed or sold for incorporation
|
290 |
+
into a dwelling. In determining whether a product is a consumer product,
|
291 |
+
doubtful cases shall be resolved in favor of coverage. For a particular
|
292 |
+
product received by a particular user, "normally used" refers to a
|
293 |
+
typical or common use of that class of product, regardless of the status
|
294 |
+
of the particular user or of the way in which the particular user
|
295 |
+
actually uses, or expects or is expected to use, the product. A product
|
296 |
+
is a consumer product regardless of whether the product has substantial
|
297 |
+
commercial, industrial or non-consumer uses, unless such uses represent
|
298 |
+
the only significant mode of use of the product.
|
299 |
+
|
300 |
+
"Installation Information" for a User Product means any methods,
|
301 |
+
procedures, authorization keys, or other information required to install
|
302 |
+
and execute modified versions of a covered work in that User Product from
|
303 |
+
a modified version of its Corresponding Source. The information must
|
304 |
+
suffice to ensure that the continued functioning of the modified object
|
305 |
+
code is in no case prevented or interfered with solely because
|
306 |
+
modification has been made.
|
307 |
+
|
308 |
+
If you convey an object code work under this section in, or with, or
|
309 |
+
specifically for use in, a User Product, and the conveying occurs as
|
310 |
+
part of a transaction in which the right of possession and use of the
|
311 |
+
User Product is transferred to the recipient in perpetuity or for a
|
312 |
+
fixed term (regardless of how the transaction is characterized), the
|
313 |
+
Corresponding Source conveyed under this section must be accompanied
|
314 |
+
by the Installation Information. But this requirement does not apply
|
315 |
+
if neither you nor any third party retains the ability to install
|
316 |
+
modified object code on the User Product (for example, the work has
|
317 |
+
been installed in ROM).
|
318 |
+
|
319 |
+
The requirement to provide Installation Information does not include a
|
320 |
+
requirement to continue to provide support service, warranty, or updates
|
321 |
+
for a work that has been modified or installed by the recipient, or for
|
322 |
+
the User Product in which it has been modified or installed. Access to a
|
323 |
+
network may be denied when the modification itself materially and
|
324 |
+
adversely affects the operation of the network or violates the rules and
|
325 |
+
protocols for communication across the network.
|
326 |
+
|
327 |
+
Corresponding Source conveyed, and Installation Information provided,
|
328 |
+
in accord with this section must be in a format that is publicly
|
329 |
+
documented (and with an implementation available to the public in
|
330 |
+
source code form), and must require no special password or key for
|
331 |
+
unpacking, reading or copying.
|
332 |
+
|
333 |
+
7. Additional Terms.
|
334 |
+
|
335 |
+
"Additional permissions" are terms that supplement the terms of this
|
336 |
+
License by making exceptions from one or more of its conditions.
|
337 |
+
Additional permissions that are applicable to the entire Program shall
|
338 |
+
be treated as though they were included in this License, to the extent
|
339 |
+
that they are valid under applicable law. If additional permissions
|
340 |
+
apply only to part of the Program, that part may be used separately
|
341 |
+
under those permissions, but the entire Program remains governed by
|
342 |
+
this License without regard to the additional permissions.
|
343 |
+
|
344 |
+
When you convey a copy of a covered work, you may at your option
|
345 |
+
remove any additional permissions from that copy, or from any part of
|
346 |
+
it. (Additional permissions may be written to require their own
|
347 |
+
removal in certain cases when you modify the work.) You may place
|
348 |
+
additional permissions on material, added by you to a covered work,
|
349 |
+
for which you have or can give appropriate copyright permission.
|
350 |
+
|
351 |
+
Notwithstanding any other provision of this License, for material you
|
352 |
+
add to a covered work, you may (if authorized by the copyright holders of
|
353 |
+
that material) supplement the terms of this License with terms:
|
354 |
+
|
355 |
+
a) Disclaiming warranty or limiting liability differently from the
|
356 |
+
terms of sections 15 and 16 of this License; or
|
357 |
+
|
358 |
+
b) Requiring preservation of specified reasonable legal notices or
|
359 |
+
author attributions in that material or in the Appropriate Legal
|
360 |
+
Notices displayed by works containing it; or
|
361 |
+
|
362 |
+
c) Prohibiting misrepresentation of the origin of that material, or
|
363 |
+
requiring that modified versions of such material be marked in
|
364 |
+
reasonable ways as different from the original version; or
|
365 |
+
|
366 |
+
d) Limiting the use for publicity purposes of names of licensors or
|
367 |
+
authors of the material; or
|
368 |
+
|
369 |
+
e) Declining to grant rights under trademark law for use of some
|
370 |
+
trade names, trademarks, or service marks; or
|
371 |
+
|
372 |
+
f) Requiring indemnification of licensors and authors of that
|
373 |
+
material by anyone who conveys the material (or modified versions of
|
374 |
+
it) with contractual assumptions of liability to the recipient, for
|
375 |
+
any liability that these contractual assumptions directly impose on
|
376 |
+
those licensors and authors.
|
377 |
+
|
378 |
+
All other non-permissive additional terms are considered "further
|
379 |
+
restrictions" within the meaning of section 10. If the Program as you
|
380 |
+
received it, or any part of it, contains a notice stating that it is
|
381 |
+
governed by this License along with a term that is a further
|
382 |
+
restriction, you may remove that term. If a license document contains
|
383 |
+
a further restriction but permits relicensing or conveying under this
|
384 |
+
License, you may add to a covered work material governed by the terms
|
385 |
+
of that license document, provided that the further restriction does
|
386 |
+
not survive such relicensing or conveying.
|
387 |
+
|
388 |
+
If you add terms to a covered work in accord with this section, you
|
389 |
+
must place, in the relevant source files, a statement of the
|
390 |
+
additional terms that apply to those files, or a notice indicating
|
391 |
+
where to find the applicable terms.
|
392 |
+
|
393 |
+
Additional terms, permissive or non-permissive, may be stated in the
|
394 |
+
form of a separately written license, or stated as exceptions;
|
395 |
+
the above requirements apply either way.
|
396 |
+
|
397 |
+
8. Termination.
|
398 |
+
|
399 |
+
You may not propagate or modify a covered work except as expressly
|
400 |
+
provided under this License. Any attempt otherwise to propagate or
|
401 |
+
modify it is void, and will automatically terminate your rights under
|
402 |
+
this License (including any patent licenses granted under the third
|
403 |
+
paragraph of section 11).
|
404 |
+
|
405 |
+
However, if you cease all violation of this License, then your
|
406 |
+
license from a particular copyright holder is reinstated (a)
|
407 |
+
provisionally, unless and until the copyright holder explicitly and
|
408 |
+
finally terminates your license, and (b) permanently, if the copyright
|
409 |
+
holder fails to notify you of the violation by some reasonable means
|
410 |
+
prior to 60 days after the cessation.
|
411 |
+
|
412 |
+
Moreover, your license from a particular copyright holder is
|
413 |
+
reinstated permanently if the copyright holder notifies you of the
|
414 |
+
violation by some reasonable means, this is the first time you have
|
415 |
+
received notice of violation of this License (for any work) from that
|
416 |
+
copyright holder, and you cure the violation prior to 30 days after
|
417 |
+
your receipt of the notice.
|
418 |
+
|
419 |
+
Termination of your rights under this section does not terminate the
|
420 |
+
licenses of parties who have received copies or rights from you under
|
421 |
+
this License. If your rights have been terminated and not permanently
|
422 |
+
reinstated, you do not qualify to receive new licenses for the same
|
423 |
+
material under section 10.
|
424 |
+
|
425 |
+
9. Acceptance Not Required for Having Copies.
|
426 |
+
|
427 |
+
You are not required to accept this License in order to receive or
|
428 |
+
run a copy of the Program. Ancillary propagation of a covered work
|
429 |
+
occurring solely as a consequence of using peer-to-peer transmission
|
430 |
+
to receive a copy likewise does not require acceptance. However,
|
431 |
+
nothing other than this License grants you permission to propagate or
|
432 |
+
modify any covered work. These actions infringe copyright if you do
|
433 |
+
not accept this License. Therefore, by modifying or propagating a
|
434 |
+
covered work, you indicate your acceptance of this License to do so.
|
435 |
+
|
436 |
+
10. Automatic Licensing of Downstream Recipients.
|
437 |
+
|
438 |
+
Each time you convey a covered work, the recipient automatically
|
439 |
+
receives a license from the original licensors, to run, modify and
|
440 |
+
propagate that work, subject to this License. You are not responsible
|
441 |
+
for enforcing compliance by third parties with this License.
|
442 |
+
|
443 |
+
An "entity transaction" is a transaction transferring control of an
|
444 |
+
organization, or substantially all assets of one, or subdividing an
|
445 |
+
organization, or merging organizations. If propagation of a covered
|
446 |
+
work results from an entity transaction, each party to that
|
447 |
+
transaction who receives a copy of the work also receives whatever
|
448 |
+
licenses to the work the party's predecessor in interest had or could
|
449 |
+
give under the previous paragraph, plus a right to possession of the
|
450 |
+
Corresponding Source of the work from the predecessor in interest, if
|
451 |
+
the predecessor has it or can get it with reasonable efforts.
|
452 |
+
|
453 |
+
You may not impose any further restrictions on the exercise of the
|
454 |
+
rights granted or affirmed under this License. For example, you may
|
455 |
+
not impose a license fee, royalty, or other charge for exercise of
|
456 |
+
rights granted under this License, and you may not initiate litigation
|
457 |
+
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
458 |
+
any patent claim is infringed by making, using, selling, offering for
|
459 |
+
sale, or importing the Program or any portion of it.
|
460 |
+
|
461 |
+
11. Patents.
|
462 |
+
|
463 |
+
A "contributor" is a copyright holder who authorizes use under this
|
464 |
+
License of the Program or a work on which the Program is based. The
|
465 |
+
work thus licensed is called the contributor's "contributor version".
|
466 |
+
|
467 |
+
A contributor's "essential patent claims" are all patent claims
|
468 |
+
owned or controlled by the contributor, whether already acquired or
|
469 |
+
hereafter acquired, that would be infringed by some manner, permitted
|
470 |
+
by this License, of making, using, or selling its contributor version,
|
471 |
+
but do not include claims that would be infringed only as a
|
472 |
+
consequence of further modification of the contributor version. For
|
473 |
+
purposes of this definition, "control" includes the right to grant
|
474 |
+
patent sublicenses in a manner consistent with the requirements of
|
475 |
+
this License.
|
476 |
+
|
477 |
+
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
478 |
+
patent license under the contributor's essential patent claims, to
|
479 |
+
make, use, sell, offer for sale, import and otherwise run, modify and
|
480 |
+
propagate the contents of its contributor version.
|
481 |
+
|
482 |
+
In the following three paragraphs, a "patent license" is any express
|
483 |
+
agreement or commitment, however denominated, not to enforce a patent
|
484 |
+
(such as an express permission to practice a patent or covenant not to
|
485 |
+
sue for patent infringement). To "grant" such a patent license to a
|
486 |
+
party means to make such an agreement or commitment not to enforce a
|
487 |
+
patent against the party.
|
488 |
+
|
489 |
+
If you convey a covered work, knowingly relying on a patent license,
|
490 |
+
and the Corresponding Source of the work is not available for anyone
|
491 |
+
to copy, free of charge and under the terms of this License, through a
|
492 |
+
publicly available network server or other readily accessible means,
|
493 |
+
then you must either (1) cause the Corresponding Source to be so
|
494 |
+
available, or (2) arrange to deprive yourself of the benefit of the
|
495 |
+
patent license for this particular work, or (3) arrange, in a manner
|
496 |
+
consistent with the requirements of this License, to extend the patent
|
497 |
+
license to downstream recipients. "Knowingly relying" means you have
|
498 |
+
actual knowledge that, but for the patent license, your conveying the
|
499 |
+
covered work in a country, or your recipient's use of the covered work
|
500 |
+
in a country, would infringe one or more identifiable patents in that
|
501 |
+
country that you have reason to believe are valid.
|
502 |
+
|
503 |
+
If, pursuant to or in connection with a single transaction or
|
504 |
+
arrangement, you convey, or propagate by procuring conveyance of, a
|
505 |
+
covered work, and grant a patent license to some of the parties
|
506 |
+
receiving the covered work authorizing them to use, propagate, modify
|
507 |
+
or convey a specific copy of the covered work, then the patent license
|
508 |
+
you grant is automatically extended to all recipients of the covered
|
509 |
+
work and works based on it.
|
510 |
+
|
511 |
+
A patent license is "discriminatory" if it does not include within
|
512 |
+
the scope of its coverage, prohibits the exercise of, or is
|
513 |
+
conditioned on the non-exercise of one or more of the rights that are
|
514 |
+
specifically granted under this License. You may not convey a covered
|
515 |
+
work if you are a party to an arrangement with a third party that is
|
516 |
+
in the business of distributing software, under which you make payment
|
517 |
+
to the third party based on the extent of your activity of conveying
|
518 |
+
the work, and under which the third party grants, to any of the
|
519 |
+
parties who would receive the covered work from you, a discriminatory
|
520 |
+
patent license (a) in connection with copies of the covered work
|
521 |
+
conveyed by you (or copies made from those copies), or (b) primarily
|
522 |
+
for and in connection with specific products or compilations that
|
523 |
+
contain the covered work, unless you entered into that arrangement,
|
524 |
+
or that patent license was granted, prior to 28 March 2007.
|
525 |
+
|
526 |
+
Nothing in this License shall be construed as excluding or limiting
|
527 |
+
any implied license or other defenses to infringement that may
|
528 |
+
otherwise be available to you under applicable patent law.
|
529 |
+
|
530 |
+
12. No Surrender of Others' Freedom.
|
531 |
+
|
532 |
+
If conditions are imposed on you (whether by court order, agreement or
|
533 |
+
otherwise) that contradict the conditions of this License, they do not
|
534 |
+
excuse you from the conditions of this License. If you cannot convey a
|
535 |
+
covered work so as to satisfy simultaneously your obligations under this
|
536 |
+
License and any other pertinent obligations, then as a consequence you may
|
537 |
+
not convey it at all. For example, if you agree to terms that obligate you
|
538 |
+
to collect a royalty for further conveying from those to whom you convey
|
539 |
+
the Program, the only way you could satisfy both those terms and this
|
540 |
+
License would be to refrain entirely from conveying the Program.
|
541 |
+
|
542 |
+
13. Remote Network Interaction; Use with the GNU General Public License.
|
543 |
+
|
544 |
+
Notwithstanding any other provision of this License, if you modify the
|
545 |
+
Program, your modified version must prominently offer all users
|
546 |
+
interacting with it remotely through a computer network (if your version
|
547 |
+
supports such interaction) an opportunity to receive the Corresponding
|
548 |
+
Source of your version by providing access to the Corresponding Source
|
549 |
+
from a network server at no charge, through some standard or customary
|
550 |
+
means of facilitating copying of software. This Corresponding Source
|
551 |
+
shall include the Corresponding Source for any work covered by version 3
|
552 |
+
of the GNU General Public License that is incorporated pursuant to the
|
553 |
+
following paragraph.
|
554 |
+
|
555 |
+
Notwithstanding any other provision of this License, you have
|
556 |
+
permission to link or combine any covered work with a work licensed
|
557 |
+
under version 3 of the GNU General Public License into a single
|
558 |
+
combined work, and to convey the resulting work. The terms of this
|
559 |
+
License will continue to apply to the part which is the covered work,
|
560 |
+
but the work with which it is combined will remain governed by version
|
561 |
+
3 of the GNU General Public License.
|
562 |
+
|
563 |
+
14. Revised Versions of this License.
|
564 |
+
|
565 |
+
The Free Software Foundation may publish revised and/or new versions of
|
566 |
+
the GNU Affero General Public License from time to time. Such new versions
|
567 |
+
will be similar in spirit to the present version, but may differ in detail to
|
568 |
+
address new problems or concerns.
|
569 |
+
|
570 |
+
Each version is given a distinguishing version number. If the
|
571 |
+
Program specifies that a certain numbered version of the GNU Affero General
|
572 |
+
Public License "or any later version" applies to it, you have the
|
573 |
+
option of following the terms and conditions either of that numbered
|
574 |
+
version or of any later version published by the Free Software
|
575 |
+
Foundation. If the Program does not specify a version number of the
|
576 |
+
GNU Affero General Public License, you may choose any version ever published
|
577 |
+
by the Free Software Foundation.
|
578 |
+
|
579 |
+
If the Program specifies that a proxy can decide which future
|
580 |
+
versions of the GNU Affero General Public License can be used, that proxy's
|
581 |
+
public statement of acceptance of a version permanently authorizes you
|
582 |
+
to choose that version for the Program.
|
583 |
+
|
584 |
+
Later license versions may give you additional or different
|
585 |
+
permissions. However, no additional obligations are imposed on any
|
586 |
+
author or copyright holder as a result of your choosing to follow a
|
587 |
+
later version.
|
588 |
+
|
589 |
+
15. Disclaimer of Warranty.
|
590 |
+
|
591 |
+
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
592 |
+
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
593 |
+
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
594 |
+
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
595 |
+
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
596 |
+
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
597 |
+
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
598 |
+
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
599 |
+
|
600 |
+
16. Limitation of Liability.
|
601 |
+
|
602 |
+
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
603 |
+
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
604 |
+
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
605 |
+
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
606 |
+
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
607 |
+
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
608 |
+
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
609 |
+
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
610 |
+
SUCH DAMAGES.
|
611 |
+
|
612 |
+
17. Interpretation of Sections 15 and 16.
|
613 |
+
|
614 |
+
If the disclaimer of warranty and limitation of liability provided
|
615 |
+
above cannot be given local legal effect according to their terms,
|
616 |
+
reviewing courts shall apply local law that most closely approximates
|
617 |
+
an absolute waiver of all civil liability in connection with the
|
618 |
+
Program, unless a warranty or assumption of liability accompanies a
|
619 |
+
copy of the Program in return for a fee.
|
620 |
+
|
621 |
+
END OF TERMS AND CONDITIONS
|
622 |
+
|
623 |
+
How to Apply These Terms to Your New Programs
|
624 |
+
|
625 |
+
If you develop a new program, and you want it to be of the greatest
|
626 |
+
possible use to the public, the best way to achieve this is to make it
|
627 |
+
free software which everyone can redistribute and change under these terms.
|
628 |
+
|
629 |
+
To do so, attach the following notices to the program. It is safest
|
630 |
+
to attach them to the start of each source file to most effectively
|
631 |
+
state the exclusion of warranty; and each file should have at least
|
632 |
+
the "copyright" line and a pointer to where the full notice is found.
|
633 |
+
|
634 |
+
<one line to give the program's name and a brief idea of what it does.>
|
635 |
+
Copyright (C) <year> <name of author>
|
636 |
+
|
637 |
+
This program is free software: you can redistribute it and/or modify
|
638 |
+
it under the terms of the GNU Affero General Public License as published by
|
639 |
+
the Free Software Foundation, either version 3 of the License, or
|
640 |
+
(at your option) any later version.
|
641 |
+
|
642 |
+
This program is distributed in the hope that it will be useful,
|
643 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
644 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
645 |
+
GNU Affero General Public License for more details.
|
646 |
+
|
647 |
+
You should have received a copy of the GNU Affero General Public License
|
648 |
+
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
649 |
+
|
650 |
+
Also add information on how to contact you by electronic and paper mail.
|
651 |
+
|
652 |
+
If your software can interact with users remotely through a computer
|
653 |
+
network, you should also make sure that it provides a way for users to
|
654 |
+
get its source. For example, if your program is a web application, its
|
655 |
+
interface could display a "Source" link that leads users to an archive
|
656 |
+
of the code. There are many ways you could offer source, and different
|
657 |
+
solutions will be better for different programs; see section 13 for the
|
658 |
+
specific requirements.
|
659 |
+
|
660 |
+
You should also get your employer (if you work as a programmer) or school,
|
661 |
+
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
662 |
+
For more information on this, and how to apply and follow the GNU AGPL, see
|
663 |
+
<https://www.gnu.org/licenses/>.
|
README.md
CHANGED
@@ -1,3 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
1 |
+
# Chill Watcher
|
2 |
+
consider deploy on:
|
3 |
+
- huggingface inference point
|
4 |
+
- replicate api
|
5 |
+
- lightning.ai
|
6 |
+
|
7 |
+
# platform comparison
|
8 |
+
> all support autoscaling
|
9 |
+
|
10 |
+
|platform|prediction speed|charges|deploy handiness|
|
11 |
+
|-|-|-|-|
|
12 |
+
|huggingface|fast:20s|high:$0.6/hr (without autoscaling)|easy:git push|
|
13 |
+
|replicate|fast if used frequently: 30s, slow if needs initialization: 5min|low: $0.02 per generation|difficult: build image and upload|
|
14 |
+
|lightning.ai|fast with app running: 20s, slow if idle: XXs|low: free $30 per month, $0.18 per init, $0.02 per run|easy: one command|
|
15 |
+
|
16 |
+
# platform deploy options
|
17 |
+
## huggingface
|
18 |
+
> [docs](https://huggingface.co/docs/inference-endpoints/guides/custom_handler)
|
19 |
+
|
20 |
+
- requirements: use pip packages in `requirements.txt`
|
21 |
+
- `init()` and `predict()` function: use `handler.py`, implement the `EndpointHandler` class
|
22 |
+
- more: modify `handler.py` for requests and inference and explore more highly-customized features
|
23 |
+
- deploy: git (lfs) push to huggingface repository(the whole directory including models and weights, etc.), and use inference endpoints to deploy. Click and deploy automaticly, very simple.
|
24 |
+
- call api: use the url provide by inference endpoints after endpoint is ready(build, initialize and in a "running" state), make a post request to the url using request schema definied in the `handler.py`
|
25 |
+
|
26 |
+
## replicate
|
27 |
+
> [docs](https://replicate.com/docs/guides/push-a-model)
|
28 |
+
|
29 |
+
- requirements: specify all requirements(pip packages, system packages, python version, cuda, etc.) in `cog.yaml`
|
30 |
+
- `init()` and `predict()` function: use `predict.py`, implement the `Predictor` class
|
31 |
+
- more: modify `predict.py`
|
32 |
+
- deploy:
|
33 |
+
1. get a linux GPU machine with 60GB disk space;
|
34 |
+
2. install [cog](https://replicate.com/docs/guides/push-a-model) and [docker](https://docs.docker.com/engine/install/ubuntu/#set-up-the-repository)
|
35 |
+
3. `git pull` the current repository from huggingface, including large model files
|
36 |
+
4. after `predict.py` and `cog.yaml` is correctly coded, run `cog login`, `cog push`, then cog will build a docker image locally and push the image to replicate. As the image could take 30GB or so disk space, it would cost a lot network bandwidth.
|
37 |
+
- call api: if everything runs successfully and the docker image is pushed to replicate, you will see a web-ui and an API example directly in your replicate repository
|
38 |
+
|
39 |
+
## lightning.ai
|
40 |
+
> docs: [code](https://lightning.ai/docs/app/stable/levels/basic/real_lightning_component_implementations.html), [deploy](https://lightning.ai/docs/app/stable/workflows/run_app_on_cloud/)
|
41 |
+
|
42 |
+
- requirements:
|
43 |
+
- pip packages are listed in `requirements.txt`, note that some requirements are different from those in huggingface, and you need to modify some lines in `requirements.txt` according to the comment in the `requirements.txt`
|
44 |
+
- other pip packages, system packages and some big model weight files download commands, can be listed using a custom build config. Checkout `class CustomBuildConfig(BuildConfig)` in `app.py`. In a custom build config you can use many linux commands such as `wget` and `sudo apt-get update`. The custom build config will be executed on the `__init__()` of the `PythonServer` class
|
45 |
+
- `init()` and `predict()` function: use `app.py`, implement the `PythonServer` class. Note:
|
46 |
+
- some packages haven't been installed when the file is called(these packages may be installed when `__init__()` is called), so some import code should be in the function, not at the top of the file, or you may get import errors.
|
47 |
+
- you can't save your own value to `PythonServer.self` unless it's predifined in the variables, so don't assign any self-defined variables to `self`
|
48 |
+
- if you use the custom build config, you should implement `PythonServer`'s `__init()__` yourself, so don't forget to use the correct function signature
|
49 |
+
- more: ...
|
50 |
+
- deploy:
|
51 |
+
- `pip install lightning`
|
52 |
+
- prepare the directory on your local computer(no need to have a GPU)
|
53 |
+
- list big files in the `.lightningignore` file to avoid big file upload and save deploy time cost
|
54 |
+
- run `lightning run app app.py --cloud` in the local terminal, and it will upload the files in the directory to lightning cloud, and start deploying on the cloud
|
55 |
+
- check error logs on the web-ui, use `all logs`
|
56 |
+
- call api: only if the app starts successfully, you can see a valid url in the `settings` page of the web-ui. Open that url, and you can see the api
|
57 |
+
|
58 |
+
### some stackoverflow:
|
59 |
+
install docker:
|
60 |
+
- https://docs.docker.com/engine/install/ubuntu/#set-up-the-repository
|
61 |
+
|
62 |
+
install git-lfs:
|
63 |
+
- https://github.com/git-lfs/git-lfs/blob/main/INSTALLING.md
|
64 |
+
linux:
|
65 |
+
```
|
66 |
+
curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash
|
67 |
+
|
68 |
+
sudo apt-get install git-lfs
|
69 |
+
```
|
70 |
+
|
71 |
---
|
72 |
license: apache-2.0
|
73 |
---
|
app.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# inference handler for lightning ai
|
2 |
+
|
3 |
+
import re
|
4 |
+
import os
|
5 |
+
import logging
|
6 |
+
# import json
|
7 |
+
from pydantic import BaseModel
|
8 |
+
from typing import Any, Dict, Optional, TYPE_CHECKING
|
9 |
+
from dataclasses import dataclass
|
10 |
+
logging.getLogger("xformers").addFilter(lambda record: 'A matching Triton is not available' not in record.getMessage())
|
11 |
+
|
12 |
+
import lightning as L
|
13 |
+
from lightning.app.components.serve import PythonServer, Text
|
14 |
+
from lightning.app import BuildConfig
|
15 |
+
|
16 |
+
|
17 |
+
class _DefaultInputData(BaseModel):
|
18 |
+
prompt: str
|
19 |
+
|
20 |
+
class _DefaultOutputData(BaseModel):
|
21 |
+
img_data: str
|
22 |
+
parameters: str
|
23 |
+
|
24 |
+
|
25 |
+
@dataclass
|
26 |
+
class CustomBuildConfig(BuildConfig):
|
27 |
+
def build_commands(self):
|
28 |
+
dir_path = "/content/"
|
29 |
+
model_path = os.path.join(dir_path, "models/Stable-diffusion")
|
30 |
+
model_url = "https://huggingface.co/Hardy01/chill_watcher/resolve/main/models/Stable-diffusion/chilloutmix_NiPrunedFp32Fix.safetensors"
|
31 |
+
download_cmd = "wget -P {} {}".format(str(model_path), model_url)
|
32 |
+
vae_url = "https://huggingface.co/Hardy01/chill_watcher/resolve/main/models/VAE/vae-ft-mse-840000-ema-pruned.ckpt"
|
33 |
+
vae_path = os.path.join(dir_path, "models/VAE")
|
34 |
+
down2 = "wget -P {} {}".format(str(vae_path), vae_url)
|
35 |
+
lora_url1 = "https://huggingface.co/Hardy01/chill_watcher/resolve/main/models/Lora/koreanDollLikeness_v10.safetensors"
|
36 |
+
lora_url2 = "https://huggingface.co/Hardy01/chill_watcher/resolve/main/models/Lora/taiwanDollLikeness_v10.safetensors"
|
37 |
+
lora_path = os.path.join(dir_path, "models/Lora")
|
38 |
+
down3 = "wget -P {} {}".format(str(lora_path), lora_url1)
|
39 |
+
down4 = "wget -P {} {}".format(str(lora_path), lora_url2)
|
40 |
+
# https://stackoverflow.com/questions/55313610/importerror-libgl-so-1-cannot-open-shared-object-file-no-such-file-or-directo
|
41 |
+
cmd1 = "pip3 install torch==1.13.1+cu117 --extra-index-url https://download.pytorch.org/whl/cu117"
|
42 |
+
cmd2 = "pip3 install torchvision==0.14.1+cu117 --extra-index-url https://download.pytorch.org/whl/cu117"
|
43 |
+
cmd_31 = "sudo apt-get update"
|
44 |
+
cmd3 = "sudo apt-get install libgl1-mesa-glx"
|
45 |
+
cmd4 = "sudo apt-get install libglib2.0-0"
|
46 |
+
return [download_cmd, down2, down3, down4, cmd1, cmd2, cmd_31, cmd3, cmd4]
|
47 |
+
|
48 |
+
|
49 |
+
class PyTorchServer(PythonServer):
|
50 |
+
def __init__(
|
51 |
+
self,
|
52 |
+
input_type: type = _DefaultInputData,
|
53 |
+
output_type: type = _DefaultOutputData,
|
54 |
+
**kwargs: Any,
|
55 |
+
):
|
56 |
+
super().__init__(input_type=input_type, output_type=output_type, **kwargs)
|
57 |
+
|
58 |
+
# Use the custom build config
|
59 |
+
self.cloud_build_config = CustomBuildConfig()
|
60 |
+
def setup(self):
|
61 |
+
# need to install dependancies first to import packages
|
62 |
+
import torch
|
63 |
+
# Truncate version number of nightly/local build of PyTorch to not cause exceptions with CodeFormer or Safetensors
|
64 |
+
if ".dev" in torch.__version__ or "+git" in torch.__version__:
|
65 |
+
torch.__long_version__ = torch.__version__
|
66 |
+
torch.__version__ = re.search(r'[\d.]+[\d]', torch.__version__).group(0)
|
67 |
+
|
68 |
+
from handler import initialize
|
69 |
+
initialize()
|
70 |
+
|
71 |
+
def predict(self, request):
|
72 |
+
from modules.api.api import encode_pil_to_base64
|
73 |
+
from modules import shared
|
74 |
+
from modules.processing import StableDiffusionProcessingTxt2Img, process_images
|
75 |
+
args = {
|
76 |
+
"do_not_save_samples": True,
|
77 |
+
"do_not_save_grid": True,
|
78 |
+
"outpath_samples": "/content/desktop",
|
79 |
+
"prompt": "lora:koreanDollLikeness_v15:0.66, best quality, ultra high res, (photorealistic:1.4), 1girl, beige sweater, black choker, smile, laughing, bare shoulders, solo focus, ((full body), (brown hair:1), looking at viewer",
|
80 |
+
"negative_prompt": "paintings, sketches, (worst quality:2), (low quality:2), (normal quality:2), lowres, normal quality, ((monochrome)), ((grayscale)), skin spots, acnes, skin blemishes, age spot, glans, (ugly:1.331), (duplicate:1.331), (morbid:1.21), (mutilated:1.21), (tranny:1.331), mutated hands, (poorly drawn hands:1.331), blurry, 3hands,4fingers,3arms, bad anatomy, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts,poorly drawn face,mutation,deformed",
|
81 |
+
"sampler_name": "DPM++ SDE Karras",
|
82 |
+
"steps": 20, # 25
|
83 |
+
"cfg_scale": 8,
|
84 |
+
"width": 512,
|
85 |
+
"height": 768,
|
86 |
+
"seed": -1,
|
87 |
+
}
|
88 |
+
print("&&&&&&&&&&&&&&&&&&&&&&&&",request)
|
89 |
+
if request.prompt:
|
90 |
+
prompt = request.prompt
|
91 |
+
print("get prompt from request: ", prompt)
|
92 |
+
args["prompt"] = prompt
|
93 |
+
p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args)
|
94 |
+
processed = process_images(p)
|
95 |
+
single_image_b64 = encode_pil_to_base64(processed.images[0]).decode('utf-8')
|
96 |
+
return {
|
97 |
+
"img_data": single_image_b64,
|
98 |
+
"parameters": processed.images[0].info.get('parameters', ""),
|
99 |
+
}
|
100 |
+
|
101 |
+
|
102 |
+
component = PyTorchServer(
|
103 |
+
cloud_compute=L.CloudCompute('gpu', disk_size=20, idle_timeout=30)
|
104 |
+
)
|
105 |
+
# lightning run app app.py --cloud
|
106 |
+
app = L.LightningApp(component)
|
107 |
+
|
cog.yaml
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Configuration for Cog ⚙️
|
2 |
+
# https://replicate.com/docs/guides/push-a-model
|
3 |
+
# prerequisite:https://docs.docker.com/engine/install/ubuntu/#set-up-the-repository `dockerd` to start docker
|
4 |
+
# Reference: https://github.com/replicate/cog/blob/main/docs/yaml.md
|
5 |
+
# !!!! recommend 60G disk space for cog docker
|
6 |
+
|
7 |
+
build:
|
8 |
+
# set to true if your model requires a GPU
|
9 |
+
gpu: true
|
10 |
+
|
11 |
+
# a list of ubuntu apt packages to install
|
12 |
+
system_packages:
|
13 |
+
- "libgl1-mesa-glx"
|
14 |
+
- "libglib2.0-0"
|
15 |
+
|
16 |
+
# python version in the form '3.8' or '3.8.12'
|
17 |
+
python_version: "3.10.4"
|
18 |
+
|
19 |
+
# a list of packages in the format <package-name>==<version>
|
20 |
+
python_packages:
|
21 |
+
- blendmodes==2022
|
22 |
+
- transformers==4.25.1
|
23 |
+
- accelerate==0.12.0
|
24 |
+
- basicsr==1.4.2
|
25 |
+
- gfpgan==1.3.8
|
26 |
+
- gradio==3.16.2
|
27 |
+
- numpy==1.23.3
|
28 |
+
- Pillow==9.4.0
|
29 |
+
- realesrgan==0.3.0
|
30 |
+
# - torch==1.13.1+cu117
|
31 |
+
# - --extra-index-url https://download.pytorch.org/whl/cu117
|
32 |
+
# - torchvision==0.14.1+cu117
|
33 |
+
# - --extra-index-url https://download.pytorch.org/whl/cu117
|
34 |
+
- omegaconf==2.2.3
|
35 |
+
- pytorch_lightning==1.7.6
|
36 |
+
- scikit-image==0.19.2
|
37 |
+
- fonts
|
38 |
+
- font-roboto
|
39 |
+
- timm==0.6.7
|
40 |
+
- piexif==1.1.3
|
41 |
+
- einops==0.4.1
|
42 |
+
- jsonmerge==1.8.0
|
43 |
+
- clean-fid==0.1.29
|
44 |
+
- resize-right==0.0.2
|
45 |
+
- torchdiffeq==0.2.3
|
46 |
+
- kornia==0.6.7
|
47 |
+
- lark==1.1.2
|
48 |
+
- inflection==0.5.1
|
49 |
+
- GitPython==3.1.27
|
50 |
+
- torchsde==0.2.5
|
51 |
+
- safetensors==0.2.7
|
52 |
+
- httpcore<=0.15
|
53 |
+
- fastapi==0.90.1
|
54 |
+
# - open_clip_torch
|
55 |
+
- git+https://github.com/mlfoundations/open_clip.git@bb6e834e9c70d9c27d0dc3ecedeebeaeb1ffad6b
|
56 |
+
- git+https://github.com/openai/CLIP.git@d50d76daa670286dd6cacf3bcd80b5e4823fc8e1
|
57 |
+
|
58 |
+
# commands run after the environment is setup
|
59 |
+
run:
|
60 |
+
- "pip3 install torch==1.13.1+cu117 --extra-index-url https://download.pytorch.org/whl/cu117"
|
61 |
+
- "pip3 install torchvision==0.14.1+cu117 --extra-index-url https://download.pytorch.org/whl/cu117"
|
62 |
+
- "echo env is ready!"
|
63 |
+
|
64 |
+
# https://replicate.com/wolverinn/chill_watcher
|
65 |
+
image: "r8.im/wolverinn/chill_watcher"
|
66 |
+
|
67 |
+
# predict.py defines how predictions are run on your model
|
68 |
+
predict: "predict.py:Predictor"
|
config.json
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"samples_save": true,
|
3 |
+
"samples_format": "png",
|
4 |
+
"samples_filename_pattern": "",
|
5 |
+
"save_images_add_number": true,
|
6 |
+
"grid_save": true,
|
7 |
+
"grid_format": "png",
|
8 |
+
"grid_extended_filename": false,
|
9 |
+
"grid_only_if_multiple": true,
|
10 |
+
"grid_prevent_empty_spots": false,
|
11 |
+
"n_rows": -1,
|
12 |
+
"enable_pnginfo": true,
|
13 |
+
"save_txt": false,
|
14 |
+
"save_images_before_face_restoration": false,
|
15 |
+
"save_images_before_highres_fix": false,
|
16 |
+
"save_images_before_color_correction": false,
|
17 |
+
"jpeg_quality": 80,
|
18 |
+
"export_for_4chan": true,
|
19 |
+
"img_downscale_threshold": 4.0,
|
20 |
+
"target_side_length": 4000,
|
21 |
+
"use_original_name_batch": true,
|
22 |
+
"use_upscaler_name_as_suffix": false,
|
23 |
+
"save_selected_only": true,
|
24 |
+
"do_not_add_watermark": false,
|
25 |
+
"temp_dir": "",
|
26 |
+
"clean_temp_dir_at_start": false,
|
27 |
+
"outdir_samples": "",
|
28 |
+
"outdir_txt2img_samples": "outputs/txt2img-images",
|
29 |
+
"outdir_img2img_samples": "outputs/img2img-images",
|
30 |
+
"outdir_extras_samples": "outputs/extras-images",
|
31 |
+
"outdir_grids": "",
|
32 |
+
"outdir_txt2img_grids": "outputs/txt2img-grids",
|
33 |
+
"outdir_img2img_grids": "outputs/img2img-grids",
|
34 |
+
"outdir_save": "log/images",
|
35 |
+
"save_to_dirs": true,
|
36 |
+
"grid_save_to_dirs": true,
|
37 |
+
"use_save_to_dirs_for_ui": false,
|
38 |
+
"directories_filename_pattern": "[date]",
|
39 |
+
"directories_max_prompt_words": 8,
|
40 |
+
"ESRGAN_tile": 192,
|
41 |
+
"ESRGAN_tile_overlap": 8,
|
42 |
+
"realesrgan_enabled_models": [
|
43 |
+
"R-ESRGAN 4x+",
|
44 |
+
"R-ESRGAN 4x+ Anime6B"
|
45 |
+
],
|
46 |
+
"upscaler_for_img2img": null,
|
47 |
+
"face_restoration_model": "CodeFormer",
|
48 |
+
"code_former_weight": 0.5,
|
49 |
+
"face_restoration_unload": false,
|
50 |
+
"show_warnings": false,
|
51 |
+
"memmon_poll_rate": 8,
|
52 |
+
"samples_log_stdout": false,
|
53 |
+
"multiple_tqdm": true,
|
54 |
+
"print_hypernet_extra": false,
|
55 |
+
"unload_models_when_training": false,
|
56 |
+
"pin_memory": false,
|
57 |
+
"save_optimizer_state": false,
|
58 |
+
"save_training_settings_to_txt": true,
|
59 |
+
"dataset_filename_word_regex": "",
|
60 |
+
"dataset_filename_join_string": " ",
|
61 |
+
"training_image_repeats_per_epoch": 1,
|
62 |
+
"training_write_csv_every": 500,
|
63 |
+
"training_xattention_optimizations": false,
|
64 |
+
"training_enable_tensorboard": false,
|
65 |
+
"training_tensorboard_save_images": false,
|
66 |
+
"training_tensorboard_flush_every": 120,
|
67 |
+
"sd_model_checkpoint": "chilloutmix_NiPrunedFp32Fix.safetensors [fc2511737a]",
|
68 |
+
"sd_checkpoint_cache": 0,
|
69 |
+
"sd_vae_checkpoint_cache": 0,
|
70 |
+
"sd_vae": "Automatic",
|
71 |
+
"sd_vae_as_default": true,
|
72 |
+
"inpainting_mask_weight": 1.0,
|
73 |
+
"initial_noise_multiplier": 1.0,
|
74 |
+
"img2img_color_correction": false,
|
75 |
+
"img2img_fix_steps": false,
|
76 |
+
"img2img_background_color": "#ffffff",
|
77 |
+
"enable_quantization": false,
|
78 |
+
"enable_emphasis": true,
|
79 |
+
"enable_batch_seeds": true,
|
80 |
+
"comma_padding_backtrack": 20,
|
81 |
+
"CLIP_stop_at_last_layers": 1,
|
82 |
+
"upcast_attn": false,
|
83 |
+
"use_old_emphasis_implementation": false,
|
84 |
+
"use_old_karras_scheduler_sigmas": false,
|
85 |
+
"no_dpmpp_sde_batch_determinism": false,
|
86 |
+
"use_old_hires_fix_width_height": false,
|
87 |
+
"interrogate_keep_models_in_memory": false,
|
88 |
+
"interrogate_return_ranks": false,
|
89 |
+
"interrogate_clip_num_beams": 1,
|
90 |
+
"interrogate_clip_min_length": 24,
|
91 |
+
"interrogate_clip_max_length": 48,
|
92 |
+
"interrogate_clip_dict_limit": 1500,
|
93 |
+
"interrogate_clip_skip_categories": [],
|
94 |
+
"interrogate_deepbooru_score_threshold": 0.5,
|
95 |
+
"deepbooru_sort_alpha": true,
|
96 |
+
"deepbooru_use_spaces": false,
|
97 |
+
"deepbooru_escape": true,
|
98 |
+
"deepbooru_filter_tags": "",
|
99 |
+
"extra_networks_default_view": "cards",
|
100 |
+
"extra_networks_default_multiplier": 1.0,
|
101 |
+
"sd_hypernetwork": "None",
|
102 |
+
"return_grid": true,
|
103 |
+
"do_not_show_images": false,
|
104 |
+
"add_model_hash_to_info": true,
|
105 |
+
"add_model_name_to_info": true,
|
106 |
+
"disable_weights_auto_swap": true,
|
107 |
+
"send_seed": true,
|
108 |
+
"send_size": true,
|
109 |
+
"font": "",
|
110 |
+
"js_modal_lightbox": true,
|
111 |
+
"js_modal_lightbox_initially_zoomed": true,
|
112 |
+
"show_progress_in_title": true,
|
113 |
+
"samplers_in_dropdown": true,
|
114 |
+
"dimensions_and_batch_together": true,
|
115 |
+
"keyedit_precision_attention": 0.1,
|
116 |
+
"keyedit_precision_extra": 0.05,
|
117 |
+
"quicksettings": "sd_model_checkpoint",
|
118 |
+
"ui_reorder": "inpaint, sampler, checkboxes, hires_fix, dimensions, cfg, seed, batch, override_settings, scripts",
|
119 |
+
"ui_extra_networks_tab_reorder": "",
|
120 |
+
"localization": "zh_CN",
|
121 |
+
"show_progressbar": true,
|
122 |
+
"live_previews_enable": true,
|
123 |
+
"show_progress_grid": true,
|
124 |
+
"show_progress_every_n_steps": 10,
|
125 |
+
"show_progress_type": "Approx NN",
|
126 |
+
"live_preview_content": "Prompt",
|
127 |
+
"live_preview_refresh_period": 1000,
|
128 |
+
"hide_samplers": [],
|
129 |
+
"eta_ddim": 0.0,
|
130 |
+
"eta_ancestral": 1.0,
|
131 |
+
"ddim_discretize": "uniform",
|
132 |
+
"s_churn": 0.0,
|
133 |
+
"s_tmin": 0.0,
|
134 |
+
"s_noise": 1.0,
|
135 |
+
"eta_noise_seed_delta": 0,
|
136 |
+
"always_discard_next_to_last_sigma": false,
|
137 |
+
"postprocessing_enable_in_main_ui": [],
|
138 |
+
"postprocessing_operation_order": [],
|
139 |
+
"upscaling_max_images_in_cache": 5,
|
140 |
+
"disabled_extensions": [],
|
141 |
+
"sd_checkpoint_hash": "fc2511737a54c5e80b89ab03e0ab4b98d051ab187f92860f3cd664dc9d08b271",
|
142 |
+
"ldsr_steps": 100,
|
143 |
+
"ldsr_cached": false,
|
144 |
+
"SWIN_tile": 192,
|
145 |
+
"SWIN_tile_overlap": 8,
|
146 |
+
"sd_lora": "None",
|
147 |
+
"lora_apply_to_outputs": false
|
148 |
+
}
|
configs/alt-diffusion-inference.yaml
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
base_learning_rate: 1.0e-04
|
3 |
+
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
4 |
+
params:
|
5 |
+
linear_start: 0.00085
|
6 |
+
linear_end: 0.0120
|
7 |
+
num_timesteps_cond: 1
|
8 |
+
log_every_t: 200
|
9 |
+
timesteps: 1000
|
10 |
+
first_stage_key: "jpg"
|
11 |
+
cond_stage_key: "txt"
|
12 |
+
image_size: 64
|
13 |
+
channels: 4
|
14 |
+
cond_stage_trainable: false # Note: different from the one we trained before
|
15 |
+
conditioning_key: crossattn
|
16 |
+
monitor: val/loss_simple_ema
|
17 |
+
scale_factor: 0.18215
|
18 |
+
use_ema: False
|
19 |
+
|
20 |
+
scheduler_config: # 10000 warmup steps
|
21 |
+
target: ldm.lr_scheduler.LambdaLinearScheduler
|
22 |
+
params:
|
23 |
+
warm_up_steps: [ 10000 ]
|
24 |
+
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
25 |
+
f_start: [ 1.e-6 ]
|
26 |
+
f_max: [ 1. ]
|
27 |
+
f_min: [ 1. ]
|
28 |
+
|
29 |
+
unet_config:
|
30 |
+
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
31 |
+
params:
|
32 |
+
image_size: 32 # unused
|
33 |
+
in_channels: 4
|
34 |
+
out_channels: 4
|
35 |
+
model_channels: 320
|
36 |
+
attention_resolutions: [ 4, 2, 1 ]
|
37 |
+
num_res_blocks: 2
|
38 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
39 |
+
num_heads: 8
|
40 |
+
use_spatial_transformer: True
|
41 |
+
transformer_depth: 1
|
42 |
+
context_dim: 768
|
43 |
+
use_checkpoint: True
|
44 |
+
legacy: False
|
45 |
+
|
46 |
+
first_stage_config:
|
47 |
+
target: ldm.models.autoencoder.AutoencoderKL
|
48 |
+
params:
|
49 |
+
embed_dim: 4
|
50 |
+
monitor: val/rec_loss
|
51 |
+
ddconfig:
|
52 |
+
double_z: true
|
53 |
+
z_channels: 4
|
54 |
+
resolution: 256
|
55 |
+
in_channels: 3
|
56 |
+
out_ch: 3
|
57 |
+
ch: 128
|
58 |
+
ch_mult:
|
59 |
+
- 1
|
60 |
+
- 2
|
61 |
+
- 4
|
62 |
+
- 4
|
63 |
+
num_res_blocks: 2
|
64 |
+
attn_resolutions: []
|
65 |
+
dropout: 0.0
|
66 |
+
lossconfig:
|
67 |
+
target: torch.nn.Identity
|
68 |
+
|
69 |
+
cond_stage_config:
|
70 |
+
target: modules.xlmr.BertSeriesModelWithTransformation
|
71 |
+
params:
|
72 |
+
name: "XLMR-Large"
|
configs/instruct-pix2pix.yaml
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# File modified by authors of InstructPix2Pix from original (https://github.com/CompVis/stable-diffusion).
|
2 |
+
# See more details in LICENSE.
|
3 |
+
|
4 |
+
model:
|
5 |
+
base_learning_rate: 1.0e-04
|
6 |
+
target: modules.models.diffusion.ddpm_edit.LatentDiffusion
|
7 |
+
params:
|
8 |
+
linear_start: 0.00085
|
9 |
+
linear_end: 0.0120
|
10 |
+
num_timesteps_cond: 1
|
11 |
+
log_every_t: 200
|
12 |
+
timesteps: 1000
|
13 |
+
first_stage_key: edited
|
14 |
+
cond_stage_key: edit
|
15 |
+
# image_size: 64
|
16 |
+
# image_size: 32
|
17 |
+
image_size: 16
|
18 |
+
channels: 4
|
19 |
+
cond_stage_trainable: false # Note: different from the one we trained before
|
20 |
+
conditioning_key: hybrid
|
21 |
+
monitor: val/loss_simple_ema
|
22 |
+
scale_factor: 0.18215
|
23 |
+
use_ema: false
|
24 |
+
|
25 |
+
scheduler_config: # 10000 warmup steps
|
26 |
+
target: ldm.lr_scheduler.LambdaLinearScheduler
|
27 |
+
params:
|
28 |
+
warm_up_steps: [ 0 ]
|
29 |
+
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
30 |
+
f_start: [ 1.e-6 ]
|
31 |
+
f_max: [ 1. ]
|
32 |
+
f_min: [ 1. ]
|
33 |
+
|
34 |
+
unet_config:
|
35 |
+
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
36 |
+
params:
|
37 |
+
image_size: 32 # unused
|
38 |
+
in_channels: 8
|
39 |
+
out_channels: 4
|
40 |
+
model_channels: 320
|
41 |
+
attention_resolutions: [ 4, 2, 1 ]
|
42 |
+
num_res_blocks: 2
|
43 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
44 |
+
num_heads: 8
|
45 |
+
use_spatial_transformer: True
|
46 |
+
transformer_depth: 1
|
47 |
+
context_dim: 768
|
48 |
+
use_checkpoint: True
|
49 |
+
legacy: False
|
50 |
+
|
51 |
+
first_stage_config:
|
52 |
+
target: ldm.models.autoencoder.AutoencoderKL
|
53 |
+
params:
|
54 |
+
embed_dim: 4
|
55 |
+
monitor: val/rec_loss
|
56 |
+
ddconfig:
|
57 |
+
double_z: true
|
58 |
+
z_channels: 4
|
59 |
+
resolution: 256
|
60 |
+
in_channels: 3
|
61 |
+
out_ch: 3
|
62 |
+
ch: 128
|
63 |
+
ch_mult:
|
64 |
+
- 1
|
65 |
+
- 2
|
66 |
+
- 4
|
67 |
+
- 4
|
68 |
+
num_res_blocks: 2
|
69 |
+
attn_resolutions: []
|
70 |
+
dropout: 0.0
|
71 |
+
lossconfig:
|
72 |
+
target: torch.nn.Identity
|
73 |
+
|
74 |
+
cond_stage_config:
|
75 |
+
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
|
76 |
+
|
77 |
+
data:
|
78 |
+
target: main.DataModuleFromConfig
|
79 |
+
params:
|
80 |
+
batch_size: 128
|
81 |
+
num_workers: 1
|
82 |
+
wrap: false
|
83 |
+
validation:
|
84 |
+
target: edit_dataset.EditDataset
|
85 |
+
params:
|
86 |
+
path: data/clip-filtered-dataset
|
87 |
+
cache_dir: data/
|
88 |
+
cache_name: data_10k
|
89 |
+
split: val
|
90 |
+
min_text_sim: 0.2
|
91 |
+
min_image_sim: 0.75
|
92 |
+
min_direction_sim: 0.2
|
93 |
+
max_samples_per_prompt: 1
|
94 |
+
min_resize_res: 512
|
95 |
+
max_resize_res: 512
|
96 |
+
crop_res: 512
|
97 |
+
output_as_edit: False
|
98 |
+
real_input: True
|
configs/v1-inference.yaml
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
base_learning_rate: 1.0e-04
|
3 |
+
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
4 |
+
params:
|
5 |
+
linear_start: 0.00085
|
6 |
+
linear_end: 0.0120
|
7 |
+
num_timesteps_cond: 1
|
8 |
+
log_every_t: 200
|
9 |
+
timesteps: 1000
|
10 |
+
first_stage_key: "jpg"
|
11 |
+
cond_stage_key: "txt"
|
12 |
+
image_size: 64
|
13 |
+
channels: 4
|
14 |
+
cond_stage_trainable: false # Note: different from the one we trained before
|
15 |
+
conditioning_key: crossattn
|
16 |
+
monitor: val/loss_simple_ema
|
17 |
+
scale_factor: 0.18215
|
18 |
+
use_ema: False
|
19 |
+
|
20 |
+
scheduler_config: # 10000 warmup steps
|
21 |
+
target: ldm.lr_scheduler.LambdaLinearScheduler
|
22 |
+
params:
|
23 |
+
warm_up_steps: [ 10000 ]
|
24 |
+
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
25 |
+
f_start: [ 1.e-6 ]
|
26 |
+
f_max: [ 1. ]
|
27 |
+
f_min: [ 1. ]
|
28 |
+
|
29 |
+
unet_config:
|
30 |
+
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
31 |
+
params:
|
32 |
+
image_size: 32 # unused
|
33 |
+
in_channels: 4
|
34 |
+
out_channels: 4
|
35 |
+
model_channels: 320
|
36 |
+
attention_resolutions: [ 4, 2, 1 ]
|
37 |
+
num_res_blocks: 2
|
38 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
39 |
+
num_heads: 8
|
40 |
+
use_spatial_transformer: True
|
41 |
+
transformer_depth: 1
|
42 |
+
context_dim: 768
|
43 |
+
use_checkpoint: True
|
44 |
+
legacy: False
|
45 |
+
|
46 |
+
first_stage_config:
|
47 |
+
target: ldm.models.autoencoder.AutoencoderKL
|
48 |
+
params:
|
49 |
+
embed_dim: 4
|
50 |
+
monitor: val/rec_loss
|
51 |
+
ddconfig:
|
52 |
+
double_z: true
|
53 |
+
z_channels: 4
|
54 |
+
resolution: 256
|
55 |
+
in_channels: 3
|
56 |
+
out_ch: 3
|
57 |
+
ch: 128
|
58 |
+
ch_mult:
|
59 |
+
- 1
|
60 |
+
- 2
|
61 |
+
- 4
|
62 |
+
- 4
|
63 |
+
num_res_blocks: 2
|
64 |
+
attn_resolutions: []
|
65 |
+
dropout: 0.0
|
66 |
+
lossconfig:
|
67 |
+
target: torch.nn.Identity
|
68 |
+
|
69 |
+
cond_stage_config:
|
70 |
+
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
|
configs/v1-inpainting-inference.yaml
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
base_learning_rate: 7.5e-05
|
3 |
+
target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
|
4 |
+
params:
|
5 |
+
linear_start: 0.00085
|
6 |
+
linear_end: 0.0120
|
7 |
+
num_timesteps_cond: 1
|
8 |
+
log_every_t: 200
|
9 |
+
timesteps: 1000
|
10 |
+
first_stage_key: "jpg"
|
11 |
+
cond_stage_key: "txt"
|
12 |
+
image_size: 64
|
13 |
+
channels: 4
|
14 |
+
cond_stage_trainable: false # Note: different from the one we trained before
|
15 |
+
conditioning_key: hybrid # important
|
16 |
+
monitor: val/loss_simple_ema
|
17 |
+
scale_factor: 0.18215
|
18 |
+
finetune_keys: null
|
19 |
+
|
20 |
+
scheduler_config: # 10000 warmup steps
|
21 |
+
target: ldm.lr_scheduler.LambdaLinearScheduler
|
22 |
+
params:
|
23 |
+
warm_up_steps: [ 2500 ] # NOTE for resuming. use 10000 if starting from scratch
|
24 |
+
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
25 |
+
f_start: [ 1.e-6 ]
|
26 |
+
f_max: [ 1. ]
|
27 |
+
f_min: [ 1. ]
|
28 |
+
|
29 |
+
unet_config:
|
30 |
+
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
31 |
+
params:
|
32 |
+
image_size: 32 # unused
|
33 |
+
in_channels: 9 # 4 data + 4 downscaled image + 1 mask
|
34 |
+
out_channels: 4
|
35 |
+
model_channels: 320
|
36 |
+
attention_resolutions: [ 4, 2, 1 ]
|
37 |
+
num_res_blocks: 2
|
38 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
39 |
+
num_heads: 8
|
40 |
+
use_spatial_transformer: True
|
41 |
+
transformer_depth: 1
|
42 |
+
context_dim: 768
|
43 |
+
use_checkpoint: True
|
44 |
+
legacy: False
|
45 |
+
|
46 |
+
first_stage_config:
|
47 |
+
target: ldm.models.autoencoder.AutoencoderKL
|
48 |
+
params:
|
49 |
+
embed_dim: 4
|
50 |
+
monitor: val/rec_loss
|
51 |
+
ddconfig:
|
52 |
+
double_z: true
|
53 |
+
z_channels: 4
|
54 |
+
resolution: 256
|
55 |
+
in_channels: 3
|
56 |
+
out_ch: 3
|
57 |
+
ch: 128
|
58 |
+
ch_mult:
|
59 |
+
- 1
|
60 |
+
- 2
|
61 |
+
- 4
|
62 |
+
- 4
|
63 |
+
num_res_blocks: 2
|
64 |
+
attn_resolutions: []
|
65 |
+
dropout: 0.0
|
66 |
+
lossconfig:
|
67 |
+
target: torch.nn.Identity
|
68 |
+
|
69 |
+
cond_stage_config:
|
70 |
+
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
|
extensions-builtin/LDSR/ldsr_model_arch.py
ADDED
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gc
|
3 |
+
import time
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import torchvision
|
8 |
+
from PIL import Image
|
9 |
+
from einops import rearrange, repeat
|
10 |
+
from omegaconf import OmegaConf
|
11 |
+
import safetensors.torch
|
12 |
+
|
13 |
+
from ldm.models.diffusion.ddim import DDIMSampler
|
14 |
+
from ldm.util import instantiate_from_config, ismap
|
15 |
+
from modules import shared, sd_hijack
|
16 |
+
|
17 |
+
cached_ldsr_model: torch.nn.Module = None
|
18 |
+
|
19 |
+
|
20 |
+
# Create LDSR Class
|
21 |
+
class LDSR:
|
22 |
+
def load_model_from_config(self, half_attention):
|
23 |
+
global cached_ldsr_model
|
24 |
+
|
25 |
+
if shared.opts.ldsr_cached and cached_ldsr_model is not None:
|
26 |
+
print("Loading model from cache")
|
27 |
+
model: torch.nn.Module = cached_ldsr_model
|
28 |
+
else:
|
29 |
+
print(f"Loading model from {self.modelPath}")
|
30 |
+
_, extension = os.path.splitext(self.modelPath)
|
31 |
+
if extension.lower() == ".safetensors":
|
32 |
+
pl_sd = safetensors.torch.load_file(self.modelPath, device="cpu")
|
33 |
+
else:
|
34 |
+
pl_sd = torch.load(self.modelPath, map_location="cpu")
|
35 |
+
sd = pl_sd["state_dict"] if "state_dict" in pl_sd else pl_sd
|
36 |
+
config = OmegaConf.load(self.yamlPath)
|
37 |
+
config.model.target = "ldm.models.diffusion.ddpm.LatentDiffusionV1"
|
38 |
+
model: torch.nn.Module = instantiate_from_config(config.model)
|
39 |
+
model.load_state_dict(sd, strict=False)
|
40 |
+
model = model.to(shared.device)
|
41 |
+
if half_attention:
|
42 |
+
model = model.half()
|
43 |
+
if shared.cmd_opts.opt_channelslast:
|
44 |
+
model = model.to(memory_format=torch.channels_last)
|
45 |
+
|
46 |
+
sd_hijack.model_hijack.hijack(model) # apply optimization
|
47 |
+
model.eval()
|
48 |
+
|
49 |
+
if shared.opts.ldsr_cached:
|
50 |
+
cached_ldsr_model = model
|
51 |
+
|
52 |
+
return {"model": model}
|
53 |
+
|
54 |
+
def __init__(self, model_path, yaml_path):
|
55 |
+
self.modelPath = model_path
|
56 |
+
self.yamlPath = yaml_path
|
57 |
+
|
58 |
+
@staticmethod
|
59 |
+
def run(model, selected_path, custom_steps, eta):
|
60 |
+
example = get_cond(selected_path)
|
61 |
+
|
62 |
+
n_runs = 1
|
63 |
+
guider = None
|
64 |
+
ckwargs = None
|
65 |
+
ddim_use_x0_pred = False
|
66 |
+
temperature = 1.
|
67 |
+
eta = eta
|
68 |
+
custom_shape = None
|
69 |
+
|
70 |
+
height, width = example["image"].shape[1:3]
|
71 |
+
split_input = height >= 128 and width >= 128
|
72 |
+
|
73 |
+
if split_input:
|
74 |
+
ks = 128
|
75 |
+
stride = 64
|
76 |
+
vqf = 4 #
|
77 |
+
model.split_input_params = {"ks": (ks, ks), "stride": (stride, stride),
|
78 |
+
"vqf": vqf,
|
79 |
+
"patch_distributed_vq": True,
|
80 |
+
"tie_braker": False,
|
81 |
+
"clip_max_weight": 0.5,
|
82 |
+
"clip_min_weight": 0.01,
|
83 |
+
"clip_max_tie_weight": 0.5,
|
84 |
+
"clip_min_tie_weight": 0.01}
|
85 |
+
else:
|
86 |
+
if hasattr(model, "split_input_params"):
|
87 |
+
delattr(model, "split_input_params")
|
88 |
+
|
89 |
+
x_t = None
|
90 |
+
logs = None
|
91 |
+
for n in range(n_runs):
|
92 |
+
if custom_shape is not None:
|
93 |
+
x_t = torch.randn(1, custom_shape[1], custom_shape[2], custom_shape[3]).to(model.device)
|
94 |
+
x_t = repeat(x_t, '1 c h w -> b c h w', b=custom_shape[0])
|
95 |
+
|
96 |
+
logs = make_convolutional_sample(example, model,
|
97 |
+
custom_steps=custom_steps,
|
98 |
+
eta=eta, quantize_x0=False,
|
99 |
+
custom_shape=custom_shape,
|
100 |
+
temperature=temperature, noise_dropout=0.,
|
101 |
+
corrector=guider, corrector_kwargs=ckwargs, x_T=x_t,
|
102 |
+
ddim_use_x0_pred=ddim_use_x0_pred
|
103 |
+
)
|
104 |
+
return logs
|
105 |
+
|
106 |
+
def super_resolution(self, image, steps=100, target_scale=2, half_attention=False):
|
107 |
+
model = self.load_model_from_config(half_attention)
|
108 |
+
|
109 |
+
# Run settings
|
110 |
+
diffusion_steps = int(steps)
|
111 |
+
eta = 1.0
|
112 |
+
|
113 |
+
down_sample_method = 'Lanczos'
|
114 |
+
|
115 |
+
gc.collect()
|
116 |
+
if torch.cuda.is_available:
|
117 |
+
torch.cuda.empty_cache()
|
118 |
+
|
119 |
+
im_og = image
|
120 |
+
width_og, height_og = im_og.size
|
121 |
+
# If we can adjust the max upscale size, then the 4 below should be our variable
|
122 |
+
down_sample_rate = target_scale / 4
|
123 |
+
wd = width_og * down_sample_rate
|
124 |
+
hd = height_og * down_sample_rate
|
125 |
+
width_downsampled_pre = int(np.ceil(wd))
|
126 |
+
height_downsampled_pre = int(np.ceil(hd))
|
127 |
+
|
128 |
+
if down_sample_rate != 1:
|
129 |
+
print(
|
130 |
+
f'Downsampling from [{width_og}, {height_og}] to [{width_downsampled_pre}, {height_downsampled_pre}]')
|
131 |
+
im_og = im_og.resize((width_downsampled_pre, height_downsampled_pre), Image.LANCZOS)
|
132 |
+
else:
|
133 |
+
print(f"Down sample rate is 1 from {target_scale} / 4 (Not downsampling)")
|
134 |
+
|
135 |
+
# pad width and height to multiples of 64, pads with the edge values of image to avoid artifacts
|
136 |
+
pad_w, pad_h = np.max(((2, 2), np.ceil(np.array(im_og.size) / 64).astype(int)), axis=0) * 64 - im_og.size
|
137 |
+
im_padded = Image.fromarray(np.pad(np.array(im_og), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge'))
|
138 |
+
|
139 |
+
logs = self.run(model["model"], im_padded, diffusion_steps, eta)
|
140 |
+
|
141 |
+
sample = logs["sample"]
|
142 |
+
sample = sample.detach().cpu()
|
143 |
+
sample = torch.clamp(sample, -1., 1.)
|
144 |
+
sample = (sample + 1.) / 2. * 255
|
145 |
+
sample = sample.numpy().astype(np.uint8)
|
146 |
+
sample = np.transpose(sample, (0, 2, 3, 1))
|
147 |
+
a = Image.fromarray(sample[0])
|
148 |
+
|
149 |
+
# remove padding
|
150 |
+
a = a.crop((0, 0) + tuple(np.array(im_og.size) * 4))
|
151 |
+
|
152 |
+
del model
|
153 |
+
gc.collect()
|
154 |
+
if torch.cuda.is_available:
|
155 |
+
torch.cuda.empty_cache()
|
156 |
+
|
157 |
+
return a
|
158 |
+
|
159 |
+
|
160 |
+
def get_cond(selected_path):
|
161 |
+
example = dict()
|
162 |
+
up_f = 4
|
163 |
+
c = selected_path.convert('RGB')
|
164 |
+
c = torch.unsqueeze(torchvision.transforms.ToTensor()(c), 0)
|
165 |
+
c_up = torchvision.transforms.functional.resize(c, size=[up_f * c.shape[2], up_f * c.shape[3]],
|
166 |
+
antialias=True)
|
167 |
+
c_up = rearrange(c_up, '1 c h w -> 1 h w c')
|
168 |
+
c = rearrange(c, '1 c h w -> 1 h w c')
|
169 |
+
c = 2. * c - 1.
|
170 |
+
|
171 |
+
c = c.to(shared.device)
|
172 |
+
example["LR_image"] = c
|
173 |
+
example["image"] = c_up
|
174 |
+
|
175 |
+
return example
|
176 |
+
|
177 |
+
|
178 |
+
@torch.no_grad()
|
179 |
+
def convsample_ddim(model, cond, steps, shape, eta=1.0, callback=None, normals_sequence=None,
|
180 |
+
mask=None, x0=None, quantize_x0=False, temperature=1., score_corrector=None,
|
181 |
+
corrector_kwargs=None, x_t=None
|
182 |
+
):
|
183 |
+
ddim = DDIMSampler(model)
|
184 |
+
bs = shape[0]
|
185 |
+
shape = shape[1:]
|
186 |
+
print(f"Sampling with eta = {eta}; steps: {steps}")
|
187 |
+
samples, intermediates = ddim.sample(steps, batch_size=bs, shape=shape, conditioning=cond, callback=callback,
|
188 |
+
normals_sequence=normals_sequence, quantize_x0=quantize_x0, eta=eta,
|
189 |
+
mask=mask, x0=x0, temperature=temperature, verbose=False,
|
190 |
+
score_corrector=score_corrector,
|
191 |
+
corrector_kwargs=corrector_kwargs, x_t=x_t)
|
192 |
+
|
193 |
+
return samples, intermediates
|
194 |
+
|
195 |
+
|
196 |
+
@torch.no_grad()
|
197 |
+
def make_convolutional_sample(batch, model, custom_steps=None, eta=1.0, quantize_x0=False, custom_shape=None, temperature=1., noise_dropout=0., corrector=None,
|
198 |
+
corrector_kwargs=None, x_T=None, ddim_use_x0_pred=False):
|
199 |
+
log = dict()
|
200 |
+
|
201 |
+
z, c, x, xrec, xc = model.get_input(batch, model.first_stage_key,
|
202 |
+
return_first_stage_outputs=True,
|
203 |
+
force_c_encode=not (hasattr(model, 'split_input_params')
|
204 |
+
and model.cond_stage_key == 'coordinates_bbox'),
|
205 |
+
return_original_cond=True)
|
206 |
+
|
207 |
+
if custom_shape is not None:
|
208 |
+
z = torch.randn(custom_shape)
|
209 |
+
print(f"Generating {custom_shape[0]} samples of shape {custom_shape[1:]}")
|
210 |
+
|
211 |
+
z0 = None
|
212 |
+
|
213 |
+
log["input"] = x
|
214 |
+
log["reconstruction"] = xrec
|
215 |
+
|
216 |
+
if ismap(xc):
|
217 |
+
log["original_conditioning"] = model.to_rgb(xc)
|
218 |
+
if hasattr(model, 'cond_stage_key'):
|
219 |
+
log[model.cond_stage_key] = model.to_rgb(xc)
|
220 |
+
|
221 |
+
else:
|
222 |
+
log["original_conditioning"] = xc if xc is not None else torch.zeros_like(x)
|
223 |
+
if model.cond_stage_model:
|
224 |
+
log[model.cond_stage_key] = xc if xc is not None else torch.zeros_like(x)
|
225 |
+
if model.cond_stage_key == 'class_label':
|
226 |
+
log[model.cond_stage_key] = xc[model.cond_stage_key]
|
227 |
+
|
228 |
+
with model.ema_scope("Plotting"):
|
229 |
+
t0 = time.time()
|
230 |
+
|
231 |
+
sample, intermediates = convsample_ddim(model, c, steps=custom_steps, shape=z.shape,
|
232 |
+
eta=eta,
|
233 |
+
quantize_x0=quantize_x0, mask=None, x0=z0,
|
234 |
+
temperature=temperature, score_corrector=corrector, corrector_kwargs=corrector_kwargs,
|
235 |
+
x_t=x_T)
|
236 |
+
t1 = time.time()
|
237 |
+
|
238 |
+
if ddim_use_x0_pred:
|
239 |
+
sample = intermediates['pred_x0'][-1]
|
240 |
+
|
241 |
+
x_sample = model.decode_first_stage(sample)
|
242 |
+
|
243 |
+
try:
|
244 |
+
x_sample_noquant = model.decode_first_stage(sample, force_not_quantize=True)
|
245 |
+
log["sample_noquant"] = x_sample_noquant
|
246 |
+
log["sample_diff"] = torch.abs(x_sample_noquant - x_sample)
|
247 |
+
except:
|
248 |
+
pass
|
249 |
+
|
250 |
+
log["sample"] = x_sample
|
251 |
+
log["time"] = t1 - t0
|
252 |
+
|
253 |
+
return log
|
extensions-builtin/LDSR/preload.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from modules import paths
|
3 |
+
|
4 |
+
|
5 |
+
def preload(parser):
|
6 |
+
parser.add_argument("--ldsr-models-path", type=str, help="Path to directory with LDSR model file(s).", default=os.path.join(paths.models_path, 'LDSR'))
|
extensions-builtin/LDSR/scripts/ldsr_model.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import traceback
|
4 |
+
|
5 |
+
from basicsr.utils.download_util import load_file_from_url
|
6 |
+
|
7 |
+
from modules.upscaler import Upscaler, UpscalerData
|
8 |
+
from ldsr_model_arch import LDSR
|
9 |
+
from modules import shared, script_callbacks
|
10 |
+
import sd_hijack_autoencoder, sd_hijack_ddpm_v1
|
11 |
+
|
12 |
+
|
13 |
+
class UpscalerLDSR(Upscaler):
|
14 |
+
def __init__(self, user_path):
|
15 |
+
self.name = "LDSR"
|
16 |
+
self.user_path = user_path
|
17 |
+
self.model_url = "https://heibox.uni-heidelberg.de/f/578df07c8fc04ffbadf3/?dl=1"
|
18 |
+
self.yaml_url = "https://heibox.uni-heidelberg.de/f/31a76b13ea27482981b4/?dl=1"
|
19 |
+
super().__init__()
|
20 |
+
scaler_data = UpscalerData("LDSR", None, self)
|
21 |
+
self.scalers = [scaler_data]
|
22 |
+
|
23 |
+
def load_model(self, path: str):
|
24 |
+
# Remove incorrect project.yaml file if too big
|
25 |
+
yaml_path = os.path.join(self.model_path, "project.yaml")
|
26 |
+
old_model_path = os.path.join(self.model_path, "model.pth")
|
27 |
+
new_model_path = os.path.join(self.model_path, "model.ckpt")
|
28 |
+
safetensors_model_path = os.path.join(self.model_path, "model.safetensors")
|
29 |
+
if os.path.exists(yaml_path):
|
30 |
+
statinfo = os.stat(yaml_path)
|
31 |
+
if statinfo.st_size >= 10485760:
|
32 |
+
print("Removing invalid LDSR YAML file.")
|
33 |
+
os.remove(yaml_path)
|
34 |
+
if os.path.exists(old_model_path):
|
35 |
+
print("Renaming model from model.pth to model.ckpt")
|
36 |
+
os.rename(old_model_path, new_model_path)
|
37 |
+
if os.path.exists(safetensors_model_path):
|
38 |
+
model = safetensors_model_path
|
39 |
+
else:
|
40 |
+
model = load_file_from_url(url=self.model_url, model_dir=self.model_path,
|
41 |
+
file_name="model.ckpt", progress=True)
|
42 |
+
yaml = load_file_from_url(url=self.yaml_url, model_dir=self.model_path,
|
43 |
+
file_name="project.yaml", progress=True)
|
44 |
+
|
45 |
+
try:
|
46 |
+
return LDSR(model, yaml)
|
47 |
+
|
48 |
+
except Exception:
|
49 |
+
print("Error importing LDSR:", file=sys.stderr)
|
50 |
+
print(traceback.format_exc(), file=sys.stderr)
|
51 |
+
return None
|
52 |
+
|
53 |
+
def do_upscale(self, img, path):
|
54 |
+
ldsr = self.load_model(path)
|
55 |
+
if ldsr is None:
|
56 |
+
print("NO LDSR!")
|
57 |
+
return img
|
58 |
+
ddim_steps = shared.opts.ldsr_steps
|
59 |
+
return ldsr.super_resolution(img, ddim_steps, self.scale)
|
60 |
+
|
61 |
+
|
62 |
+
def on_ui_settings():
|
63 |
+
import gradio as gr
|
64 |
+
|
65 |
+
shared.opts.add_option("ldsr_steps", shared.OptionInfo(100, "LDSR processing steps. Lower = faster", gr.Slider, {"minimum": 1, "maximum": 200, "step": 1}, section=('upscaling', "Upscaling")))
|
66 |
+
shared.opts.add_option("ldsr_cached", shared.OptionInfo(False, "Cache LDSR model in memory", gr.Checkbox, {"interactive": True}, section=('upscaling', "Upscaling")))
|
67 |
+
|
68 |
+
|
69 |
+
script_callbacks.on_ui_settings(on_ui_settings)
|
extensions-builtin/LDSR/sd_hijack_autoencoder.py
ADDED
@@ -0,0 +1,286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# The content of this file comes from the ldm/models/autoencoder.py file of the compvis/stable-diffusion repo
|
2 |
+
# The VQModel & VQModelInterface were subsequently removed from ldm/models/autoencoder.py when we moved to the stability-ai/stablediffusion repo
|
3 |
+
# As the LDSR upscaler relies on VQModel & VQModelInterface, the hijack aims to put them back into the ldm.models.autoencoder
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import pytorch_lightning as pl
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from contextlib import contextmanager
|
9 |
+
from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
|
10 |
+
from ldm.modules.diffusionmodules.model import Encoder, Decoder
|
11 |
+
from ldm.util import instantiate_from_config
|
12 |
+
|
13 |
+
import ldm.models.autoencoder
|
14 |
+
|
15 |
+
class VQModel(pl.LightningModule):
|
16 |
+
def __init__(self,
|
17 |
+
ddconfig,
|
18 |
+
lossconfig,
|
19 |
+
n_embed,
|
20 |
+
embed_dim,
|
21 |
+
ckpt_path=None,
|
22 |
+
ignore_keys=[],
|
23 |
+
image_key="image",
|
24 |
+
colorize_nlabels=None,
|
25 |
+
monitor=None,
|
26 |
+
batch_resize_range=None,
|
27 |
+
scheduler_config=None,
|
28 |
+
lr_g_factor=1.0,
|
29 |
+
remap=None,
|
30 |
+
sane_index_shape=False, # tell vector quantizer to return indices as bhw
|
31 |
+
use_ema=False
|
32 |
+
):
|
33 |
+
super().__init__()
|
34 |
+
self.embed_dim = embed_dim
|
35 |
+
self.n_embed = n_embed
|
36 |
+
self.image_key = image_key
|
37 |
+
self.encoder = Encoder(**ddconfig)
|
38 |
+
self.decoder = Decoder(**ddconfig)
|
39 |
+
self.loss = instantiate_from_config(lossconfig)
|
40 |
+
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
|
41 |
+
remap=remap,
|
42 |
+
sane_index_shape=sane_index_shape)
|
43 |
+
self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
|
44 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
45 |
+
if colorize_nlabels is not None:
|
46 |
+
assert type(colorize_nlabels)==int
|
47 |
+
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
48 |
+
if monitor is not None:
|
49 |
+
self.monitor = monitor
|
50 |
+
self.batch_resize_range = batch_resize_range
|
51 |
+
if self.batch_resize_range is not None:
|
52 |
+
print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.")
|
53 |
+
|
54 |
+
self.use_ema = use_ema
|
55 |
+
if self.use_ema:
|
56 |
+
self.model_ema = LitEma(self)
|
57 |
+
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
58 |
+
|
59 |
+
if ckpt_path is not None:
|
60 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
61 |
+
self.scheduler_config = scheduler_config
|
62 |
+
self.lr_g_factor = lr_g_factor
|
63 |
+
|
64 |
+
@contextmanager
|
65 |
+
def ema_scope(self, context=None):
|
66 |
+
if self.use_ema:
|
67 |
+
self.model_ema.store(self.parameters())
|
68 |
+
self.model_ema.copy_to(self)
|
69 |
+
if context is not None:
|
70 |
+
print(f"{context}: Switched to EMA weights")
|
71 |
+
try:
|
72 |
+
yield None
|
73 |
+
finally:
|
74 |
+
if self.use_ema:
|
75 |
+
self.model_ema.restore(self.parameters())
|
76 |
+
if context is not None:
|
77 |
+
print(f"{context}: Restored training weights")
|
78 |
+
|
79 |
+
def init_from_ckpt(self, path, ignore_keys=list()):
|
80 |
+
sd = torch.load(path, map_location="cpu")["state_dict"]
|
81 |
+
keys = list(sd.keys())
|
82 |
+
for k in keys:
|
83 |
+
for ik in ignore_keys:
|
84 |
+
if k.startswith(ik):
|
85 |
+
print("Deleting key {} from state_dict.".format(k))
|
86 |
+
del sd[k]
|
87 |
+
missing, unexpected = self.load_state_dict(sd, strict=False)
|
88 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
89 |
+
if len(missing) > 0:
|
90 |
+
print(f"Missing Keys: {missing}")
|
91 |
+
print(f"Unexpected Keys: {unexpected}")
|
92 |
+
|
93 |
+
def on_train_batch_end(self, *args, **kwargs):
|
94 |
+
if self.use_ema:
|
95 |
+
self.model_ema(self)
|
96 |
+
|
97 |
+
def encode(self, x):
|
98 |
+
h = self.encoder(x)
|
99 |
+
h = self.quant_conv(h)
|
100 |
+
quant, emb_loss, info = self.quantize(h)
|
101 |
+
return quant, emb_loss, info
|
102 |
+
|
103 |
+
def encode_to_prequant(self, x):
|
104 |
+
h = self.encoder(x)
|
105 |
+
h = self.quant_conv(h)
|
106 |
+
return h
|
107 |
+
|
108 |
+
def decode(self, quant):
|
109 |
+
quant = self.post_quant_conv(quant)
|
110 |
+
dec = self.decoder(quant)
|
111 |
+
return dec
|
112 |
+
|
113 |
+
def decode_code(self, code_b):
|
114 |
+
quant_b = self.quantize.embed_code(code_b)
|
115 |
+
dec = self.decode(quant_b)
|
116 |
+
return dec
|
117 |
+
|
118 |
+
def forward(self, input, return_pred_indices=False):
|
119 |
+
quant, diff, (_,_,ind) = self.encode(input)
|
120 |
+
dec = self.decode(quant)
|
121 |
+
if return_pred_indices:
|
122 |
+
return dec, diff, ind
|
123 |
+
return dec, diff
|
124 |
+
|
125 |
+
def get_input(self, batch, k):
|
126 |
+
x = batch[k]
|
127 |
+
if len(x.shape) == 3:
|
128 |
+
x = x[..., None]
|
129 |
+
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
130 |
+
if self.batch_resize_range is not None:
|
131 |
+
lower_size = self.batch_resize_range[0]
|
132 |
+
upper_size = self.batch_resize_range[1]
|
133 |
+
if self.global_step <= 4:
|
134 |
+
# do the first few batches with max size to avoid later oom
|
135 |
+
new_resize = upper_size
|
136 |
+
else:
|
137 |
+
new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16))
|
138 |
+
if new_resize != x.shape[2]:
|
139 |
+
x = F.interpolate(x, size=new_resize, mode="bicubic")
|
140 |
+
x = x.detach()
|
141 |
+
return x
|
142 |
+
|
143 |
+
def training_step(self, batch, batch_idx, optimizer_idx):
|
144 |
+
# https://github.com/pytorch/pytorch/issues/37142
|
145 |
+
# try not to fool the heuristics
|
146 |
+
x = self.get_input(batch, self.image_key)
|
147 |
+
xrec, qloss, ind = self(x, return_pred_indices=True)
|
148 |
+
|
149 |
+
if optimizer_idx == 0:
|
150 |
+
# autoencode
|
151 |
+
aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
152 |
+
last_layer=self.get_last_layer(), split="train",
|
153 |
+
predicted_indices=ind)
|
154 |
+
|
155 |
+
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
156 |
+
return aeloss
|
157 |
+
|
158 |
+
if optimizer_idx == 1:
|
159 |
+
# discriminator
|
160 |
+
discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
161 |
+
last_layer=self.get_last_layer(), split="train")
|
162 |
+
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
163 |
+
return discloss
|
164 |
+
|
165 |
+
def validation_step(self, batch, batch_idx):
|
166 |
+
log_dict = self._validation_step(batch, batch_idx)
|
167 |
+
with self.ema_scope():
|
168 |
+
log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema")
|
169 |
+
return log_dict
|
170 |
+
|
171 |
+
def _validation_step(self, batch, batch_idx, suffix=""):
|
172 |
+
x = self.get_input(batch, self.image_key)
|
173 |
+
xrec, qloss, ind = self(x, return_pred_indices=True)
|
174 |
+
aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0,
|
175 |
+
self.global_step,
|
176 |
+
last_layer=self.get_last_layer(),
|
177 |
+
split="val"+suffix,
|
178 |
+
predicted_indices=ind
|
179 |
+
)
|
180 |
+
|
181 |
+
discloss, log_dict_disc = self.loss(qloss, x, xrec, 1,
|
182 |
+
self.global_step,
|
183 |
+
last_layer=self.get_last_layer(),
|
184 |
+
split="val"+suffix,
|
185 |
+
predicted_indices=ind
|
186 |
+
)
|
187 |
+
rec_loss = log_dict_ae[f"val{suffix}/rec_loss"]
|
188 |
+
self.log(f"val{suffix}/rec_loss", rec_loss,
|
189 |
+
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
190 |
+
self.log(f"val{suffix}/aeloss", aeloss,
|
191 |
+
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
192 |
+
if version.parse(pl.__version__) >= version.parse('1.4.0'):
|
193 |
+
del log_dict_ae[f"val{suffix}/rec_loss"]
|
194 |
+
self.log_dict(log_dict_ae)
|
195 |
+
self.log_dict(log_dict_disc)
|
196 |
+
return self.log_dict
|
197 |
+
|
198 |
+
def configure_optimizers(self):
|
199 |
+
lr_d = self.learning_rate
|
200 |
+
lr_g = self.lr_g_factor*self.learning_rate
|
201 |
+
print("lr_d", lr_d)
|
202 |
+
print("lr_g", lr_g)
|
203 |
+
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
204 |
+
list(self.decoder.parameters())+
|
205 |
+
list(self.quantize.parameters())+
|
206 |
+
list(self.quant_conv.parameters())+
|
207 |
+
list(self.post_quant_conv.parameters()),
|
208 |
+
lr=lr_g, betas=(0.5, 0.9))
|
209 |
+
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
210 |
+
lr=lr_d, betas=(0.5, 0.9))
|
211 |
+
|
212 |
+
if self.scheduler_config is not None:
|
213 |
+
scheduler = instantiate_from_config(self.scheduler_config)
|
214 |
+
|
215 |
+
print("Setting up LambdaLR scheduler...")
|
216 |
+
scheduler = [
|
217 |
+
{
|
218 |
+
'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule),
|
219 |
+
'interval': 'step',
|
220 |
+
'frequency': 1
|
221 |
+
},
|
222 |
+
{
|
223 |
+
'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule),
|
224 |
+
'interval': 'step',
|
225 |
+
'frequency': 1
|
226 |
+
},
|
227 |
+
]
|
228 |
+
return [opt_ae, opt_disc], scheduler
|
229 |
+
return [opt_ae, opt_disc], []
|
230 |
+
|
231 |
+
def get_last_layer(self):
|
232 |
+
return self.decoder.conv_out.weight
|
233 |
+
|
234 |
+
def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
|
235 |
+
log = dict()
|
236 |
+
x = self.get_input(batch, self.image_key)
|
237 |
+
x = x.to(self.device)
|
238 |
+
if only_inputs:
|
239 |
+
log["inputs"] = x
|
240 |
+
return log
|
241 |
+
xrec, _ = self(x)
|
242 |
+
if x.shape[1] > 3:
|
243 |
+
# colorize with random projection
|
244 |
+
assert xrec.shape[1] > 3
|
245 |
+
x = self.to_rgb(x)
|
246 |
+
xrec = self.to_rgb(xrec)
|
247 |
+
log["inputs"] = x
|
248 |
+
log["reconstructions"] = xrec
|
249 |
+
if plot_ema:
|
250 |
+
with self.ema_scope():
|
251 |
+
xrec_ema, _ = self(x)
|
252 |
+
if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema)
|
253 |
+
log["reconstructions_ema"] = xrec_ema
|
254 |
+
return log
|
255 |
+
|
256 |
+
def to_rgb(self, x):
|
257 |
+
assert self.image_key == "segmentation"
|
258 |
+
if not hasattr(self, "colorize"):
|
259 |
+
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
260 |
+
x = F.conv2d(x, weight=self.colorize)
|
261 |
+
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
262 |
+
return x
|
263 |
+
|
264 |
+
|
265 |
+
class VQModelInterface(VQModel):
|
266 |
+
def __init__(self, embed_dim, *args, **kwargs):
|
267 |
+
super().__init__(embed_dim=embed_dim, *args, **kwargs)
|
268 |
+
self.embed_dim = embed_dim
|
269 |
+
|
270 |
+
def encode(self, x):
|
271 |
+
h = self.encoder(x)
|
272 |
+
h = self.quant_conv(h)
|
273 |
+
return h
|
274 |
+
|
275 |
+
def decode(self, h, force_not_quantize=False):
|
276 |
+
# also go through quantization layer
|
277 |
+
if not force_not_quantize:
|
278 |
+
quant, emb_loss, info = self.quantize(h)
|
279 |
+
else:
|
280 |
+
quant = h
|
281 |
+
quant = self.post_quant_conv(quant)
|
282 |
+
dec = self.decoder(quant)
|
283 |
+
return dec
|
284 |
+
|
285 |
+
setattr(ldm.models.autoencoder, "VQModel", VQModel)
|
286 |
+
setattr(ldm.models.autoencoder, "VQModelInterface", VQModelInterface)
|
extensions-builtin/LDSR/sd_hijack_ddpm_v1.py
ADDED
@@ -0,0 +1,1449 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This script is copied from the compvis/stable-diffusion repo (aka the SD V1 repo)
|
2 |
+
# Original filename: ldm/models/diffusion/ddpm.py
|
3 |
+
# The purpose to reinstate the old DDPM logic which works with VQ, whereas the V2 one doesn't
|
4 |
+
# Some models such as LDSR require VQ to work correctly
|
5 |
+
# The classes are suffixed with "V1" and added back to the "ldm.models.diffusion.ddpm" module
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import numpy as np
|
10 |
+
import pytorch_lightning as pl
|
11 |
+
from torch.optim.lr_scheduler import LambdaLR
|
12 |
+
from einops import rearrange, repeat
|
13 |
+
from contextlib import contextmanager
|
14 |
+
from functools import partial
|
15 |
+
from tqdm import tqdm
|
16 |
+
from torchvision.utils import make_grid
|
17 |
+
from pytorch_lightning.utilities.distributed import rank_zero_only
|
18 |
+
|
19 |
+
from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
|
20 |
+
from ldm.modules.ema import LitEma
|
21 |
+
from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
|
22 |
+
from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL
|
23 |
+
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
|
24 |
+
from ldm.models.diffusion.ddim import DDIMSampler
|
25 |
+
|
26 |
+
import ldm.models.diffusion.ddpm
|
27 |
+
|
28 |
+
__conditioning_keys__ = {'concat': 'c_concat',
|
29 |
+
'crossattn': 'c_crossattn',
|
30 |
+
'adm': 'y'}
|
31 |
+
|
32 |
+
|
33 |
+
def disabled_train(self, mode=True):
|
34 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
35 |
+
does not change anymore."""
|
36 |
+
return self
|
37 |
+
|
38 |
+
|
39 |
+
def uniform_on_device(r1, r2, shape, device):
|
40 |
+
return (r1 - r2) * torch.rand(*shape, device=device) + r2
|
41 |
+
|
42 |
+
|
43 |
+
class DDPMV1(pl.LightningModule):
|
44 |
+
# classic DDPM with Gaussian diffusion, in image space
|
45 |
+
def __init__(self,
|
46 |
+
unet_config,
|
47 |
+
timesteps=1000,
|
48 |
+
beta_schedule="linear",
|
49 |
+
loss_type="l2",
|
50 |
+
ckpt_path=None,
|
51 |
+
ignore_keys=[],
|
52 |
+
load_only_unet=False,
|
53 |
+
monitor="val/loss",
|
54 |
+
use_ema=True,
|
55 |
+
first_stage_key="image",
|
56 |
+
image_size=256,
|
57 |
+
channels=3,
|
58 |
+
log_every_t=100,
|
59 |
+
clip_denoised=True,
|
60 |
+
linear_start=1e-4,
|
61 |
+
linear_end=2e-2,
|
62 |
+
cosine_s=8e-3,
|
63 |
+
given_betas=None,
|
64 |
+
original_elbo_weight=0.,
|
65 |
+
v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
|
66 |
+
l_simple_weight=1.,
|
67 |
+
conditioning_key=None,
|
68 |
+
parameterization="eps", # all assuming fixed variance schedules
|
69 |
+
scheduler_config=None,
|
70 |
+
use_positional_encodings=False,
|
71 |
+
learn_logvar=False,
|
72 |
+
logvar_init=0.,
|
73 |
+
):
|
74 |
+
super().__init__()
|
75 |
+
assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"'
|
76 |
+
self.parameterization = parameterization
|
77 |
+
print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
|
78 |
+
self.cond_stage_model = None
|
79 |
+
self.clip_denoised = clip_denoised
|
80 |
+
self.log_every_t = log_every_t
|
81 |
+
self.first_stage_key = first_stage_key
|
82 |
+
self.image_size = image_size # try conv?
|
83 |
+
self.channels = channels
|
84 |
+
self.use_positional_encodings = use_positional_encodings
|
85 |
+
self.model = DiffusionWrapperV1(unet_config, conditioning_key)
|
86 |
+
count_params(self.model, verbose=True)
|
87 |
+
self.use_ema = use_ema
|
88 |
+
if self.use_ema:
|
89 |
+
self.model_ema = LitEma(self.model)
|
90 |
+
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
91 |
+
|
92 |
+
self.use_scheduler = scheduler_config is not None
|
93 |
+
if self.use_scheduler:
|
94 |
+
self.scheduler_config = scheduler_config
|
95 |
+
|
96 |
+
self.v_posterior = v_posterior
|
97 |
+
self.original_elbo_weight = original_elbo_weight
|
98 |
+
self.l_simple_weight = l_simple_weight
|
99 |
+
|
100 |
+
if monitor is not None:
|
101 |
+
self.monitor = monitor
|
102 |
+
if ckpt_path is not None:
|
103 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
|
104 |
+
|
105 |
+
self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
|
106 |
+
linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
|
107 |
+
|
108 |
+
self.loss_type = loss_type
|
109 |
+
|
110 |
+
self.learn_logvar = learn_logvar
|
111 |
+
self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
|
112 |
+
if self.learn_logvar:
|
113 |
+
self.logvar = nn.Parameter(self.logvar, requires_grad=True)
|
114 |
+
|
115 |
+
|
116 |
+
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
|
117 |
+
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
118 |
+
if exists(given_betas):
|
119 |
+
betas = given_betas
|
120 |
+
else:
|
121 |
+
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
|
122 |
+
cosine_s=cosine_s)
|
123 |
+
alphas = 1. - betas
|
124 |
+
alphas_cumprod = np.cumprod(alphas, axis=0)
|
125 |
+
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
126 |
+
|
127 |
+
timesteps, = betas.shape
|
128 |
+
self.num_timesteps = int(timesteps)
|
129 |
+
self.linear_start = linear_start
|
130 |
+
self.linear_end = linear_end
|
131 |
+
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
|
132 |
+
|
133 |
+
to_torch = partial(torch.tensor, dtype=torch.float32)
|
134 |
+
|
135 |
+
self.register_buffer('betas', to_torch(betas))
|
136 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
137 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
|
138 |
+
|
139 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
140 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
141 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
142 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
|
143 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
|
144 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
|
145 |
+
|
146 |
+
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
147 |
+
posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
|
148 |
+
1. - alphas_cumprod) + self.v_posterior * betas
|
149 |
+
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
|
150 |
+
self.register_buffer('posterior_variance', to_torch(posterior_variance))
|
151 |
+
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
152 |
+
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
|
153 |
+
self.register_buffer('posterior_mean_coef1', to_torch(
|
154 |
+
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
|
155 |
+
self.register_buffer('posterior_mean_coef2', to_torch(
|
156 |
+
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
|
157 |
+
|
158 |
+
if self.parameterization == "eps":
|
159 |
+
lvlb_weights = self.betas ** 2 / (
|
160 |
+
2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
|
161 |
+
elif self.parameterization == "x0":
|
162 |
+
lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
|
163 |
+
else:
|
164 |
+
raise NotImplementedError("mu not supported")
|
165 |
+
# TODO how to choose this term
|
166 |
+
lvlb_weights[0] = lvlb_weights[1]
|
167 |
+
self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
|
168 |
+
assert not torch.isnan(self.lvlb_weights).all()
|
169 |
+
|
170 |
+
@contextmanager
|
171 |
+
def ema_scope(self, context=None):
|
172 |
+
if self.use_ema:
|
173 |
+
self.model_ema.store(self.model.parameters())
|
174 |
+
self.model_ema.copy_to(self.model)
|
175 |
+
if context is not None:
|
176 |
+
print(f"{context}: Switched to EMA weights")
|
177 |
+
try:
|
178 |
+
yield None
|
179 |
+
finally:
|
180 |
+
if self.use_ema:
|
181 |
+
self.model_ema.restore(self.model.parameters())
|
182 |
+
if context is not None:
|
183 |
+
print(f"{context}: Restored training weights")
|
184 |
+
|
185 |
+
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
186 |
+
sd = torch.load(path, map_location="cpu")
|
187 |
+
if "state_dict" in list(sd.keys()):
|
188 |
+
sd = sd["state_dict"]
|
189 |
+
keys = list(sd.keys())
|
190 |
+
for k in keys:
|
191 |
+
for ik in ignore_keys:
|
192 |
+
if k.startswith(ik):
|
193 |
+
print("Deleting key {} from state_dict.".format(k))
|
194 |
+
del sd[k]
|
195 |
+
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
|
196 |
+
sd, strict=False)
|
197 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
198 |
+
if len(missing) > 0:
|
199 |
+
print(f"Missing Keys: {missing}")
|
200 |
+
if len(unexpected) > 0:
|
201 |
+
print(f"Unexpected Keys: {unexpected}")
|
202 |
+
|
203 |
+
def q_mean_variance(self, x_start, t):
|
204 |
+
"""
|
205 |
+
Get the distribution q(x_t | x_0).
|
206 |
+
:param x_start: the [N x C x ...] tensor of noiseless inputs.
|
207 |
+
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
208 |
+
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
|
209 |
+
"""
|
210 |
+
mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
|
211 |
+
variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
|
212 |
+
log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
|
213 |
+
return mean, variance, log_variance
|
214 |
+
|
215 |
+
def predict_start_from_noise(self, x_t, t, noise):
|
216 |
+
return (
|
217 |
+
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
|
218 |
+
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
|
219 |
+
)
|
220 |
+
|
221 |
+
def q_posterior(self, x_start, x_t, t):
|
222 |
+
posterior_mean = (
|
223 |
+
extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
|
224 |
+
extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
|
225 |
+
)
|
226 |
+
posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
|
227 |
+
posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
|
228 |
+
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
229 |
+
|
230 |
+
def p_mean_variance(self, x, t, clip_denoised: bool):
|
231 |
+
model_out = self.model(x, t)
|
232 |
+
if self.parameterization == "eps":
|
233 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
234 |
+
elif self.parameterization == "x0":
|
235 |
+
x_recon = model_out
|
236 |
+
if clip_denoised:
|
237 |
+
x_recon.clamp_(-1., 1.)
|
238 |
+
|
239 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
240 |
+
return model_mean, posterior_variance, posterior_log_variance
|
241 |
+
|
242 |
+
@torch.no_grad()
|
243 |
+
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
|
244 |
+
b, *_, device = *x.shape, x.device
|
245 |
+
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
|
246 |
+
noise = noise_like(x.shape, device, repeat_noise)
|
247 |
+
# no noise when t == 0
|
248 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
249 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
250 |
+
|
251 |
+
@torch.no_grad()
|
252 |
+
def p_sample_loop(self, shape, return_intermediates=False):
|
253 |
+
device = self.betas.device
|
254 |
+
b = shape[0]
|
255 |
+
img = torch.randn(shape, device=device)
|
256 |
+
intermediates = [img]
|
257 |
+
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
|
258 |
+
img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
|
259 |
+
clip_denoised=self.clip_denoised)
|
260 |
+
if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
|
261 |
+
intermediates.append(img)
|
262 |
+
if return_intermediates:
|
263 |
+
return img, intermediates
|
264 |
+
return img
|
265 |
+
|
266 |
+
@torch.no_grad()
|
267 |
+
def sample(self, batch_size=16, return_intermediates=False):
|
268 |
+
image_size = self.image_size
|
269 |
+
channels = self.channels
|
270 |
+
return self.p_sample_loop((batch_size, channels, image_size, image_size),
|
271 |
+
return_intermediates=return_intermediates)
|
272 |
+
|
273 |
+
def q_sample(self, x_start, t, noise=None):
|
274 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
275 |
+
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
|
276 |
+
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
|
277 |
+
|
278 |
+
def get_loss(self, pred, target, mean=True):
|
279 |
+
if self.loss_type == 'l1':
|
280 |
+
loss = (target - pred).abs()
|
281 |
+
if mean:
|
282 |
+
loss = loss.mean()
|
283 |
+
elif self.loss_type == 'l2':
|
284 |
+
if mean:
|
285 |
+
loss = torch.nn.functional.mse_loss(target, pred)
|
286 |
+
else:
|
287 |
+
loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
|
288 |
+
else:
|
289 |
+
raise NotImplementedError("unknown loss type '{loss_type}'")
|
290 |
+
|
291 |
+
return loss
|
292 |
+
|
293 |
+
def p_losses(self, x_start, t, noise=None):
|
294 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
295 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
296 |
+
model_out = self.model(x_noisy, t)
|
297 |
+
|
298 |
+
loss_dict = {}
|
299 |
+
if self.parameterization == "eps":
|
300 |
+
target = noise
|
301 |
+
elif self.parameterization == "x0":
|
302 |
+
target = x_start
|
303 |
+
else:
|
304 |
+
raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported")
|
305 |
+
|
306 |
+
loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
|
307 |
+
|
308 |
+
log_prefix = 'train' if self.training else 'val'
|
309 |
+
|
310 |
+
loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
|
311 |
+
loss_simple = loss.mean() * self.l_simple_weight
|
312 |
+
|
313 |
+
loss_vlb = (self.lvlb_weights[t] * loss).mean()
|
314 |
+
loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
|
315 |
+
|
316 |
+
loss = loss_simple + self.original_elbo_weight * loss_vlb
|
317 |
+
|
318 |
+
loss_dict.update({f'{log_prefix}/loss': loss})
|
319 |
+
|
320 |
+
return loss, loss_dict
|
321 |
+
|
322 |
+
def forward(self, x, *args, **kwargs):
|
323 |
+
# b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
|
324 |
+
# assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
|
325 |
+
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
|
326 |
+
return self.p_losses(x, t, *args, **kwargs)
|
327 |
+
|
328 |
+
def get_input(self, batch, k):
|
329 |
+
x = batch[k]
|
330 |
+
if len(x.shape) == 3:
|
331 |
+
x = x[..., None]
|
332 |
+
x = rearrange(x, 'b h w c -> b c h w')
|
333 |
+
x = x.to(memory_format=torch.contiguous_format).float()
|
334 |
+
return x
|
335 |
+
|
336 |
+
def shared_step(self, batch):
|
337 |
+
x = self.get_input(batch, self.first_stage_key)
|
338 |
+
loss, loss_dict = self(x)
|
339 |
+
return loss, loss_dict
|
340 |
+
|
341 |
+
def training_step(self, batch, batch_idx):
|
342 |
+
loss, loss_dict = self.shared_step(batch)
|
343 |
+
|
344 |
+
self.log_dict(loss_dict, prog_bar=True,
|
345 |
+
logger=True, on_step=True, on_epoch=True)
|
346 |
+
|
347 |
+
self.log("global_step", self.global_step,
|
348 |
+
prog_bar=True, logger=True, on_step=True, on_epoch=False)
|
349 |
+
|
350 |
+
if self.use_scheduler:
|
351 |
+
lr = self.optimizers().param_groups[0]['lr']
|
352 |
+
self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
|
353 |
+
|
354 |
+
return loss
|
355 |
+
|
356 |
+
@torch.no_grad()
|
357 |
+
def validation_step(self, batch, batch_idx):
|
358 |
+
_, loss_dict_no_ema = self.shared_step(batch)
|
359 |
+
with self.ema_scope():
|
360 |
+
_, loss_dict_ema = self.shared_step(batch)
|
361 |
+
loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
|
362 |
+
self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
|
363 |
+
self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
|
364 |
+
|
365 |
+
def on_train_batch_end(self, *args, **kwargs):
|
366 |
+
if self.use_ema:
|
367 |
+
self.model_ema(self.model)
|
368 |
+
|
369 |
+
def _get_rows_from_list(self, samples):
|
370 |
+
n_imgs_per_row = len(samples)
|
371 |
+
denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
|
372 |
+
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
|
373 |
+
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
|
374 |
+
return denoise_grid
|
375 |
+
|
376 |
+
@torch.no_grad()
|
377 |
+
def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
|
378 |
+
log = dict()
|
379 |
+
x = self.get_input(batch, self.first_stage_key)
|
380 |
+
N = min(x.shape[0], N)
|
381 |
+
n_row = min(x.shape[0], n_row)
|
382 |
+
x = x.to(self.device)[:N]
|
383 |
+
log["inputs"] = x
|
384 |
+
|
385 |
+
# get diffusion row
|
386 |
+
diffusion_row = list()
|
387 |
+
x_start = x[:n_row]
|
388 |
+
|
389 |
+
for t in range(self.num_timesteps):
|
390 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
391 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
392 |
+
t = t.to(self.device).long()
|
393 |
+
noise = torch.randn_like(x_start)
|
394 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
395 |
+
diffusion_row.append(x_noisy)
|
396 |
+
|
397 |
+
log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
|
398 |
+
|
399 |
+
if sample:
|
400 |
+
# get denoise row
|
401 |
+
with self.ema_scope("Plotting"):
|
402 |
+
samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
|
403 |
+
|
404 |
+
log["samples"] = samples
|
405 |
+
log["denoise_row"] = self._get_rows_from_list(denoise_row)
|
406 |
+
|
407 |
+
if return_keys:
|
408 |
+
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
409 |
+
return log
|
410 |
+
else:
|
411 |
+
return {key: log[key] for key in return_keys}
|
412 |
+
return log
|
413 |
+
|
414 |
+
def configure_optimizers(self):
|
415 |
+
lr = self.learning_rate
|
416 |
+
params = list(self.model.parameters())
|
417 |
+
if self.learn_logvar:
|
418 |
+
params = params + [self.logvar]
|
419 |
+
opt = torch.optim.AdamW(params, lr=lr)
|
420 |
+
return opt
|
421 |
+
|
422 |
+
|
423 |
+
class LatentDiffusionV1(DDPMV1):
|
424 |
+
"""main class"""
|
425 |
+
def __init__(self,
|
426 |
+
first_stage_config,
|
427 |
+
cond_stage_config,
|
428 |
+
num_timesteps_cond=None,
|
429 |
+
cond_stage_key="image",
|
430 |
+
cond_stage_trainable=False,
|
431 |
+
concat_mode=True,
|
432 |
+
cond_stage_forward=None,
|
433 |
+
conditioning_key=None,
|
434 |
+
scale_factor=1.0,
|
435 |
+
scale_by_std=False,
|
436 |
+
*args, **kwargs):
|
437 |
+
self.num_timesteps_cond = default(num_timesteps_cond, 1)
|
438 |
+
self.scale_by_std = scale_by_std
|
439 |
+
assert self.num_timesteps_cond <= kwargs['timesteps']
|
440 |
+
# for backwards compatibility after implementation of DiffusionWrapper
|
441 |
+
if conditioning_key is None:
|
442 |
+
conditioning_key = 'concat' if concat_mode else 'crossattn'
|
443 |
+
if cond_stage_config == '__is_unconditional__':
|
444 |
+
conditioning_key = None
|
445 |
+
ckpt_path = kwargs.pop("ckpt_path", None)
|
446 |
+
ignore_keys = kwargs.pop("ignore_keys", [])
|
447 |
+
super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
|
448 |
+
self.concat_mode = concat_mode
|
449 |
+
self.cond_stage_trainable = cond_stage_trainable
|
450 |
+
self.cond_stage_key = cond_stage_key
|
451 |
+
try:
|
452 |
+
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
|
453 |
+
except:
|
454 |
+
self.num_downs = 0
|
455 |
+
if not scale_by_std:
|
456 |
+
self.scale_factor = scale_factor
|
457 |
+
else:
|
458 |
+
self.register_buffer('scale_factor', torch.tensor(scale_factor))
|
459 |
+
self.instantiate_first_stage(first_stage_config)
|
460 |
+
self.instantiate_cond_stage(cond_stage_config)
|
461 |
+
self.cond_stage_forward = cond_stage_forward
|
462 |
+
self.clip_denoised = False
|
463 |
+
self.bbox_tokenizer = None
|
464 |
+
|
465 |
+
self.restarted_from_ckpt = False
|
466 |
+
if ckpt_path is not None:
|
467 |
+
self.init_from_ckpt(ckpt_path, ignore_keys)
|
468 |
+
self.restarted_from_ckpt = True
|
469 |
+
|
470 |
+
def make_cond_schedule(self, ):
|
471 |
+
self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
|
472 |
+
ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
|
473 |
+
self.cond_ids[:self.num_timesteps_cond] = ids
|
474 |
+
|
475 |
+
@rank_zero_only
|
476 |
+
@torch.no_grad()
|
477 |
+
def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
|
478 |
+
# only for very first batch
|
479 |
+
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
|
480 |
+
assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
|
481 |
+
# set rescale weight to 1./std of encodings
|
482 |
+
print("### USING STD-RESCALING ###")
|
483 |
+
x = super().get_input(batch, self.first_stage_key)
|
484 |
+
x = x.to(self.device)
|
485 |
+
encoder_posterior = self.encode_first_stage(x)
|
486 |
+
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
487 |
+
del self.scale_factor
|
488 |
+
self.register_buffer('scale_factor', 1. / z.flatten().std())
|
489 |
+
print(f"setting self.scale_factor to {self.scale_factor}")
|
490 |
+
print("### USING STD-RESCALING ###")
|
491 |
+
|
492 |
+
def register_schedule(self,
|
493 |
+
given_betas=None, beta_schedule="linear", timesteps=1000,
|
494 |
+
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
495 |
+
super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
|
496 |
+
|
497 |
+
self.shorten_cond_schedule = self.num_timesteps_cond > 1
|
498 |
+
if self.shorten_cond_schedule:
|
499 |
+
self.make_cond_schedule()
|
500 |
+
|
501 |
+
def instantiate_first_stage(self, config):
|
502 |
+
model = instantiate_from_config(config)
|
503 |
+
self.first_stage_model = model.eval()
|
504 |
+
self.first_stage_model.train = disabled_train
|
505 |
+
for param in self.first_stage_model.parameters():
|
506 |
+
param.requires_grad = False
|
507 |
+
|
508 |
+
def instantiate_cond_stage(self, config):
|
509 |
+
if not self.cond_stage_trainable:
|
510 |
+
if config == "__is_first_stage__":
|
511 |
+
print("Using first stage also as cond stage.")
|
512 |
+
self.cond_stage_model = self.first_stage_model
|
513 |
+
elif config == "__is_unconditional__":
|
514 |
+
print(f"Training {self.__class__.__name__} as an unconditional model.")
|
515 |
+
self.cond_stage_model = None
|
516 |
+
# self.be_unconditional = True
|
517 |
+
else:
|
518 |
+
model = instantiate_from_config(config)
|
519 |
+
self.cond_stage_model = model.eval()
|
520 |
+
self.cond_stage_model.train = disabled_train
|
521 |
+
for param in self.cond_stage_model.parameters():
|
522 |
+
param.requires_grad = False
|
523 |
+
else:
|
524 |
+
assert config != '__is_first_stage__'
|
525 |
+
assert config != '__is_unconditional__'
|
526 |
+
model = instantiate_from_config(config)
|
527 |
+
self.cond_stage_model = model
|
528 |
+
|
529 |
+
def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
|
530 |
+
denoise_row = []
|
531 |
+
for zd in tqdm(samples, desc=desc):
|
532 |
+
denoise_row.append(self.decode_first_stage(zd.to(self.device),
|
533 |
+
force_not_quantize=force_no_decoder_quantization))
|
534 |
+
n_imgs_per_row = len(denoise_row)
|
535 |
+
denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
|
536 |
+
denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
|
537 |
+
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
|
538 |
+
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
|
539 |
+
return denoise_grid
|
540 |
+
|
541 |
+
def get_first_stage_encoding(self, encoder_posterior):
|
542 |
+
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
|
543 |
+
z = encoder_posterior.sample()
|
544 |
+
elif isinstance(encoder_posterior, torch.Tensor):
|
545 |
+
z = encoder_posterior
|
546 |
+
else:
|
547 |
+
raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
|
548 |
+
return self.scale_factor * z
|
549 |
+
|
550 |
+
def get_learned_conditioning(self, c):
|
551 |
+
if self.cond_stage_forward is None:
|
552 |
+
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
|
553 |
+
c = self.cond_stage_model.encode(c)
|
554 |
+
if isinstance(c, DiagonalGaussianDistribution):
|
555 |
+
c = c.mode()
|
556 |
+
else:
|
557 |
+
c = self.cond_stage_model(c)
|
558 |
+
else:
|
559 |
+
assert hasattr(self.cond_stage_model, self.cond_stage_forward)
|
560 |
+
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
|
561 |
+
return c
|
562 |
+
|
563 |
+
def meshgrid(self, h, w):
|
564 |
+
y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
|
565 |
+
x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
|
566 |
+
|
567 |
+
arr = torch.cat([y, x], dim=-1)
|
568 |
+
return arr
|
569 |
+
|
570 |
+
def delta_border(self, h, w):
|
571 |
+
"""
|
572 |
+
:param h: height
|
573 |
+
:param w: width
|
574 |
+
:return: normalized distance to image border,
|
575 |
+
wtith min distance = 0 at border and max dist = 0.5 at image center
|
576 |
+
"""
|
577 |
+
lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
|
578 |
+
arr = self.meshgrid(h, w) / lower_right_corner
|
579 |
+
dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
|
580 |
+
dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
|
581 |
+
edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
|
582 |
+
return edge_dist
|
583 |
+
|
584 |
+
def get_weighting(self, h, w, Ly, Lx, device):
|
585 |
+
weighting = self.delta_border(h, w)
|
586 |
+
weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
|
587 |
+
self.split_input_params["clip_max_weight"], )
|
588 |
+
weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
|
589 |
+
|
590 |
+
if self.split_input_params["tie_braker"]:
|
591 |
+
L_weighting = self.delta_border(Ly, Lx)
|
592 |
+
L_weighting = torch.clip(L_weighting,
|
593 |
+
self.split_input_params["clip_min_tie_weight"],
|
594 |
+
self.split_input_params["clip_max_tie_weight"])
|
595 |
+
|
596 |
+
L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
|
597 |
+
weighting = weighting * L_weighting
|
598 |
+
return weighting
|
599 |
+
|
600 |
+
def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code
|
601 |
+
"""
|
602 |
+
:param x: img of size (bs, c, h, w)
|
603 |
+
:return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
|
604 |
+
"""
|
605 |
+
bs, nc, h, w = x.shape
|
606 |
+
|
607 |
+
# number of crops in image
|
608 |
+
Ly = (h - kernel_size[0]) // stride[0] + 1
|
609 |
+
Lx = (w - kernel_size[1]) // stride[1] + 1
|
610 |
+
|
611 |
+
if uf == 1 and df == 1:
|
612 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
613 |
+
unfold = torch.nn.Unfold(**fold_params)
|
614 |
+
|
615 |
+
fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
|
616 |
+
|
617 |
+
weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
|
618 |
+
normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
|
619 |
+
weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
|
620 |
+
|
621 |
+
elif uf > 1 and df == 1:
|
622 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
623 |
+
unfold = torch.nn.Unfold(**fold_params)
|
624 |
+
|
625 |
+
fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
|
626 |
+
dilation=1, padding=0,
|
627 |
+
stride=(stride[0] * uf, stride[1] * uf))
|
628 |
+
fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
|
629 |
+
|
630 |
+
weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
|
631 |
+
normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
|
632 |
+
weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
|
633 |
+
|
634 |
+
elif df > 1 and uf == 1:
|
635 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
636 |
+
unfold = torch.nn.Unfold(**fold_params)
|
637 |
+
|
638 |
+
fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
|
639 |
+
dilation=1, padding=0,
|
640 |
+
stride=(stride[0] // df, stride[1] // df))
|
641 |
+
fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
|
642 |
+
|
643 |
+
weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
|
644 |
+
normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
|
645 |
+
weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
|
646 |
+
|
647 |
+
else:
|
648 |
+
raise NotImplementedError
|
649 |
+
|
650 |
+
return fold, unfold, normalization, weighting
|
651 |
+
|
652 |
+
@torch.no_grad()
|
653 |
+
def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
|
654 |
+
cond_key=None, return_original_cond=False, bs=None):
|
655 |
+
x = super().get_input(batch, k)
|
656 |
+
if bs is not None:
|
657 |
+
x = x[:bs]
|
658 |
+
x = x.to(self.device)
|
659 |
+
encoder_posterior = self.encode_first_stage(x)
|
660 |
+
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
661 |
+
|
662 |
+
if self.model.conditioning_key is not None:
|
663 |
+
if cond_key is None:
|
664 |
+
cond_key = self.cond_stage_key
|
665 |
+
if cond_key != self.first_stage_key:
|
666 |
+
if cond_key in ['caption', 'coordinates_bbox']:
|
667 |
+
xc = batch[cond_key]
|
668 |
+
elif cond_key == 'class_label':
|
669 |
+
xc = batch
|
670 |
+
else:
|
671 |
+
xc = super().get_input(batch, cond_key).to(self.device)
|
672 |
+
else:
|
673 |
+
xc = x
|
674 |
+
if not self.cond_stage_trainable or force_c_encode:
|
675 |
+
if isinstance(xc, dict) or isinstance(xc, list):
|
676 |
+
# import pudb; pudb.set_trace()
|
677 |
+
c = self.get_learned_conditioning(xc)
|
678 |
+
else:
|
679 |
+
c = self.get_learned_conditioning(xc.to(self.device))
|
680 |
+
else:
|
681 |
+
c = xc
|
682 |
+
if bs is not None:
|
683 |
+
c = c[:bs]
|
684 |
+
|
685 |
+
if self.use_positional_encodings:
|
686 |
+
pos_x, pos_y = self.compute_latent_shifts(batch)
|
687 |
+
ckey = __conditioning_keys__[self.model.conditioning_key]
|
688 |
+
c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
|
689 |
+
|
690 |
+
else:
|
691 |
+
c = None
|
692 |
+
xc = None
|
693 |
+
if self.use_positional_encodings:
|
694 |
+
pos_x, pos_y = self.compute_latent_shifts(batch)
|
695 |
+
c = {'pos_x': pos_x, 'pos_y': pos_y}
|
696 |
+
out = [z, c]
|
697 |
+
if return_first_stage_outputs:
|
698 |
+
xrec = self.decode_first_stage(z)
|
699 |
+
out.extend([x, xrec])
|
700 |
+
if return_original_cond:
|
701 |
+
out.append(xc)
|
702 |
+
return out
|
703 |
+
|
704 |
+
@torch.no_grad()
|
705 |
+
def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
|
706 |
+
if predict_cids:
|
707 |
+
if z.dim() == 4:
|
708 |
+
z = torch.argmax(z.exp(), dim=1).long()
|
709 |
+
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
710 |
+
z = rearrange(z, 'b h w c -> b c h w').contiguous()
|
711 |
+
|
712 |
+
z = 1. / self.scale_factor * z
|
713 |
+
|
714 |
+
if hasattr(self, "split_input_params"):
|
715 |
+
if self.split_input_params["patch_distributed_vq"]:
|
716 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
717 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
718 |
+
uf = self.split_input_params["vqf"]
|
719 |
+
bs, nc, h, w = z.shape
|
720 |
+
if ks[0] > h or ks[1] > w:
|
721 |
+
ks = (min(ks[0], h), min(ks[1], w))
|
722 |
+
print("reducing Kernel")
|
723 |
+
|
724 |
+
if stride[0] > h or stride[1] > w:
|
725 |
+
stride = (min(stride[0], h), min(stride[1], w))
|
726 |
+
print("reducing stride")
|
727 |
+
|
728 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
|
729 |
+
|
730 |
+
z = unfold(z) # (bn, nc * prod(**ks), L)
|
731 |
+
# 1. Reshape to img shape
|
732 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
733 |
+
|
734 |
+
# 2. apply model loop over last dim
|
735 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
736 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
|
737 |
+
force_not_quantize=predict_cids or force_not_quantize)
|
738 |
+
for i in range(z.shape[-1])]
|
739 |
+
else:
|
740 |
+
|
741 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
|
742 |
+
for i in range(z.shape[-1])]
|
743 |
+
|
744 |
+
o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
|
745 |
+
o = o * weighting
|
746 |
+
# Reverse 1. reshape to img shape
|
747 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
748 |
+
# stitch crops together
|
749 |
+
decoded = fold(o)
|
750 |
+
decoded = decoded / normalization # norm is shape (1, 1, h, w)
|
751 |
+
return decoded
|
752 |
+
else:
|
753 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
754 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
755 |
+
else:
|
756 |
+
return self.first_stage_model.decode(z)
|
757 |
+
|
758 |
+
else:
|
759 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
760 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
761 |
+
else:
|
762 |
+
return self.first_stage_model.decode(z)
|
763 |
+
|
764 |
+
# same as above but without decorator
|
765 |
+
def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
|
766 |
+
if predict_cids:
|
767 |
+
if z.dim() == 4:
|
768 |
+
z = torch.argmax(z.exp(), dim=1).long()
|
769 |
+
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
770 |
+
z = rearrange(z, 'b h w c -> b c h w').contiguous()
|
771 |
+
|
772 |
+
z = 1. / self.scale_factor * z
|
773 |
+
|
774 |
+
if hasattr(self, "split_input_params"):
|
775 |
+
if self.split_input_params["patch_distributed_vq"]:
|
776 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
777 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
778 |
+
uf = self.split_input_params["vqf"]
|
779 |
+
bs, nc, h, w = z.shape
|
780 |
+
if ks[0] > h or ks[1] > w:
|
781 |
+
ks = (min(ks[0], h), min(ks[1], w))
|
782 |
+
print("reducing Kernel")
|
783 |
+
|
784 |
+
if stride[0] > h or stride[1] > w:
|
785 |
+
stride = (min(stride[0], h), min(stride[1], w))
|
786 |
+
print("reducing stride")
|
787 |
+
|
788 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
|
789 |
+
|
790 |
+
z = unfold(z) # (bn, nc * prod(**ks), L)
|
791 |
+
# 1. Reshape to img shape
|
792 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
793 |
+
|
794 |
+
# 2. apply model loop over last dim
|
795 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
796 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
|
797 |
+
force_not_quantize=predict_cids or force_not_quantize)
|
798 |
+
for i in range(z.shape[-1])]
|
799 |
+
else:
|
800 |
+
|
801 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
|
802 |
+
for i in range(z.shape[-1])]
|
803 |
+
|
804 |
+
o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
|
805 |
+
o = o * weighting
|
806 |
+
# Reverse 1. reshape to img shape
|
807 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
808 |
+
# stitch crops together
|
809 |
+
decoded = fold(o)
|
810 |
+
decoded = decoded / normalization # norm is shape (1, 1, h, w)
|
811 |
+
return decoded
|
812 |
+
else:
|
813 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
814 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
815 |
+
else:
|
816 |
+
return self.first_stage_model.decode(z)
|
817 |
+
|
818 |
+
else:
|
819 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
820 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
821 |
+
else:
|
822 |
+
return self.first_stage_model.decode(z)
|
823 |
+
|
824 |
+
@torch.no_grad()
|
825 |
+
def encode_first_stage(self, x):
|
826 |
+
if hasattr(self, "split_input_params"):
|
827 |
+
if self.split_input_params["patch_distributed_vq"]:
|
828 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
829 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
830 |
+
df = self.split_input_params["vqf"]
|
831 |
+
self.split_input_params['original_image_size'] = x.shape[-2:]
|
832 |
+
bs, nc, h, w = x.shape
|
833 |
+
if ks[0] > h or ks[1] > w:
|
834 |
+
ks = (min(ks[0], h), min(ks[1], w))
|
835 |
+
print("reducing Kernel")
|
836 |
+
|
837 |
+
if stride[0] > h or stride[1] > w:
|
838 |
+
stride = (min(stride[0], h), min(stride[1], w))
|
839 |
+
print("reducing stride")
|
840 |
+
|
841 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df)
|
842 |
+
z = unfold(x) # (bn, nc * prod(**ks), L)
|
843 |
+
# Reshape to img shape
|
844 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
845 |
+
|
846 |
+
output_list = [self.first_stage_model.encode(z[:, :, :, :, i])
|
847 |
+
for i in range(z.shape[-1])]
|
848 |
+
|
849 |
+
o = torch.stack(output_list, axis=-1)
|
850 |
+
o = o * weighting
|
851 |
+
|
852 |
+
# Reverse reshape to img shape
|
853 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
854 |
+
# stitch crops together
|
855 |
+
decoded = fold(o)
|
856 |
+
decoded = decoded / normalization
|
857 |
+
return decoded
|
858 |
+
|
859 |
+
else:
|
860 |
+
return self.first_stage_model.encode(x)
|
861 |
+
else:
|
862 |
+
return self.first_stage_model.encode(x)
|
863 |
+
|
864 |
+
def shared_step(self, batch, **kwargs):
|
865 |
+
x, c = self.get_input(batch, self.first_stage_key)
|
866 |
+
loss = self(x, c)
|
867 |
+
return loss
|
868 |
+
|
869 |
+
def forward(self, x, c, *args, **kwargs):
|
870 |
+
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
|
871 |
+
if self.model.conditioning_key is not None:
|
872 |
+
assert c is not None
|
873 |
+
if self.cond_stage_trainable:
|
874 |
+
c = self.get_learned_conditioning(c)
|
875 |
+
if self.shorten_cond_schedule: # TODO: drop this option
|
876 |
+
tc = self.cond_ids[t].to(self.device)
|
877 |
+
c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
|
878 |
+
return self.p_losses(x, c, t, *args, **kwargs)
|
879 |
+
|
880 |
+
def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset
|
881 |
+
def rescale_bbox(bbox):
|
882 |
+
x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2])
|
883 |
+
y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3])
|
884 |
+
w = min(bbox[2] / crop_coordinates[2], 1 - x0)
|
885 |
+
h = min(bbox[3] / crop_coordinates[3], 1 - y0)
|
886 |
+
return x0, y0, w, h
|
887 |
+
|
888 |
+
return [rescale_bbox(b) for b in bboxes]
|
889 |
+
|
890 |
+
def apply_model(self, x_noisy, t, cond, return_ids=False):
|
891 |
+
|
892 |
+
if isinstance(cond, dict):
|
893 |
+
# hybrid case, cond is exptected to be a dict
|
894 |
+
pass
|
895 |
+
else:
|
896 |
+
if not isinstance(cond, list):
|
897 |
+
cond = [cond]
|
898 |
+
key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
|
899 |
+
cond = {key: cond}
|
900 |
+
|
901 |
+
if hasattr(self, "split_input_params"):
|
902 |
+
assert len(cond) == 1 # todo can only deal with one conditioning atm
|
903 |
+
assert not return_ids
|
904 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
905 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
906 |
+
|
907 |
+
h, w = x_noisy.shape[-2:]
|
908 |
+
|
909 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride)
|
910 |
+
|
911 |
+
z = unfold(x_noisy) # (bn, nc * prod(**ks), L)
|
912 |
+
# Reshape to img shape
|
913 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
914 |
+
z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])]
|
915 |
+
|
916 |
+
if self.cond_stage_key in ["image", "LR_image", "segmentation",
|
917 |
+
'bbox_img'] and self.model.conditioning_key: # todo check for completeness
|
918 |
+
c_key = next(iter(cond.keys())) # get key
|
919 |
+
c = next(iter(cond.values())) # get value
|
920 |
+
assert (len(c) == 1) # todo extend to list with more than one elem
|
921 |
+
c = c[0] # get element
|
922 |
+
|
923 |
+
c = unfold(c)
|
924 |
+
c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
925 |
+
|
926 |
+
cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])]
|
927 |
+
|
928 |
+
elif self.cond_stage_key == 'coordinates_bbox':
|
929 |
+
assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size'
|
930 |
+
|
931 |
+
# assuming padding of unfold is always 0 and its dilation is always 1
|
932 |
+
n_patches_per_row = int((w - ks[0]) / stride[0] + 1)
|
933 |
+
full_img_h, full_img_w = self.split_input_params['original_image_size']
|
934 |
+
# as we are operating on latents, we need the factor from the original image size to the
|
935 |
+
# spatial latent size to properly rescale the crops for regenerating the bbox annotations
|
936 |
+
num_downs = self.first_stage_model.encoder.num_resolutions - 1
|
937 |
+
rescale_latent = 2 ** (num_downs)
|
938 |
+
|
939 |
+
# get top left postions of patches as conforming for the bbbox tokenizer, therefore we
|
940 |
+
# need to rescale the tl patch coordinates to be in between (0,1)
|
941 |
+
tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w,
|
942 |
+
rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h)
|
943 |
+
for patch_nr in range(z.shape[-1])]
|
944 |
+
|
945 |
+
# patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w)
|
946 |
+
patch_limits = [(x_tl, y_tl,
|
947 |
+
rescale_latent * ks[0] / full_img_w,
|
948 |
+
rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates]
|
949 |
+
# patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates]
|
950 |
+
|
951 |
+
# tokenize crop coordinates for the bounding boxes of the respective patches
|
952 |
+
patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device)
|
953 |
+
for bbox in patch_limits] # list of length l with tensors of shape (1, 2)
|
954 |
+
print(patch_limits_tknzd[0].shape)
|
955 |
+
# cut tknzd crop position from conditioning
|
956 |
+
assert isinstance(cond, dict), 'cond must be dict to be fed into model'
|
957 |
+
cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device)
|
958 |
+
print(cut_cond.shape)
|
959 |
+
|
960 |
+
adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd])
|
961 |
+
adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n')
|
962 |
+
print(adapted_cond.shape)
|
963 |
+
adapted_cond = self.get_learned_conditioning(adapted_cond)
|
964 |
+
print(adapted_cond.shape)
|
965 |
+
adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1])
|
966 |
+
print(adapted_cond.shape)
|
967 |
+
|
968 |
+
cond_list = [{'c_crossattn': [e]} for e in adapted_cond]
|
969 |
+
|
970 |
+
else:
|
971 |
+
cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient
|
972 |
+
|
973 |
+
# apply model by loop over crops
|
974 |
+
output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])]
|
975 |
+
assert not isinstance(output_list[0],
|
976 |
+
tuple) # todo cant deal with multiple model outputs check this never happens
|
977 |
+
|
978 |
+
o = torch.stack(output_list, axis=-1)
|
979 |
+
o = o * weighting
|
980 |
+
# Reverse reshape to img shape
|
981 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
982 |
+
# stitch crops together
|
983 |
+
x_recon = fold(o) / normalization
|
984 |
+
|
985 |
+
else:
|
986 |
+
x_recon = self.model(x_noisy, t, **cond)
|
987 |
+
|
988 |
+
if isinstance(x_recon, tuple) and not return_ids:
|
989 |
+
return x_recon[0]
|
990 |
+
else:
|
991 |
+
return x_recon
|
992 |
+
|
993 |
+
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
|
994 |
+
return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
|
995 |
+
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
996 |
+
|
997 |
+
def _prior_bpd(self, x_start):
|
998 |
+
"""
|
999 |
+
Get the prior KL term for the variational lower-bound, measured in
|
1000 |
+
bits-per-dim.
|
1001 |
+
This term can't be optimized, as it only depends on the encoder.
|
1002 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
1003 |
+
:return: a batch of [N] KL values (in bits), one per batch element.
|
1004 |
+
"""
|
1005 |
+
batch_size = x_start.shape[0]
|
1006 |
+
t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
|
1007 |
+
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
|
1008 |
+
kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
|
1009 |
+
return mean_flat(kl_prior) / np.log(2.0)
|
1010 |
+
|
1011 |
+
def p_losses(self, x_start, cond, t, noise=None):
|
1012 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
1013 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
1014 |
+
model_output = self.apply_model(x_noisy, t, cond)
|
1015 |
+
|
1016 |
+
loss_dict = {}
|
1017 |
+
prefix = 'train' if self.training else 'val'
|
1018 |
+
|
1019 |
+
if self.parameterization == "x0":
|
1020 |
+
target = x_start
|
1021 |
+
elif self.parameterization == "eps":
|
1022 |
+
target = noise
|
1023 |
+
else:
|
1024 |
+
raise NotImplementedError()
|
1025 |
+
|
1026 |
+
loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
|
1027 |
+
loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
|
1028 |
+
|
1029 |
+
logvar_t = self.logvar[t].to(self.device)
|
1030 |
+
loss = loss_simple / torch.exp(logvar_t) + logvar_t
|
1031 |
+
# loss = loss_simple / torch.exp(self.logvar) + self.logvar
|
1032 |
+
if self.learn_logvar:
|
1033 |
+
loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
|
1034 |
+
loss_dict.update({'logvar': self.logvar.data.mean()})
|
1035 |
+
|
1036 |
+
loss = self.l_simple_weight * loss.mean()
|
1037 |
+
|
1038 |
+
loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
|
1039 |
+
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
|
1040 |
+
loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
|
1041 |
+
loss += (self.original_elbo_weight * loss_vlb)
|
1042 |
+
loss_dict.update({f'{prefix}/loss': loss})
|
1043 |
+
|
1044 |
+
return loss, loss_dict
|
1045 |
+
|
1046 |
+
def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
|
1047 |
+
return_x0=False, score_corrector=None, corrector_kwargs=None):
|
1048 |
+
t_in = t
|
1049 |
+
model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
|
1050 |
+
|
1051 |
+
if score_corrector is not None:
|
1052 |
+
assert self.parameterization == "eps"
|
1053 |
+
model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
|
1054 |
+
|
1055 |
+
if return_codebook_ids:
|
1056 |
+
model_out, logits = model_out
|
1057 |
+
|
1058 |
+
if self.parameterization == "eps":
|
1059 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
1060 |
+
elif self.parameterization == "x0":
|
1061 |
+
x_recon = model_out
|
1062 |
+
else:
|
1063 |
+
raise NotImplementedError()
|
1064 |
+
|
1065 |
+
if clip_denoised:
|
1066 |
+
x_recon.clamp_(-1., 1.)
|
1067 |
+
if quantize_denoised:
|
1068 |
+
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
|
1069 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
1070 |
+
if return_codebook_ids:
|
1071 |
+
return model_mean, posterior_variance, posterior_log_variance, logits
|
1072 |
+
elif return_x0:
|
1073 |
+
return model_mean, posterior_variance, posterior_log_variance, x_recon
|
1074 |
+
else:
|
1075 |
+
return model_mean, posterior_variance, posterior_log_variance
|
1076 |
+
|
1077 |
+
@torch.no_grad()
|
1078 |
+
def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
|
1079 |
+
return_codebook_ids=False, quantize_denoised=False, return_x0=False,
|
1080 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
|
1081 |
+
b, *_, device = *x.shape, x.device
|
1082 |
+
outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
|
1083 |
+
return_codebook_ids=return_codebook_ids,
|
1084 |
+
quantize_denoised=quantize_denoised,
|
1085 |
+
return_x0=return_x0,
|
1086 |
+
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
|
1087 |
+
if return_codebook_ids:
|
1088 |
+
raise DeprecationWarning("Support dropped.")
|
1089 |
+
model_mean, _, model_log_variance, logits = outputs
|
1090 |
+
elif return_x0:
|
1091 |
+
model_mean, _, model_log_variance, x0 = outputs
|
1092 |
+
else:
|
1093 |
+
model_mean, _, model_log_variance = outputs
|
1094 |
+
|
1095 |
+
noise = noise_like(x.shape, device, repeat_noise) * temperature
|
1096 |
+
if noise_dropout > 0.:
|
1097 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
1098 |
+
# no noise when t == 0
|
1099 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
1100 |
+
|
1101 |
+
if return_codebook_ids:
|
1102 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
|
1103 |
+
if return_x0:
|
1104 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
|
1105 |
+
else:
|
1106 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
1107 |
+
|
1108 |
+
@torch.no_grad()
|
1109 |
+
def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
|
1110 |
+
img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
|
1111 |
+
score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
|
1112 |
+
log_every_t=None):
|
1113 |
+
if not log_every_t:
|
1114 |
+
log_every_t = self.log_every_t
|
1115 |
+
timesteps = self.num_timesteps
|
1116 |
+
if batch_size is not None:
|
1117 |
+
b = batch_size if batch_size is not None else shape[0]
|
1118 |
+
shape = [batch_size] + list(shape)
|
1119 |
+
else:
|
1120 |
+
b = batch_size = shape[0]
|
1121 |
+
if x_T is None:
|
1122 |
+
img = torch.randn(shape, device=self.device)
|
1123 |
+
else:
|
1124 |
+
img = x_T
|
1125 |
+
intermediates = []
|
1126 |
+
if cond is not None:
|
1127 |
+
if isinstance(cond, dict):
|
1128 |
+
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
1129 |
+
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
1130 |
+
else:
|
1131 |
+
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
1132 |
+
|
1133 |
+
if start_T is not None:
|
1134 |
+
timesteps = min(timesteps, start_T)
|
1135 |
+
iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
|
1136 |
+
total=timesteps) if verbose else reversed(
|
1137 |
+
range(0, timesteps))
|
1138 |
+
if type(temperature) == float:
|
1139 |
+
temperature = [temperature] * timesteps
|
1140 |
+
|
1141 |
+
for i in iterator:
|
1142 |
+
ts = torch.full((b,), i, device=self.device, dtype=torch.long)
|
1143 |
+
if self.shorten_cond_schedule:
|
1144 |
+
assert self.model.conditioning_key != 'hybrid'
|
1145 |
+
tc = self.cond_ids[ts].to(cond.device)
|
1146 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
1147 |
+
|
1148 |
+
img, x0_partial = self.p_sample(img, cond, ts,
|
1149 |
+
clip_denoised=self.clip_denoised,
|
1150 |
+
quantize_denoised=quantize_denoised, return_x0=True,
|
1151 |
+
temperature=temperature[i], noise_dropout=noise_dropout,
|
1152 |
+
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
|
1153 |
+
if mask is not None:
|
1154 |
+
assert x0 is not None
|
1155 |
+
img_orig = self.q_sample(x0, ts)
|
1156 |
+
img = img_orig * mask + (1. - mask) * img
|
1157 |
+
|
1158 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
1159 |
+
intermediates.append(x0_partial)
|
1160 |
+
if callback: callback(i)
|
1161 |
+
if img_callback: img_callback(img, i)
|
1162 |
+
return img, intermediates
|
1163 |
+
|
1164 |
+
@torch.no_grad()
|
1165 |
+
def p_sample_loop(self, cond, shape, return_intermediates=False,
|
1166 |
+
x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
|
1167 |
+
mask=None, x0=None, img_callback=None, start_T=None,
|
1168 |
+
log_every_t=None):
|
1169 |
+
|
1170 |
+
if not log_every_t:
|
1171 |
+
log_every_t = self.log_every_t
|
1172 |
+
device = self.betas.device
|
1173 |
+
b = shape[0]
|
1174 |
+
if x_T is None:
|
1175 |
+
img = torch.randn(shape, device=device)
|
1176 |
+
else:
|
1177 |
+
img = x_T
|
1178 |
+
|
1179 |
+
intermediates = [img]
|
1180 |
+
if timesteps is None:
|
1181 |
+
timesteps = self.num_timesteps
|
1182 |
+
|
1183 |
+
if start_T is not None:
|
1184 |
+
timesteps = min(timesteps, start_T)
|
1185 |
+
iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
|
1186 |
+
range(0, timesteps))
|
1187 |
+
|
1188 |
+
if mask is not None:
|
1189 |
+
assert x0 is not None
|
1190 |
+
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
|
1191 |
+
|
1192 |
+
for i in iterator:
|
1193 |
+
ts = torch.full((b,), i, device=device, dtype=torch.long)
|
1194 |
+
if self.shorten_cond_schedule:
|
1195 |
+
assert self.model.conditioning_key != 'hybrid'
|
1196 |
+
tc = self.cond_ids[ts].to(cond.device)
|
1197 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
1198 |
+
|
1199 |
+
img = self.p_sample(img, cond, ts,
|
1200 |
+
clip_denoised=self.clip_denoised,
|
1201 |
+
quantize_denoised=quantize_denoised)
|
1202 |
+
if mask is not None:
|
1203 |
+
img_orig = self.q_sample(x0, ts)
|
1204 |
+
img = img_orig * mask + (1. - mask) * img
|
1205 |
+
|
1206 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
1207 |
+
intermediates.append(img)
|
1208 |
+
if callback: callback(i)
|
1209 |
+
if img_callback: img_callback(img, i)
|
1210 |
+
|
1211 |
+
if return_intermediates:
|
1212 |
+
return img, intermediates
|
1213 |
+
return img
|
1214 |
+
|
1215 |
+
@torch.no_grad()
|
1216 |
+
def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
|
1217 |
+
verbose=True, timesteps=None, quantize_denoised=False,
|
1218 |
+
mask=None, x0=None, shape=None,**kwargs):
|
1219 |
+
if shape is None:
|
1220 |
+
shape = (batch_size, self.channels, self.image_size, self.image_size)
|
1221 |
+
if cond is not None:
|
1222 |
+
if isinstance(cond, dict):
|
1223 |
+
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
1224 |
+
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
1225 |
+
else:
|
1226 |
+
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
1227 |
+
return self.p_sample_loop(cond,
|
1228 |
+
shape,
|
1229 |
+
return_intermediates=return_intermediates, x_T=x_T,
|
1230 |
+
verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
|
1231 |
+
mask=mask, x0=x0)
|
1232 |
+
|
1233 |
+
@torch.no_grad()
|
1234 |
+
def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs):
|
1235 |
+
|
1236 |
+
if ddim:
|
1237 |
+
ddim_sampler = DDIMSampler(self)
|
1238 |
+
shape = (self.channels, self.image_size, self.image_size)
|
1239 |
+
samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size,
|
1240 |
+
shape,cond,verbose=False,**kwargs)
|
1241 |
+
|
1242 |
+
else:
|
1243 |
+
samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
|
1244 |
+
return_intermediates=True,**kwargs)
|
1245 |
+
|
1246 |
+
return samples, intermediates
|
1247 |
+
|
1248 |
+
|
1249 |
+
@torch.no_grad()
|
1250 |
+
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
|
1251 |
+
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
|
1252 |
+
plot_diffusion_rows=True, **kwargs):
|
1253 |
+
|
1254 |
+
use_ddim = ddim_steps is not None
|
1255 |
+
|
1256 |
+
log = dict()
|
1257 |
+
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
|
1258 |
+
return_first_stage_outputs=True,
|
1259 |
+
force_c_encode=True,
|
1260 |
+
return_original_cond=True,
|
1261 |
+
bs=N)
|
1262 |
+
N = min(x.shape[0], N)
|
1263 |
+
n_row = min(x.shape[0], n_row)
|
1264 |
+
log["inputs"] = x
|
1265 |
+
log["reconstruction"] = xrec
|
1266 |
+
if self.model.conditioning_key is not None:
|
1267 |
+
if hasattr(self.cond_stage_model, "decode"):
|
1268 |
+
xc = self.cond_stage_model.decode(c)
|
1269 |
+
log["conditioning"] = xc
|
1270 |
+
elif self.cond_stage_key in ["caption"]:
|
1271 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"])
|
1272 |
+
log["conditioning"] = xc
|
1273 |
+
elif self.cond_stage_key == 'class_label':
|
1274 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
|
1275 |
+
log['conditioning'] = xc
|
1276 |
+
elif isimage(xc):
|
1277 |
+
log["conditioning"] = xc
|
1278 |
+
if ismap(xc):
|
1279 |
+
log["original_conditioning"] = self.to_rgb(xc)
|
1280 |
+
|
1281 |
+
if plot_diffusion_rows:
|
1282 |
+
# get diffusion row
|
1283 |
+
diffusion_row = list()
|
1284 |
+
z_start = z[:n_row]
|
1285 |
+
for t in range(self.num_timesteps):
|
1286 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
1287 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
1288 |
+
t = t.to(self.device).long()
|
1289 |
+
noise = torch.randn_like(z_start)
|
1290 |
+
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
1291 |
+
diffusion_row.append(self.decode_first_stage(z_noisy))
|
1292 |
+
|
1293 |
+
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
1294 |
+
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
1295 |
+
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
1296 |
+
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
1297 |
+
log["diffusion_row"] = diffusion_grid
|
1298 |
+
|
1299 |
+
if sample:
|
1300 |
+
# get denoise row
|
1301 |
+
with self.ema_scope("Plotting"):
|
1302 |
+
samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
|
1303 |
+
ddim_steps=ddim_steps,eta=ddim_eta)
|
1304 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
|
1305 |
+
x_samples = self.decode_first_stage(samples)
|
1306 |
+
log["samples"] = x_samples
|
1307 |
+
if plot_denoise_rows:
|
1308 |
+
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
1309 |
+
log["denoise_row"] = denoise_grid
|
1310 |
+
|
1311 |
+
if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
|
1312 |
+
self.first_stage_model, IdentityFirstStage):
|
1313 |
+
# also display when quantizing x0 while sampling
|
1314 |
+
with self.ema_scope("Plotting Quantized Denoised"):
|
1315 |
+
samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
|
1316 |
+
ddim_steps=ddim_steps,eta=ddim_eta,
|
1317 |
+
quantize_denoised=True)
|
1318 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
|
1319 |
+
# quantize_denoised=True)
|
1320 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
1321 |
+
log["samples_x0_quantized"] = x_samples
|
1322 |
+
|
1323 |
+
if inpaint:
|
1324 |
+
# make a simple center square
|
1325 |
+
b, h, w = z.shape[0], z.shape[2], z.shape[3]
|
1326 |
+
mask = torch.ones(N, h, w).to(self.device)
|
1327 |
+
# zeros will be filled in
|
1328 |
+
mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
|
1329 |
+
mask = mask[:, None, ...]
|
1330 |
+
with self.ema_scope("Plotting Inpaint"):
|
1331 |
+
|
1332 |
+
samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta,
|
1333 |
+
ddim_steps=ddim_steps, x0=z[:N], mask=mask)
|
1334 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
1335 |
+
log["samples_inpainting"] = x_samples
|
1336 |
+
log["mask"] = mask
|
1337 |
+
|
1338 |
+
# outpaint
|
1339 |
+
with self.ema_scope("Plotting Outpaint"):
|
1340 |
+
samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta,
|
1341 |
+
ddim_steps=ddim_steps, x0=z[:N], mask=mask)
|
1342 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
1343 |
+
log["samples_outpainting"] = x_samples
|
1344 |
+
|
1345 |
+
if plot_progressive_rows:
|
1346 |
+
with self.ema_scope("Plotting Progressives"):
|
1347 |
+
img, progressives = self.progressive_denoising(c,
|
1348 |
+
shape=(self.channels, self.image_size, self.image_size),
|
1349 |
+
batch_size=N)
|
1350 |
+
prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
|
1351 |
+
log["progressive_row"] = prog_row
|
1352 |
+
|
1353 |
+
if return_keys:
|
1354 |
+
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
1355 |
+
return log
|
1356 |
+
else:
|
1357 |
+
return {key: log[key] for key in return_keys}
|
1358 |
+
return log
|
1359 |
+
|
1360 |
+
def configure_optimizers(self):
|
1361 |
+
lr = self.learning_rate
|
1362 |
+
params = list(self.model.parameters())
|
1363 |
+
if self.cond_stage_trainable:
|
1364 |
+
print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
|
1365 |
+
params = params + list(self.cond_stage_model.parameters())
|
1366 |
+
if self.learn_logvar:
|
1367 |
+
print('Diffusion model optimizing logvar')
|
1368 |
+
params.append(self.logvar)
|
1369 |
+
opt = torch.optim.AdamW(params, lr=lr)
|
1370 |
+
if self.use_scheduler:
|
1371 |
+
assert 'target' in self.scheduler_config
|
1372 |
+
scheduler = instantiate_from_config(self.scheduler_config)
|
1373 |
+
|
1374 |
+
print("Setting up LambdaLR scheduler...")
|
1375 |
+
scheduler = [
|
1376 |
+
{
|
1377 |
+
'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
|
1378 |
+
'interval': 'step',
|
1379 |
+
'frequency': 1
|
1380 |
+
}]
|
1381 |
+
return [opt], scheduler
|
1382 |
+
return opt
|
1383 |
+
|
1384 |
+
@torch.no_grad()
|
1385 |
+
def to_rgb(self, x):
|
1386 |
+
x = x.float()
|
1387 |
+
if not hasattr(self, "colorize"):
|
1388 |
+
self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
|
1389 |
+
x = nn.functional.conv2d(x, weight=self.colorize)
|
1390 |
+
x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
|
1391 |
+
return x
|
1392 |
+
|
1393 |
+
|
1394 |
+
class DiffusionWrapperV1(pl.LightningModule):
|
1395 |
+
def __init__(self, diff_model_config, conditioning_key):
|
1396 |
+
super().__init__()
|
1397 |
+
self.diffusion_model = instantiate_from_config(diff_model_config)
|
1398 |
+
self.conditioning_key = conditioning_key
|
1399 |
+
assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm']
|
1400 |
+
|
1401 |
+
def forward(self, x, t, c_concat: list = None, c_crossattn: list = None):
|
1402 |
+
if self.conditioning_key is None:
|
1403 |
+
out = self.diffusion_model(x, t)
|
1404 |
+
elif self.conditioning_key == 'concat':
|
1405 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
1406 |
+
out = self.diffusion_model(xc, t)
|
1407 |
+
elif self.conditioning_key == 'crossattn':
|
1408 |
+
cc = torch.cat(c_crossattn, 1)
|
1409 |
+
out = self.diffusion_model(x, t, context=cc)
|
1410 |
+
elif self.conditioning_key == 'hybrid':
|
1411 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
1412 |
+
cc = torch.cat(c_crossattn, 1)
|
1413 |
+
out = self.diffusion_model(xc, t, context=cc)
|
1414 |
+
elif self.conditioning_key == 'adm':
|
1415 |
+
cc = c_crossattn[0]
|
1416 |
+
out = self.diffusion_model(x, t, y=cc)
|
1417 |
+
else:
|
1418 |
+
raise NotImplementedError()
|
1419 |
+
|
1420 |
+
return out
|
1421 |
+
|
1422 |
+
|
1423 |
+
class Layout2ImgDiffusionV1(LatentDiffusionV1):
|
1424 |
+
# TODO: move all layout-specific hacks to this class
|
1425 |
+
def __init__(self, cond_stage_key, *args, **kwargs):
|
1426 |
+
assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"'
|
1427 |
+
super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs)
|
1428 |
+
|
1429 |
+
def log_images(self, batch, N=8, *args, **kwargs):
|
1430 |
+
logs = super().log_images(batch=batch, N=N, *args, **kwargs)
|
1431 |
+
|
1432 |
+
key = 'train' if self.training else 'validation'
|
1433 |
+
dset = self.trainer.datamodule.datasets[key]
|
1434 |
+
mapper = dset.conditional_builders[self.cond_stage_key]
|
1435 |
+
|
1436 |
+
bbox_imgs = []
|
1437 |
+
map_fn = lambda catno: dset.get_textual_label(dset.get_category_id(catno))
|
1438 |
+
for tknzd_bbox in batch[self.cond_stage_key][:N]:
|
1439 |
+
bboximg = mapper.plot(tknzd_bbox.detach().cpu(), map_fn, (256, 256))
|
1440 |
+
bbox_imgs.append(bboximg)
|
1441 |
+
|
1442 |
+
cond_img = torch.stack(bbox_imgs, dim=0)
|
1443 |
+
logs['bbox_image'] = cond_img
|
1444 |
+
return logs
|
1445 |
+
|
1446 |
+
setattr(ldm.models.diffusion.ddpm, "DDPMV1", DDPMV1)
|
1447 |
+
setattr(ldm.models.diffusion.ddpm, "LatentDiffusionV1", LatentDiffusionV1)
|
1448 |
+
setattr(ldm.models.diffusion.ddpm, "DiffusionWrapperV1", DiffusionWrapperV1)
|
1449 |
+
setattr(ldm.models.diffusion.ddpm, "Layout2ImgDiffusionV1", Layout2ImgDiffusionV1)
|
extensions-builtin/Lora/extra_networks_lora.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from modules import extra_networks, shared
|
2 |
+
import lora
|
3 |
+
|
4 |
+
class ExtraNetworkLora(extra_networks.ExtraNetwork):
|
5 |
+
def __init__(self):
|
6 |
+
super().__init__('lora')
|
7 |
+
|
8 |
+
def activate(self, p, params_list):
|
9 |
+
additional = shared.opts.sd_lora
|
10 |
+
|
11 |
+
if additional != "" and additional in lora.available_loras and len([x for x in params_list if x.items[0] == additional]) == 0:
|
12 |
+
p.all_prompts = [x + f"<lora:{additional}:{shared.opts.extra_networks_default_multiplier}>" for x in p.all_prompts]
|
13 |
+
params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier]))
|
14 |
+
|
15 |
+
names = []
|
16 |
+
multipliers = []
|
17 |
+
for params in params_list:
|
18 |
+
assert len(params.items) > 0
|
19 |
+
|
20 |
+
names.append(params.items[0])
|
21 |
+
multipliers.append(float(params.items[1]) if len(params.items) > 1 else 1.0)
|
22 |
+
|
23 |
+
lora.load_loras(names, multipliers)
|
24 |
+
|
25 |
+
def deactivate(self, p):
|
26 |
+
pass
|
extensions-builtin/Lora/lora.py
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import glob
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from modules import shared, devices, sd_models
|
7 |
+
|
8 |
+
re_digits = re.compile(r"\d+")
|
9 |
+
re_unet_down_blocks = re.compile(r"lora_unet_down_blocks_(\d+)_attentions_(\d+)_(.+)")
|
10 |
+
re_unet_mid_blocks = re.compile(r"lora_unet_mid_block_attentions_(\d+)_(.+)")
|
11 |
+
re_unet_up_blocks = re.compile(r"lora_unet_up_blocks_(\d+)_attentions_(\d+)_(.+)")
|
12 |
+
re_text_block = re.compile(r"lora_te_text_model_encoder_layers_(\d+)_(.+)")
|
13 |
+
|
14 |
+
|
15 |
+
def convert_diffusers_name_to_compvis(key):
|
16 |
+
def match(match_list, regex):
|
17 |
+
r = re.match(regex, key)
|
18 |
+
if not r:
|
19 |
+
return False
|
20 |
+
|
21 |
+
match_list.clear()
|
22 |
+
match_list.extend([int(x) if re.match(re_digits, x) else x for x in r.groups()])
|
23 |
+
return True
|
24 |
+
|
25 |
+
m = []
|
26 |
+
|
27 |
+
if match(m, re_unet_down_blocks):
|
28 |
+
return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[1]}_1_{m[2]}"
|
29 |
+
|
30 |
+
if match(m, re_unet_mid_blocks):
|
31 |
+
return f"diffusion_model_middle_block_1_{m[1]}"
|
32 |
+
|
33 |
+
if match(m, re_unet_up_blocks):
|
34 |
+
return f"diffusion_model_output_blocks_{m[0] * 3 + m[1]}_1_{m[2]}"
|
35 |
+
|
36 |
+
if match(m, re_text_block):
|
37 |
+
return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}"
|
38 |
+
|
39 |
+
return key
|
40 |
+
|
41 |
+
|
42 |
+
class LoraOnDisk:
|
43 |
+
def __init__(self, name, filename):
|
44 |
+
self.name = name
|
45 |
+
self.filename = filename
|
46 |
+
|
47 |
+
|
48 |
+
class LoraModule:
|
49 |
+
def __init__(self, name):
|
50 |
+
self.name = name
|
51 |
+
self.multiplier = 1.0
|
52 |
+
self.modules = {}
|
53 |
+
self.mtime = None
|
54 |
+
|
55 |
+
|
56 |
+
class LoraUpDownModule:
|
57 |
+
def __init__(self):
|
58 |
+
self.up = None
|
59 |
+
self.down = None
|
60 |
+
self.alpha = None
|
61 |
+
|
62 |
+
|
63 |
+
def assign_lora_names_to_compvis_modules(sd_model):
|
64 |
+
lora_layer_mapping = {}
|
65 |
+
|
66 |
+
for name, module in shared.sd_model.cond_stage_model.wrapped.named_modules():
|
67 |
+
lora_name = name.replace(".", "_")
|
68 |
+
lora_layer_mapping[lora_name] = module
|
69 |
+
module.lora_layer_name = lora_name
|
70 |
+
|
71 |
+
for name, module in shared.sd_model.model.named_modules():
|
72 |
+
lora_name = name.replace(".", "_")
|
73 |
+
lora_layer_mapping[lora_name] = module
|
74 |
+
module.lora_layer_name = lora_name
|
75 |
+
|
76 |
+
sd_model.lora_layer_mapping = lora_layer_mapping
|
77 |
+
|
78 |
+
|
79 |
+
def load_lora(name, filename):
|
80 |
+
lora = LoraModule(name)
|
81 |
+
lora.mtime = os.path.getmtime(filename)
|
82 |
+
|
83 |
+
sd = sd_models.read_state_dict(filename)
|
84 |
+
|
85 |
+
keys_failed_to_match = []
|
86 |
+
|
87 |
+
for key_diffusers, weight in sd.items():
|
88 |
+
fullkey = convert_diffusers_name_to_compvis(key_diffusers)
|
89 |
+
key, lora_key = fullkey.split(".", 1)
|
90 |
+
|
91 |
+
sd_module = shared.sd_model.lora_layer_mapping.get(key, None)
|
92 |
+
if sd_module is None:
|
93 |
+
keys_failed_to_match.append(key_diffusers)
|
94 |
+
continue
|
95 |
+
|
96 |
+
lora_module = lora.modules.get(key, None)
|
97 |
+
if lora_module is None:
|
98 |
+
lora_module = LoraUpDownModule()
|
99 |
+
lora.modules[key] = lora_module
|
100 |
+
|
101 |
+
if lora_key == "alpha":
|
102 |
+
lora_module.alpha = weight.item()
|
103 |
+
continue
|
104 |
+
|
105 |
+
if type(sd_module) == torch.nn.Linear:
|
106 |
+
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
|
107 |
+
elif type(sd_module) == torch.nn.Conv2d:
|
108 |
+
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
|
109 |
+
else:
|
110 |
+
assert False, f'Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}'
|
111 |
+
|
112 |
+
with torch.no_grad():
|
113 |
+
module.weight.copy_(weight)
|
114 |
+
|
115 |
+
module.to(device=devices.device, dtype=devices.dtype)
|
116 |
+
|
117 |
+
if lora_key == "lora_up.weight":
|
118 |
+
lora_module.up = module
|
119 |
+
elif lora_key == "lora_down.weight":
|
120 |
+
lora_module.down = module
|
121 |
+
else:
|
122 |
+
assert False, f'Bad Lora layer name: {key_diffusers} - must end in lora_up.weight, lora_down.weight or alpha'
|
123 |
+
|
124 |
+
if len(keys_failed_to_match) > 0:
|
125 |
+
print(f"Failed to match keys when loading Lora {filename}: {keys_failed_to_match}")
|
126 |
+
|
127 |
+
return lora
|
128 |
+
|
129 |
+
|
130 |
+
def load_loras(names, multipliers=None):
|
131 |
+
already_loaded = {}
|
132 |
+
|
133 |
+
for lora in loaded_loras:
|
134 |
+
if lora.name in names:
|
135 |
+
already_loaded[lora.name] = lora
|
136 |
+
|
137 |
+
loaded_loras.clear()
|
138 |
+
|
139 |
+
loras_on_disk = [available_loras.get(name, None) for name in names]
|
140 |
+
if any([x is None for x in loras_on_disk]):
|
141 |
+
list_available_loras()
|
142 |
+
|
143 |
+
loras_on_disk = [available_loras.get(name, None) for name in names]
|
144 |
+
|
145 |
+
for i, name in enumerate(names):
|
146 |
+
lora = already_loaded.get(name, None)
|
147 |
+
|
148 |
+
lora_on_disk = loras_on_disk[i]
|
149 |
+
if lora_on_disk is not None:
|
150 |
+
if lora is None or os.path.getmtime(lora_on_disk.filename) > lora.mtime:
|
151 |
+
lora = load_lora(name, lora_on_disk.filename)
|
152 |
+
|
153 |
+
if lora is None:
|
154 |
+
print(f"Couldn't find Lora with name {name}")
|
155 |
+
continue
|
156 |
+
|
157 |
+
lora.multiplier = multipliers[i] if multipliers else 1.0
|
158 |
+
loaded_loras.append(lora)
|
159 |
+
|
160 |
+
|
161 |
+
def lora_forward(module, input, res):
|
162 |
+
if len(loaded_loras) == 0:
|
163 |
+
return res
|
164 |
+
|
165 |
+
lora_layer_name = getattr(module, 'lora_layer_name', None)
|
166 |
+
for lora in loaded_loras:
|
167 |
+
module = lora.modules.get(lora_layer_name, None)
|
168 |
+
if module is not None:
|
169 |
+
if shared.opts.lora_apply_to_outputs and res.shape == input.shape:
|
170 |
+
res = res + module.up(module.down(res)) * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0)
|
171 |
+
else:
|
172 |
+
res = res + module.up(module.down(input)) * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0)
|
173 |
+
|
174 |
+
return res
|
175 |
+
|
176 |
+
|
177 |
+
def lora_Linear_forward(self, input):
|
178 |
+
return lora_forward(self, input, torch.nn.Linear_forward_before_lora(self, input))
|
179 |
+
|
180 |
+
|
181 |
+
def lora_Conv2d_forward(self, input):
|
182 |
+
return lora_forward(self, input, torch.nn.Conv2d_forward_before_lora(self, input))
|
183 |
+
|
184 |
+
|
185 |
+
def list_available_loras():
|
186 |
+
available_loras.clear()
|
187 |
+
|
188 |
+
os.makedirs(shared.cmd_opts.lora_dir, exist_ok=True)
|
189 |
+
|
190 |
+
candidates = \
|
191 |
+
glob.glob(os.path.join(shared.cmd_opts.lora_dir, '**/*.pt'), recursive=True) + \
|
192 |
+
glob.glob(os.path.join(shared.cmd_opts.lora_dir, '**/*.safetensors'), recursive=True) + \
|
193 |
+
glob.glob(os.path.join(shared.cmd_opts.lora_dir, '**/*.ckpt'), recursive=True)
|
194 |
+
|
195 |
+
for filename in sorted(candidates):
|
196 |
+
if os.path.isdir(filename):
|
197 |
+
continue
|
198 |
+
|
199 |
+
name = os.path.splitext(os.path.basename(filename))[0]
|
200 |
+
|
201 |
+
available_loras[name] = LoraOnDisk(name, filename)
|
202 |
+
|
203 |
+
|
204 |
+
available_loras = {}
|
205 |
+
loaded_loras = []
|
206 |
+
|
207 |
+
list_available_loras()
|
extensions-builtin/Lora/preload.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from modules import paths
|
3 |
+
|
4 |
+
|
5 |
+
def preload(parser):
|
6 |
+
parser.add_argument("--lora-dir", type=str, help="Path to directory with Lora networks.", default=os.path.join(paths.models_path, 'Lora'))
|
extensions-builtin/Lora/scripts/lora_script.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
import lora
|
5 |
+
import extra_networks_lora
|
6 |
+
import ui_extra_networks_lora
|
7 |
+
from modules import script_callbacks, ui_extra_networks, extra_networks, shared
|
8 |
+
|
9 |
+
|
10 |
+
def unload():
|
11 |
+
torch.nn.Linear.forward = torch.nn.Linear_forward_before_lora
|
12 |
+
torch.nn.Conv2d.forward = torch.nn.Conv2d_forward_before_lora
|
13 |
+
|
14 |
+
|
15 |
+
def before_ui():
|
16 |
+
ui_extra_networks.register_page(ui_extra_networks_lora.ExtraNetworksPageLora())
|
17 |
+
extra_networks.register_extra_network(extra_networks_lora.ExtraNetworkLora())
|
18 |
+
|
19 |
+
|
20 |
+
if not hasattr(torch.nn, 'Linear_forward_before_lora'):
|
21 |
+
torch.nn.Linear_forward_before_lora = torch.nn.Linear.forward
|
22 |
+
|
23 |
+
if not hasattr(torch.nn, 'Conv2d_forward_before_lora'):
|
24 |
+
torch.nn.Conv2d_forward_before_lora = torch.nn.Conv2d.forward
|
25 |
+
|
26 |
+
torch.nn.Linear.forward = lora.lora_Linear_forward
|
27 |
+
torch.nn.Conv2d.forward = lora.lora_Conv2d_forward
|
28 |
+
|
29 |
+
script_callbacks.on_model_loaded(lora.assign_lora_names_to_compvis_modules)
|
30 |
+
script_callbacks.on_script_unloaded(unload)
|
31 |
+
script_callbacks.on_before_ui(before_ui)
|
32 |
+
|
33 |
+
|
34 |
+
shared.options_templates.update(shared.options_section(('extra_networks', "Extra Networks"), {
|
35 |
+
"sd_lora": shared.OptionInfo("None", "Add Lora to prompt", gr.Dropdown, lambda: {"choices": [""] + [x for x in lora.available_loras]}, refresh=lora.list_available_loras),
|
36 |
+
"lora_apply_to_outputs": shared.OptionInfo(False, "Apply Lora to outputs rather than inputs when possible (experimental)"),
|
37 |
+
|
38 |
+
}))
|
extensions-builtin/Lora/ui_extra_networks_lora.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import lora
|
4 |
+
|
5 |
+
from modules import shared, ui_extra_networks
|
6 |
+
|
7 |
+
|
8 |
+
class ExtraNetworksPageLora(ui_extra_networks.ExtraNetworksPage):
|
9 |
+
def __init__(self):
|
10 |
+
super().__init__('Lora')
|
11 |
+
|
12 |
+
def refresh(self):
|
13 |
+
lora.list_available_loras()
|
14 |
+
|
15 |
+
def list_items(self):
|
16 |
+
for name, lora_on_disk in lora.available_loras.items():
|
17 |
+
path, ext = os.path.splitext(lora_on_disk.filename)
|
18 |
+
previews = [path + ".png", path + ".preview.png"]
|
19 |
+
|
20 |
+
preview = None
|
21 |
+
for file in previews:
|
22 |
+
if os.path.isfile(file):
|
23 |
+
preview = self.link_preview(file)
|
24 |
+
break
|
25 |
+
|
26 |
+
yield {
|
27 |
+
"name": name,
|
28 |
+
"filename": path,
|
29 |
+
"preview": preview,
|
30 |
+
"search_term": self.search_terms_from_path(lora_on_disk.filename),
|
31 |
+
"prompt": json.dumps(f"<lora:{name}:") + " + opts.extra_networks_default_multiplier + " + json.dumps(">"),
|
32 |
+
"local_preview": path + ".png",
|
33 |
+
}
|
34 |
+
|
35 |
+
def allowed_directories_for_previews(self):
|
36 |
+
return [shared.cmd_opts.lora_dir]
|
37 |
+
|
extensions-builtin/ScuNET/preload.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from modules import paths
|
3 |
+
|
4 |
+
|
5 |
+
def preload(parser):
|
6 |
+
parser.add_argument("--scunet-models-path", type=str, help="Path to directory with ScuNET model file(s).", default=os.path.join(paths.models_path, 'ScuNET'))
|
extensions-builtin/ScuNET/scripts/scunet_model.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os.path
|
2 |
+
import sys
|
3 |
+
import traceback
|
4 |
+
|
5 |
+
import PIL.Image
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
from basicsr.utils.download_util import load_file_from_url
|
9 |
+
|
10 |
+
import modules.upscaler
|
11 |
+
from modules import devices, modelloader
|
12 |
+
from scunet_model_arch import SCUNet as net
|
13 |
+
|
14 |
+
|
15 |
+
class UpscalerScuNET(modules.upscaler.Upscaler):
|
16 |
+
def __init__(self, dirname):
|
17 |
+
self.name = "ScuNET"
|
18 |
+
self.model_name = "ScuNET GAN"
|
19 |
+
self.model_name2 = "ScuNET PSNR"
|
20 |
+
self.model_url = "https://github.com/cszn/KAIR/releases/download/v1.0/scunet_color_real_gan.pth"
|
21 |
+
self.model_url2 = "https://github.com/cszn/KAIR/releases/download/v1.0/scunet_color_real_psnr.pth"
|
22 |
+
self.user_path = dirname
|
23 |
+
super().__init__()
|
24 |
+
model_paths = self.find_models(ext_filter=[".pth"])
|
25 |
+
scalers = []
|
26 |
+
add_model2 = True
|
27 |
+
for file in model_paths:
|
28 |
+
if "http" in file:
|
29 |
+
name = self.model_name
|
30 |
+
else:
|
31 |
+
name = modelloader.friendly_name(file)
|
32 |
+
if name == self.model_name2 or file == self.model_url2:
|
33 |
+
add_model2 = False
|
34 |
+
try:
|
35 |
+
scaler_data = modules.upscaler.UpscalerData(name, file, self, 4)
|
36 |
+
scalers.append(scaler_data)
|
37 |
+
except Exception:
|
38 |
+
print(f"Error loading ScuNET model: {file}", file=sys.stderr)
|
39 |
+
print(traceback.format_exc(), file=sys.stderr)
|
40 |
+
if add_model2:
|
41 |
+
scaler_data2 = modules.upscaler.UpscalerData(self.model_name2, self.model_url2, self)
|
42 |
+
scalers.append(scaler_data2)
|
43 |
+
self.scalers = scalers
|
44 |
+
|
45 |
+
def do_upscale(self, img: PIL.Image, selected_file):
|
46 |
+
torch.cuda.empty_cache()
|
47 |
+
|
48 |
+
model = self.load_model(selected_file)
|
49 |
+
if model is None:
|
50 |
+
return img
|
51 |
+
|
52 |
+
device = devices.get_device_for('scunet')
|
53 |
+
img = np.array(img)
|
54 |
+
img = img[:, :, ::-1]
|
55 |
+
img = np.moveaxis(img, 2, 0) / 255
|
56 |
+
img = torch.from_numpy(img).float()
|
57 |
+
img = img.unsqueeze(0).to(device)
|
58 |
+
|
59 |
+
with torch.no_grad():
|
60 |
+
output = model(img)
|
61 |
+
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
|
62 |
+
output = 255. * np.moveaxis(output, 0, 2)
|
63 |
+
output = output.astype(np.uint8)
|
64 |
+
output = output[:, :, ::-1]
|
65 |
+
torch.cuda.empty_cache()
|
66 |
+
return PIL.Image.fromarray(output, 'RGB')
|
67 |
+
|
68 |
+
def load_model(self, path: str):
|
69 |
+
device = devices.get_device_for('scunet')
|
70 |
+
if "http" in path:
|
71 |
+
filename = load_file_from_url(url=self.model_url, model_dir=self.model_path, file_name="%s.pth" % self.name,
|
72 |
+
progress=True)
|
73 |
+
else:
|
74 |
+
filename = path
|
75 |
+
if not os.path.exists(os.path.join(self.model_path, filename)) or filename is None:
|
76 |
+
print(f"ScuNET: Unable to load model from {filename}", file=sys.stderr)
|
77 |
+
return None
|
78 |
+
|
79 |
+
model = net(in_nc=3, config=[4, 4, 4, 4, 4, 4, 4], dim=64)
|
80 |
+
model.load_state_dict(torch.load(filename), strict=True)
|
81 |
+
model.eval()
|
82 |
+
for k, v in model.named_parameters():
|
83 |
+
v.requires_grad = False
|
84 |
+
model = model.to(device)
|
85 |
+
|
86 |
+
return model
|
87 |
+
|
extensions-builtin/ScuNET/scunet_model_arch.py
ADDED
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from einops import rearrange
|
6 |
+
from einops.layers.torch import Rearrange
|
7 |
+
from timm.models.layers import trunc_normal_, DropPath
|
8 |
+
|
9 |
+
|
10 |
+
class WMSA(nn.Module):
|
11 |
+
""" Self-attention module in Swin Transformer
|
12 |
+
"""
|
13 |
+
|
14 |
+
def __init__(self, input_dim, output_dim, head_dim, window_size, type):
|
15 |
+
super(WMSA, self).__init__()
|
16 |
+
self.input_dim = input_dim
|
17 |
+
self.output_dim = output_dim
|
18 |
+
self.head_dim = head_dim
|
19 |
+
self.scale = self.head_dim ** -0.5
|
20 |
+
self.n_heads = input_dim // head_dim
|
21 |
+
self.window_size = window_size
|
22 |
+
self.type = type
|
23 |
+
self.embedding_layer = nn.Linear(self.input_dim, 3 * self.input_dim, bias=True)
|
24 |
+
|
25 |
+
self.relative_position_params = nn.Parameter(
|
26 |
+
torch.zeros((2 * window_size - 1) * (2 * window_size - 1), self.n_heads))
|
27 |
+
|
28 |
+
self.linear = nn.Linear(self.input_dim, self.output_dim)
|
29 |
+
|
30 |
+
trunc_normal_(self.relative_position_params, std=.02)
|
31 |
+
self.relative_position_params = torch.nn.Parameter(
|
32 |
+
self.relative_position_params.view(2 * window_size - 1, 2 * window_size - 1, self.n_heads).transpose(1,
|
33 |
+
2).transpose(
|
34 |
+
0, 1))
|
35 |
+
|
36 |
+
def generate_mask(self, h, w, p, shift):
|
37 |
+
""" generating the mask of SW-MSA
|
38 |
+
Args:
|
39 |
+
shift: shift parameters in CyclicShift.
|
40 |
+
Returns:
|
41 |
+
attn_mask: should be (1 1 w p p),
|
42 |
+
"""
|
43 |
+
# supporting square.
|
44 |
+
attn_mask = torch.zeros(h, w, p, p, p, p, dtype=torch.bool, device=self.relative_position_params.device)
|
45 |
+
if self.type == 'W':
|
46 |
+
return attn_mask
|
47 |
+
|
48 |
+
s = p - shift
|
49 |
+
attn_mask[-1, :, :s, :, s:, :] = True
|
50 |
+
attn_mask[-1, :, s:, :, :s, :] = True
|
51 |
+
attn_mask[:, -1, :, :s, :, s:] = True
|
52 |
+
attn_mask[:, -1, :, s:, :, :s] = True
|
53 |
+
attn_mask = rearrange(attn_mask, 'w1 w2 p1 p2 p3 p4 -> 1 1 (w1 w2) (p1 p2) (p3 p4)')
|
54 |
+
return attn_mask
|
55 |
+
|
56 |
+
def forward(self, x):
|
57 |
+
""" Forward pass of Window Multi-head Self-attention module.
|
58 |
+
Args:
|
59 |
+
x: input tensor with shape of [b h w c];
|
60 |
+
attn_mask: attention mask, fill -inf where the value is True;
|
61 |
+
Returns:
|
62 |
+
output: tensor shape [b h w c]
|
63 |
+
"""
|
64 |
+
if self.type != 'W': x = torch.roll(x, shifts=(-(self.window_size // 2), -(self.window_size // 2)), dims=(1, 2))
|
65 |
+
x = rearrange(x, 'b (w1 p1) (w2 p2) c -> b w1 w2 p1 p2 c', p1=self.window_size, p2=self.window_size)
|
66 |
+
h_windows = x.size(1)
|
67 |
+
w_windows = x.size(2)
|
68 |
+
# square validation
|
69 |
+
# assert h_windows == w_windows
|
70 |
+
|
71 |
+
x = rearrange(x, 'b w1 w2 p1 p2 c -> b (w1 w2) (p1 p2) c', p1=self.window_size, p2=self.window_size)
|
72 |
+
qkv = self.embedding_layer(x)
|
73 |
+
q, k, v = rearrange(qkv, 'b nw np (threeh c) -> threeh b nw np c', c=self.head_dim).chunk(3, dim=0)
|
74 |
+
sim = torch.einsum('hbwpc,hbwqc->hbwpq', q, k) * self.scale
|
75 |
+
# Adding learnable relative embedding
|
76 |
+
sim = sim + rearrange(self.relative_embedding(), 'h p q -> h 1 1 p q')
|
77 |
+
# Using Attn Mask to distinguish different subwindows.
|
78 |
+
if self.type != 'W':
|
79 |
+
attn_mask = self.generate_mask(h_windows, w_windows, self.window_size, shift=self.window_size // 2)
|
80 |
+
sim = sim.masked_fill_(attn_mask, float("-inf"))
|
81 |
+
|
82 |
+
probs = nn.functional.softmax(sim, dim=-1)
|
83 |
+
output = torch.einsum('hbwij,hbwjc->hbwic', probs, v)
|
84 |
+
output = rearrange(output, 'h b w p c -> b w p (h c)')
|
85 |
+
output = self.linear(output)
|
86 |
+
output = rearrange(output, 'b (w1 w2) (p1 p2) c -> b (w1 p1) (w2 p2) c', w1=h_windows, p1=self.window_size)
|
87 |
+
|
88 |
+
if self.type != 'W': output = torch.roll(output, shifts=(self.window_size // 2, self.window_size // 2),
|
89 |
+
dims=(1, 2))
|
90 |
+
return output
|
91 |
+
|
92 |
+
def relative_embedding(self):
|
93 |
+
cord = torch.tensor(np.array([[i, j] for i in range(self.window_size) for j in range(self.window_size)]))
|
94 |
+
relation = cord[:, None, :] - cord[None, :, :] + self.window_size - 1
|
95 |
+
# negative is allowed
|
96 |
+
return self.relative_position_params[:, relation[:, :, 0].long(), relation[:, :, 1].long()]
|
97 |
+
|
98 |
+
|
99 |
+
class Block(nn.Module):
|
100 |
+
def __init__(self, input_dim, output_dim, head_dim, window_size, drop_path, type='W', input_resolution=None):
|
101 |
+
""" SwinTransformer Block
|
102 |
+
"""
|
103 |
+
super(Block, self).__init__()
|
104 |
+
self.input_dim = input_dim
|
105 |
+
self.output_dim = output_dim
|
106 |
+
assert type in ['W', 'SW']
|
107 |
+
self.type = type
|
108 |
+
if input_resolution <= window_size:
|
109 |
+
self.type = 'W'
|
110 |
+
|
111 |
+
self.ln1 = nn.LayerNorm(input_dim)
|
112 |
+
self.msa = WMSA(input_dim, input_dim, head_dim, window_size, self.type)
|
113 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
114 |
+
self.ln2 = nn.LayerNorm(input_dim)
|
115 |
+
self.mlp = nn.Sequential(
|
116 |
+
nn.Linear(input_dim, 4 * input_dim),
|
117 |
+
nn.GELU(),
|
118 |
+
nn.Linear(4 * input_dim, output_dim),
|
119 |
+
)
|
120 |
+
|
121 |
+
def forward(self, x):
|
122 |
+
x = x + self.drop_path(self.msa(self.ln1(x)))
|
123 |
+
x = x + self.drop_path(self.mlp(self.ln2(x)))
|
124 |
+
return x
|
125 |
+
|
126 |
+
|
127 |
+
class ConvTransBlock(nn.Module):
|
128 |
+
def __init__(self, conv_dim, trans_dim, head_dim, window_size, drop_path, type='W', input_resolution=None):
|
129 |
+
""" SwinTransformer and Conv Block
|
130 |
+
"""
|
131 |
+
super(ConvTransBlock, self).__init__()
|
132 |
+
self.conv_dim = conv_dim
|
133 |
+
self.trans_dim = trans_dim
|
134 |
+
self.head_dim = head_dim
|
135 |
+
self.window_size = window_size
|
136 |
+
self.drop_path = drop_path
|
137 |
+
self.type = type
|
138 |
+
self.input_resolution = input_resolution
|
139 |
+
|
140 |
+
assert self.type in ['W', 'SW']
|
141 |
+
if self.input_resolution <= self.window_size:
|
142 |
+
self.type = 'W'
|
143 |
+
|
144 |
+
self.trans_block = Block(self.trans_dim, self.trans_dim, self.head_dim, self.window_size, self.drop_path,
|
145 |
+
self.type, self.input_resolution)
|
146 |
+
self.conv1_1 = nn.Conv2d(self.conv_dim + self.trans_dim, self.conv_dim + self.trans_dim, 1, 1, 0, bias=True)
|
147 |
+
self.conv1_2 = nn.Conv2d(self.conv_dim + self.trans_dim, self.conv_dim + self.trans_dim, 1, 1, 0, bias=True)
|
148 |
+
|
149 |
+
self.conv_block = nn.Sequential(
|
150 |
+
nn.Conv2d(self.conv_dim, self.conv_dim, 3, 1, 1, bias=False),
|
151 |
+
nn.ReLU(True),
|
152 |
+
nn.Conv2d(self.conv_dim, self.conv_dim, 3, 1, 1, bias=False)
|
153 |
+
)
|
154 |
+
|
155 |
+
def forward(self, x):
|
156 |
+
conv_x, trans_x = torch.split(self.conv1_1(x), (self.conv_dim, self.trans_dim), dim=1)
|
157 |
+
conv_x = self.conv_block(conv_x) + conv_x
|
158 |
+
trans_x = Rearrange('b c h w -> b h w c')(trans_x)
|
159 |
+
trans_x = self.trans_block(trans_x)
|
160 |
+
trans_x = Rearrange('b h w c -> b c h w')(trans_x)
|
161 |
+
res = self.conv1_2(torch.cat((conv_x, trans_x), dim=1))
|
162 |
+
x = x + res
|
163 |
+
|
164 |
+
return x
|
165 |
+
|
166 |
+
|
167 |
+
class SCUNet(nn.Module):
|
168 |
+
# def __init__(self, in_nc=3, config=[2, 2, 2, 2, 2, 2, 2], dim=64, drop_path_rate=0.0, input_resolution=256):
|
169 |
+
def __init__(self, in_nc=3, config=None, dim=64, drop_path_rate=0.0, input_resolution=256):
|
170 |
+
super(SCUNet, self).__init__()
|
171 |
+
if config is None:
|
172 |
+
config = [2, 2, 2, 2, 2, 2, 2]
|
173 |
+
self.config = config
|
174 |
+
self.dim = dim
|
175 |
+
self.head_dim = 32
|
176 |
+
self.window_size = 8
|
177 |
+
|
178 |
+
# drop path rate for each layer
|
179 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(config))]
|
180 |
+
|
181 |
+
self.m_head = [nn.Conv2d(in_nc, dim, 3, 1, 1, bias=False)]
|
182 |
+
|
183 |
+
begin = 0
|
184 |
+
self.m_down1 = [ConvTransBlock(dim // 2, dim // 2, self.head_dim, self.window_size, dpr[i + begin],
|
185 |
+
'W' if not i % 2 else 'SW', input_resolution)
|
186 |
+
for i in range(config[0])] + \
|
187 |
+
[nn.Conv2d(dim, 2 * dim, 2, 2, 0, bias=False)]
|
188 |
+
|
189 |
+
begin += config[0]
|
190 |
+
self.m_down2 = [ConvTransBlock(dim, dim, self.head_dim, self.window_size, dpr[i + begin],
|
191 |
+
'W' if not i % 2 else 'SW', input_resolution // 2)
|
192 |
+
for i in range(config[1])] + \
|
193 |
+
[nn.Conv2d(2 * dim, 4 * dim, 2, 2, 0, bias=False)]
|
194 |
+
|
195 |
+
begin += config[1]
|
196 |
+
self.m_down3 = [ConvTransBlock(2 * dim, 2 * dim, self.head_dim, self.window_size, dpr[i + begin],
|
197 |
+
'W' if not i % 2 else 'SW', input_resolution // 4)
|
198 |
+
for i in range(config[2])] + \
|
199 |
+
[nn.Conv2d(4 * dim, 8 * dim, 2, 2, 0, bias=False)]
|
200 |
+
|
201 |
+
begin += config[2]
|
202 |
+
self.m_body = [ConvTransBlock(4 * dim, 4 * dim, self.head_dim, self.window_size, dpr[i + begin],
|
203 |
+
'W' if not i % 2 else 'SW', input_resolution // 8)
|
204 |
+
for i in range(config[3])]
|
205 |
+
|
206 |
+
begin += config[3]
|
207 |
+
self.m_up3 = [nn.ConvTranspose2d(8 * dim, 4 * dim, 2, 2, 0, bias=False), ] + \
|
208 |
+
[ConvTransBlock(2 * dim, 2 * dim, self.head_dim, self.window_size, dpr[i + begin],
|
209 |
+
'W' if not i % 2 else 'SW', input_resolution // 4)
|
210 |
+
for i in range(config[4])]
|
211 |
+
|
212 |
+
begin += config[4]
|
213 |
+
self.m_up2 = [nn.ConvTranspose2d(4 * dim, 2 * dim, 2, 2, 0, bias=False), ] + \
|
214 |
+
[ConvTransBlock(dim, dim, self.head_dim, self.window_size, dpr[i + begin],
|
215 |
+
'W' if not i % 2 else 'SW', input_resolution // 2)
|
216 |
+
for i in range(config[5])]
|
217 |
+
|
218 |
+
begin += config[5]
|
219 |
+
self.m_up1 = [nn.ConvTranspose2d(2 * dim, dim, 2, 2, 0, bias=False), ] + \
|
220 |
+
[ConvTransBlock(dim // 2, dim // 2, self.head_dim, self.window_size, dpr[i + begin],
|
221 |
+
'W' if not i % 2 else 'SW', input_resolution)
|
222 |
+
for i in range(config[6])]
|
223 |
+
|
224 |
+
self.m_tail = [nn.Conv2d(dim, in_nc, 3, 1, 1, bias=False)]
|
225 |
+
|
226 |
+
self.m_head = nn.Sequential(*self.m_head)
|
227 |
+
self.m_down1 = nn.Sequential(*self.m_down1)
|
228 |
+
self.m_down2 = nn.Sequential(*self.m_down2)
|
229 |
+
self.m_down3 = nn.Sequential(*self.m_down3)
|
230 |
+
self.m_body = nn.Sequential(*self.m_body)
|
231 |
+
self.m_up3 = nn.Sequential(*self.m_up3)
|
232 |
+
self.m_up2 = nn.Sequential(*self.m_up2)
|
233 |
+
self.m_up1 = nn.Sequential(*self.m_up1)
|
234 |
+
self.m_tail = nn.Sequential(*self.m_tail)
|
235 |
+
# self.apply(self._init_weights)
|
236 |
+
|
237 |
+
def forward(self, x0):
|
238 |
+
|
239 |
+
h, w = x0.size()[-2:]
|
240 |
+
paddingBottom = int(np.ceil(h / 64) * 64 - h)
|
241 |
+
paddingRight = int(np.ceil(w / 64) * 64 - w)
|
242 |
+
x0 = nn.ReplicationPad2d((0, paddingRight, 0, paddingBottom))(x0)
|
243 |
+
|
244 |
+
x1 = self.m_head(x0)
|
245 |
+
x2 = self.m_down1(x1)
|
246 |
+
x3 = self.m_down2(x2)
|
247 |
+
x4 = self.m_down3(x3)
|
248 |
+
x = self.m_body(x4)
|
249 |
+
x = self.m_up3(x + x4)
|
250 |
+
x = self.m_up2(x + x3)
|
251 |
+
x = self.m_up1(x + x2)
|
252 |
+
x = self.m_tail(x + x1)
|
253 |
+
|
254 |
+
x = x[..., :h, :w]
|
255 |
+
|
256 |
+
return x
|
257 |
+
|
258 |
+
def _init_weights(self, m):
|
259 |
+
if isinstance(m, nn.Linear):
|
260 |
+
trunc_normal_(m.weight, std=.02)
|
261 |
+
if m.bias is not None:
|
262 |
+
nn.init.constant_(m.bias, 0)
|
263 |
+
elif isinstance(m, nn.LayerNorm):
|
264 |
+
nn.init.constant_(m.bias, 0)
|
265 |
+
nn.init.constant_(m.weight, 1.0)
|
extensions-builtin/SwinIR/preload.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from modules import paths
|
3 |
+
|
4 |
+
|
5 |
+
def preload(parser):
|
6 |
+
parser.add_argument("--swinir-models-path", type=str, help="Path to directory with SwinIR model file(s).", default=os.path.join(paths.models_path, 'SwinIR'))
|
extensions-builtin/SwinIR/scripts/swinir_model.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
import os
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
+
from basicsr.utils.download_util import load_file_from_url
|
8 |
+
from tqdm import tqdm
|
9 |
+
|
10 |
+
from modules import modelloader, devices, script_callbacks, shared
|
11 |
+
from modules.shared import cmd_opts, opts, state
|
12 |
+
from swinir_model_arch import SwinIR as net
|
13 |
+
from swinir_model_arch_v2 import Swin2SR as net2
|
14 |
+
from modules.upscaler import Upscaler, UpscalerData
|
15 |
+
|
16 |
+
|
17 |
+
device_swinir = devices.get_device_for('swinir')
|
18 |
+
|
19 |
+
|
20 |
+
class UpscalerSwinIR(Upscaler):
|
21 |
+
def __init__(self, dirname):
|
22 |
+
self.name = "SwinIR"
|
23 |
+
self.model_url = "https://github.com/JingyunLiang/SwinIR/releases/download/v0.0" \
|
24 |
+
"/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR" \
|
25 |
+
"-L_x4_GAN.pth "
|
26 |
+
self.model_name = "SwinIR 4x"
|
27 |
+
self.user_path = dirname
|
28 |
+
super().__init__()
|
29 |
+
scalers = []
|
30 |
+
model_files = self.find_models(ext_filter=[".pt", ".pth"])
|
31 |
+
for model in model_files:
|
32 |
+
if "http" in model:
|
33 |
+
name = self.model_name
|
34 |
+
else:
|
35 |
+
name = modelloader.friendly_name(model)
|
36 |
+
model_data = UpscalerData(name, model, self)
|
37 |
+
scalers.append(model_data)
|
38 |
+
self.scalers = scalers
|
39 |
+
|
40 |
+
def do_upscale(self, img, model_file):
|
41 |
+
model = self.load_model(model_file)
|
42 |
+
if model is None:
|
43 |
+
return img
|
44 |
+
model = model.to(device_swinir, dtype=devices.dtype)
|
45 |
+
img = upscale(img, model)
|
46 |
+
try:
|
47 |
+
torch.cuda.empty_cache()
|
48 |
+
except:
|
49 |
+
pass
|
50 |
+
return img
|
51 |
+
|
52 |
+
def load_model(self, path, scale=4):
|
53 |
+
if "http" in path:
|
54 |
+
dl_name = "%s%s" % (self.model_name.replace(" ", "_"), ".pth")
|
55 |
+
filename = load_file_from_url(url=path, model_dir=self.model_path, file_name=dl_name, progress=True)
|
56 |
+
else:
|
57 |
+
filename = path
|
58 |
+
if filename is None or not os.path.exists(filename):
|
59 |
+
return None
|
60 |
+
if filename.endswith(".v2.pth"):
|
61 |
+
model = net2(
|
62 |
+
upscale=scale,
|
63 |
+
in_chans=3,
|
64 |
+
img_size=64,
|
65 |
+
window_size=8,
|
66 |
+
img_range=1.0,
|
67 |
+
depths=[6, 6, 6, 6, 6, 6],
|
68 |
+
embed_dim=180,
|
69 |
+
num_heads=[6, 6, 6, 6, 6, 6],
|
70 |
+
mlp_ratio=2,
|
71 |
+
upsampler="nearest+conv",
|
72 |
+
resi_connection="1conv",
|
73 |
+
)
|
74 |
+
params = None
|
75 |
+
else:
|
76 |
+
model = net(
|
77 |
+
upscale=scale,
|
78 |
+
in_chans=3,
|
79 |
+
img_size=64,
|
80 |
+
window_size=8,
|
81 |
+
img_range=1.0,
|
82 |
+
depths=[6, 6, 6, 6, 6, 6, 6, 6, 6],
|
83 |
+
embed_dim=240,
|
84 |
+
num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8],
|
85 |
+
mlp_ratio=2,
|
86 |
+
upsampler="nearest+conv",
|
87 |
+
resi_connection="3conv",
|
88 |
+
)
|
89 |
+
params = "params_ema"
|
90 |
+
|
91 |
+
pretrained_model = torch.load(filename)
|
92 |
+
if params is not None:
|
93 |
+
model.load_state_dict(pretrained_model[params], strict=True)
|
94 |
+
else:
|
95 |
+
model.load_state_dict(pretrained_model, strict=True)
|
96 |
+
return model
|
97 |
+
|
98 |
+
|
99 |
+
def upscale(
|
100 |
+
img,
|
101 |
+
model,
|
102 |
+
tile=None,
|
103 |
+
tile_overlap=None,
|
104 |
+
window_size=8,
|
105 |
+
scale=4,
|
106 |
+
):
|
107 |
+
tile = tile or opts.SWIN_tile
|
108 |
+
tile_overlap = tile_overlap or opts.SWIN_tile_overlap
|
109 |
+
|
110 |
+
|
111 |
+
img = np.array(img)
|
112 |
+
img = img[:, :, ::-1]
|
113 |
+
img = np.moveaxis(img, 2, 0) / 255
|
114 |
+
img = torch.from_numpy(img).float()
|
115 |
+
img = img.unsqueeze(0).to(device_swinir, dtype=devices.dtype)
|
116 |
+
with torch.no_grad(), devices.autocast():
|
117 |
+
_, _, h_old, w_old = img.size()
|
118 |
+
h_pad = (h_old // window_size + 1) * window_size - h_old
|
119 |
+
w_pad = (w_old // window_size + 1) * window_size - w_old
|
120 |
+
img = torch.cat([img, torch.flip(img, [2])], 2)[:, :, : h_old + h_pad, :]
|
121 |
+
img = torch.cat([img, torch.flip(img, [3])], 3)[:, :, :, : w_old + w_pad]
|
122 |
+
output = inference(img, model, tile, tile_overlap, window_size, scale)
|
123 |
+
output = output[..., : h_old * scale, : w_old * scale]
|
124 |
+
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
125 |
+
if output.ndim == 3:
|
126 |
+
output = np.transpose(
|
127 |
+
output[[2, 1, 0], :, :], (1, 2, 0)
|
128 |
+
) # CHW-RGB to HCW-BGR
|
129 |
+
output = (output * 255.0).round().astype(np.uint8) # float32 to uint8
|
130 |
+
return Image.fromarray(output, "RGB")
|
131 |
+
|
132 |
+
|
133 |
+
def inference(img, model, tile, tile_overlap, window_size, scale):
|
134 |
+
# test the image tile by tile
|
135 |
+
b, c, h, w = img.size()
|
136 |
+
tile = min(tile, h, w)
|
137 |
+
assert tile % window_size == 0, "tile size should be a multiple of window_size"
|
138 |
+
sf = scale
|
139 |
+
|
140 |
+
stride = tile - tile_overlap
|
141 |
+
h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
|
142 |
+
w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
|
143 |
+
E = torch.zeros(b, c, h * sf, w * sf, dtype=devices.dtype, device=device_swinir).type_as(img)
|
144 |
+
W = torch.zeros_like(E, dtype=devices.dtype, device=device_swinir)
|
145 |
+
|
146 |
+
with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="SwinIR tiles") as pbar:
|
147 |
+
for h_idx in h_idx_list:
|
148 |
+
if state.interrupted or state.skipped:
|
149 |
+
break
|
150 |
+
|
151 |
+
for w_idx in w_idx_list:
|
152 |
+
if state.interrupted or state.skipped:
|
153 |
+
break
|
154 |
+
|
155 |
+
in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile]
|
156 |
+
out_patch = model(in_patch)
|
157 |
+
out_patch_mask = torch.ones_like(out_patch)
|
158 |
+
|
159 |
+
E[
|
160 |
+
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
|
161 |
+
].add_(out_patch)
|
162 |
+
W[
|
163 |
+
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
|
164 |
+
].add_(out_patch_mask)
|
165 |
+
pbar.update(1)
|
166 |
+
output = E.div_(W)
|
167 |
+
|
168 |
+
return output
|
169 |
+
|
170 |
+
|
171 |
+
def on_ui_settings():
|
172 |
+
import gradio as gr
|
173 |
+
|
174 |
+
shared.opts.add_option("SWIN_tile", shared.OptionInfo(192, "Tile size for all SwinIR.", gr.Slider, {"minimum": 16, "maximum": 512, "step": 16}, section=('upscaling', "Upscaling")))
|
175 |
+
shared.opts.add_option("SWIN_tile_overlap", shared.OptionInfo(8, "Tile overlap, in pixels for SwinIR. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}, section=('upscaling', "Upscaling")))
|
176 |
+
|
177 |
+
|
178 |
+
script_callbacks.on_ui_settings(on_ui_settings)
|
extensions-builtin/SwinIR/swinir_model_arch.py
ADDED
@@ -0,0 +1,867 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -----------------------------------------------------------------------------------
|
2 |
+
# SwinIR: Image Restoration Using Swin Transformer, https://arxiv.org/abs/2108.10257
|
3 |
+
# Originally Written by Ze Liu, Modified by Jingyun Liang.
|
4 |
+
# -----------------------------------------------------------------------------------
|
5 |
+
|
6 |
+
import math
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import torch.utils.checkpoint as checkpoint
|
11 |
+
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
12 |
+
|
13 |
+
|
14 |
+
class Mlp(nn.Module):
|
15 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
16 |
+
super().__init__()
|
17 |
+
out_features = out_features or in_features
|
18 |
+
hidden_features = hidden_features or in_features
|
19 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
20 |
+
self.act = act_layer()
|
21 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
22 |
+
self.drop = nn.Dropout(drop)
|
23 |
+
|
24 |
+
def forward(self, x):
|
25 |
+
x = self.fc1(x)
|
26 |
+
x = self.act(x)
|
27 |
+
x = self.drop(x)
|
28 |
+
x = self.fc2(x)
|
29 |
+
x = self.drop(x)
|
30 |
+
return x
|
31 |
+
|
32 |
+
|
33 |
+
def window_partition(x, window_size):
|
34 |
+
"""
|
35 |
+
Args:
|
36 |
+
x: (B, H, W, C)
|
37 |
+
window_size (int): window size
|
38 |
+
|
39 |
+
Returns:
|
40 |
+
windows: (num_windows*B, window_size, window_size, C)
|
41 |
+
"""
|
42 |
+
B, H, W, C = x.shape
|
43 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
44 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
45 |
+
return windows
|
46 |
+
|
47 |
+
|
48 |
+
def window_reverse(windows, window_size, H, W):
|
49 |
+
"""
|
50 |
+
Args:
|
51 |
+
windows: (num_windows*B, window_size, window_size, C)
|
52 |
+
window_size (int): Window size
|
53 |
+
H (int): Height of image
|
54 |
+
W (int): Width of image
|
55 |
+
|
56 |
+
Returns:
|
57 |
+
x: (B, H, W, C)
|
58 |
+
"""
|
59 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
60 |
+
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
61 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
62 |
+
return x
|
63 |
+
|
64 |
+
|
65 |
+
class WindowAttention(nn.Module):
|
66 |
+
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
67 |
+
It supports both of shifted and non-shifted window.
|
68 |
+
|
69 |
+
Args:
|
70 |
+
dim (int): Number of input channels.
|
71 |
+
window_size (tuple[int]): The height and width of the window.
|
72 |
+
num_heads (int): Number of attention heads.
|
73 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
74 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
|
75 |
+
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
76 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
77 |
+
"""
|
78 |
+
|
79 |
+
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
|
80 |
+
|
81 |
+
super().__init__()
|
82 |
+
self.dim = dim
|
83 |
+
self.window_size = window_size # Wh, Ww
|
84 |
+
self.num_heads = num_heads
|
85 |
+
head_dim = dim // num_heads
|
86 |
+
self.scale = qk_scale or head_dim ** -0.5
|
87 |
+
|
88 |
+
# define a parameter table of relative position bias
|
89 |
+
self.relative_position_bias_table = nn.Parameter(
|
90 |
+
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
91 |
+
|
92 |
+
# get pair-wise relative position index for each token inside the window
|
93 |
+
coords_h = torch.arange(self.window_size[0])
|
94 |
+
coords_w = torch.arange(self.window_size[1])
|
95 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
96 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
97 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
98 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
99 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
100 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
101 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
102 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
103 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
104 |
+
|
105 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
106 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
107 |
+
self.proj = nn.Linear(dim, dim)
|
108 |
+
|
109 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
110 |
+
|
111 |
+
trunc_normal_(self.relative_position_bias_table, std=.02)
|
112 |
+
self.softmax = nn.Softmax(dim=-1)
|
113 |
+
|
114 |
+
def forward(self, x, mask=None):
|
115 |
+
"""
|
116 |
+
Args:
|
117 |
+
x: input features with shape of (num_windows*B, N, C)
|
118 |
+
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
119 |
+
"""
|
120 |
+
B_, N, C = x.shape
|
121 |
+
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
122 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
123 |
+
|
124 |
+
q = q * self.scale
|
125 |
+
attn = (q @ k.transpose(-2, -1))
|
126 |
+
|
127 |
+
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
128 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
129 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
130 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
131 |
+
|
132 |
+
if mask is not None:
|
133 |
+
nW = mask.shape[0]
|
134 |
+
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
135 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
136 |
+
attn = self.softmax(attn)
|
137 |
+
else:
|
138 |
+
attn = self.softmax(attn)
|
139 |
+
|
140 |
+
attn = self.attn_drop(attn)
|
141 |
+
|
142 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
143 |
+
x = self.proj(x)
|
144 |
+
x = self.proj_drop(x)
|
145 |
+
return x
|
146 |
+
|
147 |
+
def extra_repr(self) -> str:
|
148 |
+
return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
|
149 |
+
|
150 |
+
def flops(self, N):
|
151 |
+
# calculate flops for 1 window with token length of N
|
152 |
+
flops = 0
|
153 |
+
# qkv = self.qkv(x)
|
154 |
+
flops += N * self.dim * 3 * self.dim
|
155 |
+
# attn = (q @ k.transpose(-2, -1))
|
156 |
+
flops += self.num_heads * N * (self.dim // self.num_heads) * N
|
157 |
+
# x = (attn @ v)
|
158 |
+
flops += self.num_heads * N * N * (self.dim // self.num_heads)
|
159 |
+
# x = self.proj(x)
|
160 |
+
flops += N * self.dim * self.dim
|
161 |
+
return flops
|
162 |
+
|
163 |
+
|
164 |
+
class SwinTransformerBlock(nn.Module):
|
165 |
+
r""" Swin Transformer Block.
|
166 |
+
|
167 |
+
Args:
|
168 |
+
dim (int): Number of input channels.
|
169 |
+
input_resolution (tuple[int]): Input resolution.
|
170 |
+
num_heads (int): Number of attention heads.
|
171 |
+
window_size (int): Window size.
|
172 |
+
shift_size (int): Shift size for SW-MSA.
|
173 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
174 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
175 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
176 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
177 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
178 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
179 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
180 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
181 |
+
"""
|
182 |
+
|
183 |
+
def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
|
184 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
|
185 |
+
act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
186 |
+
super().__init__()
|
187 |
+
self.dim = dim
|
188 |
+
self.input_resolution = input_resolution
|
189 |
+
self.num_heads = num_heads
|
190 |
+
self.window_size = window_size
|
191 |
+
self.shift_size = shift_size
|
192 |
+
self.mlp_ratio = mlp_ratio
|
193 |
+
if min(self.input_resolution) <= self.window_size:
|
194 |
+
# if window size is larger than input resolution, we don't partition windows
|
195 |
+
self.shift_size = 0
|
196 |
+
self.window_size = min(self.input_resolution)
|
197 |
+
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
|
198 |
+
|
199 |
+
self.norm1 = norm_layer(dim)
|
200 |
+
self.attn = WindowAttention(
|
201 |
+
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
|
202 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
203 |
+
|
204 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
205 |
+
self.norm2 = norm_layer(dim)
|
206 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
207 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
208 |
+
|
209 |
+
if self.shift_size > 0:
|
210 |
+
attn_mask = self.calculate_mask(self.input_resolution)
|
211 |
+
else:
|
212 |
+
attn_mask = None
|
213 |
+
|
214 |
+
self.register_buffer("attn_mask", attn_mask)
|
215 |
+
|
216 |
+
def calculate_mask(self, x_size):
|
217 |
+
# calculate attention mask for SW-MSA
|
218 |
+
H, W = x_size
|
219 |
+
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
|
220 |
+
h_slices = (slice(0, -self.window_size),
|
221 |
+
slice(-self.window_size, -self.shift_size),
|
222 |
+
slice(-self.shift_size, None))
|
223 |
+
w_slices = (slice(0, -self.window_size),
|
224 |
+
slice(-self.window_size, -self.shift_size),
|
225 |
+
slice(-self.shift_size, None))
|
226 |
+
cnt = 0
|
227 |
+
for h in h_slices:
|
228 |
+
for w in w_slices:
|
229 |
+
img_mask[:, h, w, :] = cnt
|
230 |
+
cnt += 1
|
231 |
+
|
232 |
+
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
|
233 |
+
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
234 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
235 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
236 |
+
|
237 |
+
return attn_mask
|
238 |
+
|
239 |
+
def forward(self, x, x_size):
|
240 |
+
H, W = x_size
|
241 |
+
B, L, C = x.shape
|
242 |
+
# assert L == H * W, "input feature has wrong size"
|
243 |
+
|
244 |
+
shortcut = x
|
245 |
+
x = self.norm1(x)
|
246 |
+
x = x.view(B, H, W, C)
|
247 |
+
|
248 |
+
# cyclic shift
|
249 |
+
if self.shift_size > 0:
|
250 |
+
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
251 |
+
else:
|
252 |
+
shifted_x = x
|
253 |
+
|
254 |
+
# partition windows
|
255 |
+
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
|
256 |
+
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
|
257 |
+
|
258 |
+
# W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size
|
259 |
+
if self.input_resolution == x_size:
|
260 |
+
attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
|
261 |
+
else:
|
262 |
+
attn_windows = self.attn(x_windows, mask=self.calculate_mask(x_size).to(x.device))
|
263 |
+
|
264 |
+
# merge windows
|
265 |
+
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
266 |
+
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
|
267 |
+
|
268 |
+
# reverse cyclic shift
|
269 |
+
if self.shift_size > 0:
|
270 |
+
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
271 |
+
else:
|
272 |
+
x = shifted_x
|
273 |
+
x = x.view(B, H * W, C)
|
274 |
+
|
275 |
+
# FFN
|
276 |
+
x = shortcut + self.drop_path(x)
|
277 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
278 |
+
|
279 |
+
return x
|
280 |
+
|
281 |
+
def extra_repr(self) -> str:
|
282 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
|
283 |
+
f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
|
284 |
+
|
285 |
+
def flops(self):
|
286 |
+
flops = 0
|
287 |
+
H, W = self.input_resolution
|
288 |
+
# norm1
|
289 |
+
flops += self.dim * H * W
|
290 |
+
# W-MSA/SW-MSA
|
291 |
+
nW = H * W / self.window_size / self.window_size
|
292 |
+
flops += nW * self.attn.flops(self.window_size * self.window_size)
|
293 |
+
# mlp
|
294 |
+
flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
|
295 |
+
# norm2
|
296 |
+
flops += self.dim * H * W
|
297 |
+
return flops
|
298 |
+
|
299 |
+
|
300 |
+
class PatchMerging(nn.Module):
|
301 |
+
r""" Patch Merging Layer.
|
302 |
+
|
303 |
+
Args:
|
304 |
+
input_resolution (tuple[int]): Resolution of input feature.
|
305 |
+
dim (int): Number of input channels.
|
306 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
307 |
+
"""
|
308 |
+
|
309 |
+
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
|
310 |
+
super().__init__()
|
311 |
+
self.input_resolution = input_resolution
|
312 |
+
self.dim = dim
|
313 |
+
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
314 |
+
self.norm = norm_layer(4 * dim)
|
315 |
+
|
316 |
+
def forward(self, x):
|
317 |
+
"""
|
318 |
+
x: B, H*W, C
|
319 |
+
"""
|
320 |
+
H, W = self.input_resolution
|
321 |
+
B, L, C = x.shape
|
322 |
+
assert L == H * W, "input feature has wrong size"
|
323 |
+
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
|
324 |
+
|
325 |
+
x = x.view(B, H, W, C)
|
326 |
+
|
327 |
+
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
328 |
+
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
329 |
+
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
330 |
+
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
331 |
+
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
332 |
+
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
333 |
+
|
334 |
+
x = self.norm(x)
|
335 |
+
x = self.reduction(x)
|
336 |
+
|
337 |
+
return x
|
338 |
+
|
339 |
+
def extra_repr(self) -> str:
|
340 |
+
return f"input_resolution={self.input_resolution}, dim={self.dim}"
|
341 |
+
|
342 |
+
def flops(self):
|
343 |
+
H, W = self.input_resolution
|
344 |
+
flops = H * W * self.dim
|
345 |
+
flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
|
346 |
+
return flops
|
347 |
+
|
348 |
+
|
349 |
+
class BasicLayer(nn.Module):
|
350 |
+
""" A basic Swin Transformer layer for one stage.
|
351 |
+
|
352 |
+
Args:
|
353 |
+
dim (int): Number of input channels.
|
354 |
+
input_resolution (tuple[int]): Input resolution.
|
355 |
+
depth (int): Number of blocks.
|
356 |
+
num_heads (int): Number of attention heads.
|
357 |
+
window_size (int): Local window size.
|
358 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
359 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
360 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
361 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
362 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
363 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
364 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
365 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
366 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
367 |
+
"""
|
368 |
+
|
369 |
+
def __init__(self, dim, input_resolution, depth, num_heads, window_size,
|
370 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
|
371 |
+
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):
|
372 |
+
|
373 |
+
super().__init__()
|
374 |
+
self.dim = dim
|
375 |
+
self.input_resolution = input_resolution
|
376 |
+
self.depth = depth
|
377 |
+
self.use_checkpoint = use_checkpoint
|
378 |
+
|
379 |
+
# build blocks
|
380 |
+
self.blocks = nn.ModuleList([
|
381 |
+
SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
|
382 |
+
num_heads=num_heads, window_size=window_size,
|
383 |
+
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
384 |
+
mlp_ratio=mlp_ratio,
|
385 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
386 |
+
drop=drop, attn_drop=attn_drop,
|
387 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
388 |
+
norm_layer=norm_layer)
|
389 |
+
for i in range(depth)])
|
390 |
+
|
391 |
+
# patch merging layer
|
392 |
+
if downsample is not None:
|
393 |
+
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
|
394 |
+
else:
|
395 |
+
self.downsample = None
|
396 |
+
|
397 |
+
def forward(self, x, x_size):
|
398 |
+
for blk in self.blocks:
|
399 |
+
if self.use_checkpoint:
|
400 |
+
x = checkpoint.checkpoint(blk, x, x_size)
|
401 |
+
else:
|
402 |
+
x = blk(x, x_size)
|
403 |
+
if self.downsample is not None:
|
404 |
+
x = self.downsample(x)
|
405 |
+
return x
|
406 |
+
|
407 |
+
def extra_repr(self) -> str:
|
408 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
|
409 |
+
|
410 |
+
def flops(self):
|
411 |
+
flops = 0
|
412 |
+
for blk in self.blocks:
|
413 |
+
flops += blk.flops()
|
414 |
+
if self.downsample is not None:
|
415 |
+
flops += self.downsample.flops()
|
416 |
+
return flops
|
417 |
+
|
418 |
+
|
419 |
+
class RSTB(nn.Module):
|
420 |
+
"""Residual Swin Transformer Block (RSTB).
|
421 |
+
|
422 |
+
Args:
|
423 |
+
dim (int): Number of input channels.
|
424 |
+
input_resolution (tuple[int]): Input resolution.
|
425 |
+
depth (int): Number of blocks.
|
426 |
+
num_heads (int): Number of attention heads.
|
427 |
+
window_size (int): Local window size.
|
428 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
429 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
430 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
431 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
432 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
433 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
434 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
435 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
436 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
437 |
+
img_size: Input image size.
|
438 |
+
patch_size: Patch size.
|
439 |
+
resi_connection: The convolutional block before residual connection.
|
440 |
+
"""
|
441 |
+
|
442 |
+
def __init__(self, dim, input_resolution, depth, num_heads, window_size,
|
443 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
|
444 |
+
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False,
|
445 |
+
img_size=224, patch_size=4, resi_connection='1conv'):
|
446 |
+
super(RSTB, self).__init__()
|
447 |
+
|
448 |
+
self.dim = dim
|
449 |
+
self.input_resolution = input_resolution
|
450 |
+
|
451 |
+
self.residual_group = BasicLayer(dim=dim,
|
452 |
+
input_resolution=input_resolution,
|
453 |
+
depth=depth,
|
454 |
+
num_heads=num_heads,
|
455 |
+
window_size=window_size,
|
456 |
+
mlp_ratio=mlp_ratio,
|
457 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
458 |
+
drop=drop, attn_drop=attn_drop,
|
459 |
+
drop_path=drop_path,
|
460 |
+
norm_layer=norm_layer,
|
461 |
+
downsample=downsample,
|
462 |
+
use_checkpoint=use_checkpoint)
|
463 |
+
|
464 |
+
if resi_connection == '1conv':
|
465 |
+
self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
|
466 |
+
elif resi_connection == '3conv':
|
467 |
+
# to save parameters and memory
|
468 |
+
self.conv = nn.Sequential(nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
469 |
+
nn.Conv2d(dim // 4, dim // 4, 1, 1, 0),
|
470 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
471 |
+
nn.Conv2d(dim // 4, dim, 3, 1, 1))
|
472 |
+
|
473 |
+
self.patch_embed = PatchEmbed(
|
474 |
+
img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim,
|
475 |
+
norm_layer=None)
|
476 |
+
|
477 |
+
self.patch_unembed = PatchUnEmbed(
|
478 |
+
img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim,
|
479 |
+
norm_layer=None)
|
480 |
+
|
481 |
+
def forward(self, x, x_size):
|
482 |
+
return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size), x_size))) + x
|
483 |
+
|
484 |
+
def flops(self):
|
485 |
+
flops = 0
|
486 |
+
flops += self.residual_group.flops()
|
487 |
+
H, W = self.input_resolution
|
488 |
+
flops += H * W * self.dim * self.dim * 9
|
489 |
+
flops += self.patch_embed.flops()
|
490 |
+
flops += self.patch_unembed.flops()
|
491 |
+
|
492 |
+
return flops
|
493 |
+
|
494 |
+
|
495 |
+
class PatchEmbed(nn.Module):
|
496 |
+
r""" Image to Patch Embedding
|
497 |
+
|
498 |
+
Args:
|
499 |
+
img_size (int): Image size. Default: 224.
|
500 |
+
patch_size (int): Patch token size. Default: 4.
|
501 |
+
in_chans (int): Number of input image channels. Default: 3.
|
502 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
503 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
504 |
+
"""
|
505 |
+
|
506 |
+
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
507 |
+
super().__init__()
|
508 |
+
img_size = to_2tuple(img_size)
|
509 |
+
patch_size = to_2tuple(patch_size)
|
510 |
+
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
511 |
+
self.img_size = img_size
|
512 |
+
self.patch_size = patch_size
|
513 |
+
self.patches_resolution = patches_resolution
|
514 |
+
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
515 |
+
|
516 |
+
self.in_chans = in_chans
|
517 |
+
self.embed_dim = embed_dim
|
518 |
+
|
519 |
+
if norm_layer is not None:
|
520 |
+
self.norm = norm_layer(embed_dim)
|
521 |
+
else:
|
522 |
+
self.norm = None
|
523 |
+
|
524 |
+
def forward(self, x):
|
525 |
+
x = x.flatten(2).transpose(1, 2) # B Ph*Pw C
|
526 |
+
if self.norm is not None:
|
527 |
+
x = self.norm(x)
|
528 |
+
return x
|
529 |
+
|
530 |
+
def flops(self):
|
531 |
+
flops = 0
|
532 |
+
H, W = self.img_size
|
533 |
+
if self.norm is not None:
|
534 |
+
flops += H * W * self.embed_dim
|
535 |
+
return flops
|
536 |
+
|
537 |
+
|
538 |
+
class PatchUnEmbed(nn.Module):
|
539 |
+
r""" Image to Patch Unembedding
|
540 |
+
|
541 |
+
Args:
|
542 |
+
img_size (int): Image size. Default: 224.
|
543 |
+
patch_size (int): Patch token size. Default: 4.
|
544 |
+
in_chans (int): Number of input image channels. Default: 3.
|
545 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
546 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
547 |
+
"""
|
548 |
+
|
549 |
+
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
550 |
+
super().__init__()
|
551 |
+
img_size = to_2tuple(img_size)
|
552 |
+
patch_size = to_2tuple(patch_size)
|
553 |
+
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
554 |
+
self.img_size = img_size
|
555 |
+
self.patch_size = patch_size
|
556 |
+
self.patches_resolution = patches_resolution
|
557 |
+
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
558 |
+
|
559 |
+
self.in_chans = in_chans
|
560 |
+
self.embed_dim = embed_dim
|
561 |
+
|
562 |
+
def forward(self, x, x_size):
|
563 |
+
B, HW, C = x.shape
|
564 |
+
x = x.transpose(1, 2).view(B, self.embed_dim, x_size[0], x_size[1]) # B Ph*Pw C
|
565 |
+
return x
|
566 |
+
|
567 |
+
def flops(self):
|
568 |
+
flops = 0
|
569 |
+
return flops
|
570 |
+
|
571 |
+
|
572 |
+
class Upsample(nn.Sequential):
|
573 |
+
"""Upsample module.
|
574 |
+
|
575 |
+
Args:
|
576 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
577 |
+
num_feat (int): Channel number of intermediate features.
|
578 |
+
"""
|
579 |
+
|
580 |
+
def __init__(self, scale, num_feat):
|
581 |
+
m = []
|
582 |
+
if (scale & (scale - 1)) == 0: # scale = 2^n
|
583 |
+
for _ in range(int(math.log(scale, 2))):
|
584 |
+
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
|
585 |
+
m.append(nn.PixelShuffle(2))
|
586 |
+
elif scale == 3:
|
587 |
+
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
|
588 |
+
m.append(nn.PixelShuffle(3))
|
589 |
+
else:
|
590 |
+
raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
|
591 |
+
super(Upsample, self).__init__(*m)
|
592 |
+
|
593 |
+
|
594 |
+
class UpsampleOneStep(nn.Sequential):
|
595 |
+
"""UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle)
|
596 |
+
Used in lightweight SR to save parameters.
|
597 |
+
|
598 |
+
Args:
|
599 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
600 |
+
num_feat (int): Channel number of intermediate features.
|
601 |
+
|
602 |
+
"""
|
603 |
+
|
604 |
+
def __init__(self, scale, num_feat, num_out_ch, input_resolution=None):
|
605 |
+
self.num_feat = num_feat
|
606 |
+
self.input_resolution = input_resolution
|
607 |
+
m = []
|
608 |
+
m.append(nn.Conv2d(num_feat, (scale ** 2) * num_out_ch, 3, 1, 1))
|
609 |
+
m.append(nn.PixelShuffle(scale))
|
610 |
+
super(UpsampleOneStep, self).__init__(*m)
|
611 |
+
|
612 |
+
def flops(self):
|
613 |
+
H, W = self.input_resolution
|
614 |
+
flops = H * W * self.num_feat * 3 * 9
|
615 |
+
return flops
|
616 |
+
|
617 |
+
|
618 |
+
class SwinIR(nn.Module):
|
619 |
+
r""" SwinIR
|
620 |
+
A PyTorch impl of : `SwinIR: Image Restoration Using Swin Transformer`, based on Swin Transformer.
|
621 |
+
|
622 |
+
Args:
|
623 |
+
img_size (int | tuple(int)): Input image size. Default 64
|
624 |
+
patch_size (int | tuple(int)): Patch size. Default: 1
|
625 |
+
in_chans (int): Number of input image channels. Default: 3
|
626 |
+
embed_dim (int): Patch embedding dimension. Default: 96
|
627 |
+
depths (tuple(int)): Depth of each Swin Transformer layer.
|
628 |
+
num_heads (tuple(int)): Number of attention heads in different layers.
|
629 |
+
window_size (int): Window size. Default: 7
|
630 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
|
631 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
632 |
+
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
|
633 |
+
drop_rate (float): Dropout rate. Default: 0
|
634 |
+
attn_drop_rate (float): Attention dropout rate. Default: 0
|
635 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.1
|
636 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
637 |
+
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
|
638 |
+
patch_norm (bool): If True, add normalization after patch embedding. Default: True
|
639 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
|
640 |
+
upscale: Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction
|
641 |
+
img_range: Image range. 1. or 255.
|
642 |
+
upsampler: The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None
|
643 |
+
resi_connection: The convolutional block before residual connection. '1conv'/'3conv'
|
644 |
+
"""
|
645 |
+
|
646 |
+
def __init__(self, img_size=64, patch_size=1, in_chans=3,
|
647 |
+
embed_dim=96, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6],
|
648 |
+
window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None,
|
649 |
+
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
|
650 |
+
norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
|
651 |
+
use_checkpoint=False, upscale=2, img_range=1., upsampler='', resi_connection='1conv',
|
652 |
+
**kwargs):
|
653 |
+
super(SwinIR, self).__init__()
|
654 |
+
num_in_ch = in_chans
|
655 |
+
num_out_ch = in_chans
|
656 |
+
num_feat = 64
|
657 |
+
self.img_range = img_range
|
658 |
+
if in_chans == 3:
|
659 |
+
rgb_mean = (0.4488, 0.4371, 0.4040)
|
660 |
+
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
|
661 |
+
else:
|
662 |
+
self.mean = torch.zeros(1, 1, 1, 1)
|
663 |
+
self.upscale = upscale
|
664 |
+
self.upsampler = upsampler
|
665 |
+
self.window_size = window_size
|
666 |
+
|
667 |
+
#####################################################################################################
|
668 |
+
################################### 1, shallow feature extraction ###################################
|
669 |
+
self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)
|
670 |
+
|
671 |
+
#####################################################################################################
|
672 |
+
################################### 2, deep feature extraction ######################################
|
673 |
+
self.num_layers = len(depths)
|
674 |
+
self.embed_dim = embed_dim
|
675 |
+
self.ape = ape
|
676 |
+
self.patch_norm = patch_norm
|
677 |
+
self.num_features = embed_dim
|
678 |
+
self.mlp_ratio = mlp_ratio
|
679 |
+
|
680 |
+
# split image into non-overlapping patches
|
681 |
+
self.patch_embed = PatchEmbed(
|
682 |
+
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
|
683 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
684 |
+
num_patches = self.patch_embed.num_patches
|
685 |
+
patches_resolution = self.patch_embed.patches_resolution
|
686 |
+
self.patches_resolution = patches_resolution
|
687 |
+
|
688 |
+
# merge non-overlapping patches into image
|
689 |
+
self.patch_unembed = PatchUnEmbed(
|
690 |
+
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
|
691 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
692 |
+
|
693 |
+
# absolute position embedding
|
694 |
+
if self.ape:
|
695 |
+
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
|
696 |
+
trunc_normal_(self.absolute_pos_embed, std=.02)
|
697 |
+
|
698 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
699 |
+
|
700 |
+
# stochastic depth
|
701 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
702 |
+
|
703 |
+
# build Residual Swin Transformer blocks (RSTB)
|
704 |
+
self.layers = nn.ModuleList()
|
705 |
+
for i_layer in range(self.num_layers):
|
706 |
+
layer = RSTB(dim=embed_dim,
|
707 |
+
input_resolution=(patches_resolution[0],
|
708 |
+
patches_resolution[1]),
|
709 |
+
depth=depths[i_layer],
|
710 |
+
num_heads=num_heads[i_layer],
|
711 |
+
window_size=window_size,
|
712 |
+
mlp_ratio=self.mlp_ratio,
|
713 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
714 |
+
drop=drop_rate, attn_drop=attn_drop_rate,
|
715 |
+
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results
|
716 |
+
norm_layer=norm_layer,
|
717 |
+
downsample=None,
|
718 |
+
use_checkpoint=use_checkpoint,
|
719 |
+
img_size=img_size,
|
720 |
+
patch_size=patch_size,
|
721 |
+
resi_connection=resi_connection
|
722 |
+
|
723 |
+
)
|
724 |
+
self.layers.append(layer)
|
725 |
+
self.norm = norm_layer(self.num_features)
|
726 |
+
|
727 |
+
# build the last conv layer in deep feature extraction
|
728 |
+
if resi_connection == '1conv':
|
729 |
+
self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
|
730 |
+
elif resi_connection == '3conv':
|
731 |
+
# to save parameters and memory
|
732 |
+
self.conv_after_body = nn.Sequential(nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1),
|
733 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
734 |
+
nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0),
|
735 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
736 |
+
nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1))
|
737 |
+
|
738 |
+
#####################################################################################################
|
739 |
+
################################ 3, high quality image reconstruction ################################
|
740 |
+
if self.upsampler == 'pixelshuffle':
|
741 |
+
# for classical SR
|
742 |
+
self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
|
743 |
+
nn.LeakyReLU(inplace=True))
|
744 |
+
self.upsample = Upsample(upscale, num_feat)
|
745 |
+
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
746 |
+
elif self.upsampler == 'pixelshuffledirect':
|
747 |
+
# for lightweight SR (to save parameters)
|
748 |
+
self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch,
|
749 |
+
(patches_resolution[0], patches_resolution[1]))
|
750 |
+
elif self.upsampler == 'nearest+conv':
|
751 |
+
# for real-world SR (less artifacts)
|
752 |
+
self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
|
753 |
+
nn.LeakyReLU(inplace=True))
|
754 |
+
self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
755 |
+
if self.upscale == 4:
|
756 |
+
self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
757 |
+
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
758 |
+
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
759 |
+
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
760 |
+
else:
|
761 |
+
# for image denoising and JPEG compression artifact reduction
|
762 |
+
self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1)
|
763 |
+
|
764 |
+
self.apply(self._init_weights)
|
765 |
+
|
766 |
+
def _init_weights(self, m):
|
767 |
+
if isinstance(m, nn.Linear):
|
768 |
+
trunc_normal_(m.weight, std=.02)
|
769 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
770 |
+
nn.init.constant_(m.bias, 0)
|
771 |
+
elif isinstance(m, nn.LayerNorm):
|
772 |
+
nn.init.constant_(m.bias, 0)
|
773 |
+
nn.init.constant_(m.weight, 1.0)
|
774 |
+
|
775 |
+
@torch.jit.ignore
|
776 |
+
def no_weight_decay(self):
|
777 |
+
return {'absolute_pos_embed'}
|
778 |
+
|
779 |
+
@torch.jit.ignore
|
780 |
+
def no_weight_decay_keywords(self):
|
781 |
+
return {'relative_position_bias_table'}
|
782 |
+
|
783 |
+
def check_image_size(self, x):
|
784 |
+
_, _, h, w = x.size()
|
785 |
+
mod_pad_h = (self.window_size - h % self.window_size) % self.window_size
|
786 |
+
mod_pad_w = (self.window_size - w % self.window_size) % self.window_size
|
787 |
+
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect')
|
788 |
+
return x
|
789 |
+
|
790 |
+
def forward_features(self, x):
|
791 |
+
x_size = (x.shape[2], x.shape[3])
|
792 |
+
x = self.patch_embed(x)
|
793 |
+
if self.ape:
|
794 |
+
x = x + self.absolute_pos_embed
|
795 |
+
x = self.pos_drop(x)
|
796 |
+
|
797 |
+
for layer in self.layers:
|
798 |
+
x = layer(x, x_size)
|
799 |
+
|
800 |
+
x = self.norm(x) # B L C
|
801 |
+
x = self.patch_unembed(x, x_size)
|
802 |
+
|
803 |
+
return x
|
804 |
+
|
805 |
+
def forward(self, x):
|
806 |
+
H, W = x.shape[2:]
|
807 |
+
x = self.check_image_size(x)
|
808 |
+
|
809 |
+
self.mean = self.mean.type_as(x)
|
810 |
+
x = (x - self.mean) * self.img_range
|
811 |
+
|
812 |
+
if self.upsampler == 'pixelshuffle':
|
813 |
+
# for classical SR
|
814 |
+
x = self.conv_first(x)
|
815 |
+
x = self.conv_after_body(self.forward_features(x)) + x
|
816 |
+
x = self.conv_before_upsample(x)
|
817 |
+
x = self.conv_last(self.upsample(x))
|
818 |
+
elif self.upsampler == 'pixelshuffledirect':
|
819 |
+
# for lightweight SR
|
820 |
+
x = self.conv_first(x)
|
821 |
+
x = self.conv_after_body(self.forward_features(x)) + x
|
822 |
+
x = self.upsample(x)
|
823 |
+
elif self.upsampler == 'nearest+conv':
|
824 |
+
# for real-world SR
|
825 |
+
x = self.conv_first(x)
|
826 |
+
x = self.conv_after_body(self.forward_features(x)) + x
|
827 |
+
x = self.conv_before_upsample(x)
|
828 |
+
x = self.lrelu(self.conv_up1(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
|
829 |
+
if self.upscale == 4:
|
830 |
+
x = self.lrelu(self.conv_up2(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
|
831 |
+
x = self.conv_last(self.lrelu(self.conv_hr(x)))
|
832 |
+
else:
|
833 |
+
# for image denoising and JPEG compression artifact reduction
|
834 |
+
x_first = self.conv_first(x)
|
835 |
+
res = self.conv_after_body(self.forward_features(x_first)) + x_first
|
836 |
+
x = x + self.conv_last(res)
|
837 |
+
|
838 |
+
x = x / self.img_range + self.mean
|
839 |
+
|
840 |
+
return x[:, :, :H*self.upscale, :W*self.upscale]
|
841 |
+
|
842 |
+
def flops(self):
|
843 |
+
flops = 0
|
844 |
+
H, W = self.patches_resolution
|
845 |
+
flops += H * W * 3 * self.embed_dim * 9
|
846 |
+
flops += self.patch_embed.flops()
|
847 |
+
for i, layer in enumerate(self.layers):
|
848 |
+
flops += layer.flops()
|
849 |
+
flops += H * W * 3 * self.embed_dim * self.embed_dim
|
850 |
+
flops += self.upsample.flops()
|
851 |
+
return flops
|
852 |
+
|
853 |
+
|
854 |
+
if __name__ == '__main__':
|
855 |
+
upscale = 4
|
856 |
+
window_size = 8
|
857 |
+
height = (1024 // upscale // window_size + 1) * window_size
|
858 |
+
width = (720 // upscale // window_size + 1) * window_size
|
859 |
+
model = SwinIR(upscale=2, img_size=(height, width),
|
860 |
+
window_size=window_size, img_range=1., depths=[6, 6, 6, 6],
|
861 |
+
embed_dim=60, num_heads=[6, 6, 6, 6], mlp_ratio=2, upsampler='pixelshuffledirect')
|
862 |
+
print(model)
|
863 |
+
print(height, width, model.flops() / 1e9)
|
864 |
+
|
865 |
+
x = torch.randn((1, 3, height, width))
|
866 |
+
x = model(x)
|
867 |
+
print(x.shape)
|
extensions-builtin/SwinIR/swinir_model_arch_v2.py
ADDED
@@ -0,0 +1,1017 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -----------------------------------------------------------------------------------
|
2 |
+
# Swin2SR: Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration, https://arxiv.org/abs/
|
3 |
+
# Written by Conde and Choi et al.
|
4 |
+
# -----------------------------------------------------------------------------------
|
5 |
+
|
6 |
+
import math
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
import torch.utils.checkpoint as checkpoint
|
12 |
+
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
13 |
+
|
14 |
+
|
15 |
+
class Mlp(nn.Module):
|
16 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
17 |
+
super().__init__()
|
18 |
+
out_features = out_features or in_features
|
19 |
+
hidden_features = hidden_features or in_features
|
20 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
21 |
+
self.act = act_layer()
|
22 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
23 |
+
self.drop = nn.Dropout(drop)
|
24 |
+
|
25 |
+
def forward(self, x):
|
26 |
+
x = self.fc1(x)
|
27 |
+
x = self.act(x)
|
28 |
+
x = self.drop(x)
|
29 |
+
x = self.fc2(x)
|
30 |
+
x = self.drop(x)
|
31 |
+
return x
|
32 |
+
|
33 |
+
|
34 |
+
def window_partition(x, window_size):
|
35 |
+
"""
|
36 |
+
Args:
|
37 |
+
x: (B, H, W, C)
|
38 |
+
window_size (int): window size
|
39 |
+
Returns:
|
40 |
+
windows: (num_windows*B, window_size, window_size, C)
|
41 |
+
"""
|
42 |
+
B, H, W, C = x.shape
|
43 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
44 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
45 |
+
return windows
|
46 |
+
|
47 |
+
|
48 |
+
def window_reverse(windows, window_size, H, W):
|
49 |
+
"""
|
50 |
+
Args:
|
51 |
+
windows: (num_windows*B, window_size, window_size, C)
|
52 |
+
window_size (int): Window size
|
53 |
+
H (int): Height of image
|
54 |
+
W (int): Width of image
|
55 |
+
Returns:
|
56 |
+
x: (B, H, W, C)
|
57 |
+
"""
|
58 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
59 |
+
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
60 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
61 |
+
return x
|
62 |
+
|
63 |
+
class WindowAttention(nn.Module):
|
64 |
+
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
65 |
+
It supports both of shifted and non-shifted window.
|
66 |
+
Args:
|
67 |
+
dim (int): Number of input channels.
|
68 |
+
window_size (tuple[int]): The height and width of the window.
|
69 |
+
num_heads (int): Number of attention heads.
|
70 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
71 |
+
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
72 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
73 |
+
pretrained_window_size (tuple[int]): The height and width of the window in pre-training.
|
74 |
+
"""
|
75 |
+
|
76 |
+
def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.,
|
77 |
+
pretrained_window_size=[0, 0]):
|
78 |
+
|
79 |
+
super().__init__()
|
80 |
+
self.dim = dim
|
81 |
+
self.window_size = window_size # Wh, Ww
|
82 |
+
self.pretrained_window_size = pretrained_window_size
|
83 |
+
self.num_heads = num_heads
|
84 |
+
|
85 |
+
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True)
|
86 |
+
|
87 |
+
# mlp to generate continuous relative position bias
|
88 |
+
self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True),
|
89 |
+
nn.ReLU(inplace=True),
|
90 |
+
nn.Linear(512, num_heads, bias=False))
|
91 |
+
|
92 |
+
# get relative_coords_table
|
93 |
+
relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32)
|
94 |
+
relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32)
|
95 |
+
relative_coords_table = torch.stack(
|
96 |
+
torch.meshgrid([relative_coords_h,
|
97 |
+
relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2
|
98 |
+
if pretrained_window_size[0] > 0:
|
99 |
+
relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1)
|
100 |
+
relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1)
|
101 |
+
else:
|
102 |
+
relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1)
|
103 |
+
relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1)
|
104 |
+
relative_coords_table *= 8 # normalize to -8, 8
|
105 |
+
relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
|
106 |
+
torch.abs(relative_coords_table) + 1.0) / np.log2(8)
|
107 |
+
|
108 |
+
self.register_buffer("relative_coords_table", relative_coords_table)
|
109 |
+
|
110 |
+
# get pair-wise relative position index for each token inside the window
|
111 |
+
coords_h = torch.arange(self.window_size[0])
|
112 |
+
coords_w = torch.arange(self.window_size[1])
|
113 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
114 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
115 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
116 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
117 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
118 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
119 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
120 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
121 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
122 |
+
|
123 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=False)
|
124 |
+
if qkv_bias:
|
125 |
+
self.q_bias = nn.Parameter(torch.zeros(dim))
|
126 |
+
self.v_bias = nn.Parameter(torch.zeros(dim))
|
127 |
+
else:
|
128 |
+
self.q_bias = None
|
129 |
+
self.v_bias = None
|
130 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
131 |
+
self.proj = nn.Linear(dim, dim)
|
132 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
133 |
+
self.softmax = nn.Softmax(dim=-1)
|
134 |
+
|
135 |
+
def forward(self, x, mask=None):
|
136 |
+
"""
|
137 |
+
Args:
|
138 |
+
x: input features with shape of (num_windows*B, N, C)
|
139 |
+
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
140 |
+
"""
|
141 |
+
B_, N, C = x.shape
|
142 |
+
qkv_bias = None
|
143 |
+
if self.q_bias is not None:
|
144 |
+
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
|
145 |
+
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
|
146 |
+
qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
147 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
148 |
+
|
149 |
+
# cosine attention
|
150 |
+
attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1))
|
151 |
+
logit_scale = torch.clamp(self.logit_scale, max=torch.log(torch.tensor(1. / 0.01)).to(self.logit_scale.device)).exp()
|
152 |
+
attn = attn * logit_scale
|
153 |
+
|
154 |
+
relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads)
|
155 |
+
relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
156 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
157 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
158 |
+
relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
|
159 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
160 |
+
|
161 |
+
if mask is not None:
|
162 |
+
nW = mask.shape[0]
|
163 |
+
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
164 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
165 |
+
attn = self.softmax(attn)
|
166 |
+
else:
|
167 |
+
attn = self.softmax(attn)
|
168 |
+
|
169 |
+
attn = self.attn_drop(attn)
|
170 |
+
|
171 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
172 |
+
x = self.proj(x)
|
173 |
+
x = self.proj_drop(x)
|
174 |
+
return x
|
175 |
+
|
176 |
+
def extra_repr(self) -> str:
|
177 |
+
return f'dim={self.dim}, window_size={self.window_size}, ' \
|
178 |
+
f'pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}'
|
179 |
+
|
180 |
+
def flops(self, N):
|
181 |
+
# calculate flops for 1 window with token length of N
|
182 |
+
flops = 0
|
183 |
+
# qkv = self.qkv(x)
|
184 |
+
flops += N * self.dim * 3 * self.dim
|
185 |
+
# attn = (q @ k.transpose(-2, -1))
|
186 |
+
flops += self.num_heads * N * (self.dim // self.num_heads) * N
|
187 |
+
# x = (attn @ v)
|
188 |
+
flops += self.num_heads * N * N * (self.dim // self.num_heads)
|
189 |
+
# x = self.proj(x)
|
190 |
+
flops += N * self.dim * self.dim
|
191 |
+
return flops
|
192 |
+
|
193 |
+
class SwinTransformerBlock(nn.Module):
|
194 |
+
r""" Swin Transformer Block.
|
195 |
+
Args:
|
196 |
+
dim (int): Number of input channels.
|
197 |
+
input_resolution (tuple[int]): Input resulotion.
|
198 |
+
num_heads (int): Number of attention heads.
|
199 |
+
window_size (int): Window size.
|
200 |
+
shift_size (int): Shift size for SW-MSA.
|
201 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
202 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
203 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
204 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
205 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
206 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
207 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
208 |
+
pretrained_window_size (int): Window size in pre-training.
|
209 |
+
"""
|
210 |
+
|
211 |
+
def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
|
212 |
+
mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,
|
213 |
+
act_layer=nn.GELU, norm_layer=nn.LayerNorm, pretrained_window_size=0):
|
214 |
+
super().__init__()
|
215 |
+
self.dim = dim
|
216 |
+
self.input_resolution = input_resolution
|
217 |
+
self.num_heads = num_heads
|
218 |
+
self.window_size = window_size
|
219 |
+
self.shift_size = shift_size
|
220 |
+
self.mlp_ratio = mlp_ratio
|
221 |
+
if min(self.input_resolution) <= self.window_size:
|
222 |
+
# if window size is larger than input resolution, we don't partition windows
|
223 |
+
self.shift_size = 0
|
224 |
+
self.window_size = min(self.input_resolution)
|
225 |
+
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
|
226 |
+
|
227 |
+
self.norm1 = norm_layer(dim)
|
228 |
+
self.attn = WindowAttention(
|
229 |
+
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
|
230 |
+
qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
|
231 |
+
pretrained_window_size=to_2tuple(pretrained_window_size))
|
232 |
+
|
233 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
234 |
+
self.norm2 = norm_layer(dim)
|
235 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
236 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
237 |
+
|
238 |
+
if self.shift_size > 0:
|
239 |
+
attn_mask = self.calculate_mask(self.input_resolution)
|
240 |
+
else:
|
241 |
+
attn_mask = None
|
242 |
+
|
243 |
+
self.register_buffer("attn_mask", attn_mask)
|
244 |
+
|
245 |
+
def calculate_mask(self, x_size):
|
246 |
+
# calculate attention mask for SW-MSA
|
247 |
+
H, W = x_size
|
248 |
+
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
|
249 |
+
h_slices = (slice(0, -self.window_size),
|
250 |
+
slice(-self.window_size, -self.shift_size),
|
251 |
+
slice(-self.shift_size, None))
|
252 |
+
w_slices = (slice(0, -self.window_size),
|
253 |
+
slice(-self.window_size, -self.shift_size),
|
254 |
+
slice(-self.shift_size, None))
|
255 |
+
cnt = 0
|
256 |
+
for h in h_slices:
|
257 |
+
for w in w_slices:
|
258 |
+
img_mask[:, h, w, :] = cnt
|
259 |
+
cnt += 1
|
260 |
+
|
261 |
+
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
|
262 |
+
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
263 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
264 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
265 |
+
|
266 |
+
return attn_mask
|
267 |
+
|
268 |
+
def forward(self, x, x_size):
|
269 |
+
H, W = x_size
|
270 |
+
B, L, C = x.shape
|
271 |
+
#assert L == H * W, "input feature has wrong size"
|
272 |
+
|
273 |
+
shortcut = x
|
274 |
+
x = x.view(B, H, W, C)
|
275 |
+
|
276 |
+
# cyclic shift
|
277 |
+
if self.shift_size > 0:
|
278 |
+
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
279 |
+
else:
|
280 |
+
shifted_x = x
|
281 |
+
|
282 |
+
# partition windows
|
283 |
+
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
|
284 |
+
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
|
285 |
+
|
286 |
+
# W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size
|
287 |
+
if self.input_resolution == x_size:
|
288 |
+
attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
|
289 |
+
else:
|
290 |
+
attn_windows = self.attn(x_windows, mask=self.calculate_mask(x_size).to(x.device))
|
291 |
+
|
292 |
+
# merge windows
|
293 |
+
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
294 |
+
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
|
295 |
+
|
296 |
+
# reverse cyclic shift
|
297 |
+
if self.shift_size > 0:
|
298 |
+
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
299 |
+
else:
|
300 |
+
x = shifted_x
|
301 |
+
x = x.view(B, H * W, C)
|
302 |
+
x = shortcut + self.drop_path(self.norm1(x))
|
303 |
+
|
304 |
+
# FFN
|
305 |
+
x = x + self.drop_path(self.norm2(self.mlp(x)))
|
306 |
+
|
307 |
+
return x
|
308 |
+
|
309 |
+
def extra_repr(self) -> str:
|
310 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
|
311 |
+
f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
|
312 |
+
|
313 |
+
def flops(self):
|
314 |
+
flops = 0
|
315 |
+
H, W = self.input_resolution
|
316 |
+
# norm1
|
317 |
+
flops += self.dim * H * W
|
318 |
+
# W-MSA/SW-MSA
|
319 |
+
nW = H * W / self.window_size / self.window_size
|
320 |
+
flops += nW * self.attn.flops(self.window_size * self.window_size)
|
321 |
+
# mlp
|
322 |
+
flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
|
323 |
+
# norm2
|
324 |
+
flops += self.dim * H * W
|
325 |
+
return flops
|
326 |
+
|
327 |
+
class PatchMerging(nn.Module):
|
328 |
+
r""" Patch Merging Layer.
|
329 |
+
Args:
|
330 |
+
input_resolution (tuple[int]): Resolution of input feature.
|
331 |
+
dim (int): Number of input channels.
|
332 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
333 |
+
"""
|
334 |
+
|
335 |
+
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
|
336 |
+
super().__init__()
|
337 |
+
self.input_resolution = input_resolution
|
338 |
+
self.dim = dim
|
339 |
+
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
340 |
+
self.norm = norm_layer(2 * dim)
|
341 |
+
|
342 |
+
def forward(self, x):
|
343 |
+
"""
|
344 |
+
x: B, H*W, C
|
345 |
+
"""
|
346 |
+
H, W = self.input_resolution
|
347 |
+
B, L, C = x.shape
|
348 |
+
assert L == H * W, "input feature has wrong size"
|
349 |
+
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
|
350 |
+
|
351 |
+
x = x.view(B, H, W, C)
|
352 |
+
|
353 |
+
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
354 |
+
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
355 |
+
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
356 |
+
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
357 |
+
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
358 |
+
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
359 |
+
|
360 |
+
x = self.reduction(x)
|
361 |
+
x = self.norm(x)
|
362 |
+
|
363 |
+
return x
|
364 |
+
|
365 |
+
def extra_repr(self) -> str:
|
366 |
+
return f"input_resolution={self.input_resolution}, dim={self.dim}"
|
367 |
+
|
368 |
+
def flops(self):
|
369 |
+
H, W = self.input_resolution
|
370 |
+
flops = (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
|
371 |
+
flops += H * W * self.dim // 2
|
372 |
+
return flops
|
373 |
+
|
374 |
+
class BasicLayer(nn.Module):
|
375 |
+
""" A basic Swin Transformer layer for one stage.
|
376 |
+
Args:
|
377 |
+
dim (int): Number of input channels.
|
378 |
+
input_resolution (tuple[int]): Input resolution.
|
379 |
+
depth (int): Number of blocks.
|
380 |
+
num_heads (int): Number of attention heads.
|
381 |
+
window_size (int): Local window size.
|
382 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
383 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
384 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
385 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
386 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
387 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
388 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
389 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
390 |
+
pretrained_window_size (int): Local window size in pre-training.
|
391 |
+
"""
|
392 |
+
|
393 |
+
def __init__(self, dim, input_resolution, depth, num_heads, window_size,
|
394 |
+
mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.,
|
395 |
+
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False,
|
396 |
+
pretrained_window_size=0):
|
397 |
+
|
398 |
+
super().__init__()
|
399 |
+
self.dim = dim
|
400 |
+
self.input_resolution = input_resolution
|
401 |
+
self.depth = depth
|
402 |
+
self.use_checkpoint = use_checkpoint
|
403 |
+
|
404 |
+
# build blocks
|
405 |
+
self.blocks = nn.ModuleList([
|
406 |
+
SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
|
407 |
+
num_heads=num_heads, window_size=window_size,
|
408 |
+
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
409 |
+
mlp_ratio=mlp_ratio,
|
410 |
+
qkv_bias=qkv_bias,
|
411 |
+
drop=drop, attn_drop=attn_drop,
|
412 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
413 |
+
norm_layer=norm_layer,
|
414 |
+
pretrained_window_size=pretrained_window_size)
|
415 |
+
for i in range(depth)])
|
416 |
+
|
417 |
+
# patch merging layer
|
418 |
+
if downsample is not None:
|
419 |
+
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
|
420 |
+
else:
|
421 |
+
self.downsample = None
|
422 |
+
|
423 |
+
def forward(self, x, x_size):
|
424 |
+
for blk in self.blocks:
|
425 |
+
if self.use_checkpoint:
|
426 |
+
x = checkpoint.checkpoint(blk, x, x_size)
|
427 |
+
else:
|
428 |
+
x = blk(x, x_size)
|
429 |
+
if self.downsample is not None:
|
430 |
+
x = self.downsample(x)
|
431 |
+
return x
|
432 |
+
|
433 |
+
def extra_repr(self) -> str:
|
434 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
|
435 |
+
|
436 |
+
def flops(self):
|
437 |
+
flops = 0
|
438 |
+
for blk in self.blocks:
|
439 |
+
flops += blk.flops()
|
440 |
+
if self.downsample is not None:
|
441 |
+
flops += self.downsample.flops()
|
442 |
+
return flops
|
443 |
+
|
444 |
+
def _init_respostnorm(self):
|
445 |
+
for blk in self.blocks:
|
446 |
+
nn.init.constant_(blk.norm1.bias, 0)
|
447 |
+
nn.init.constant_(blk.norm1.weight, 0)
|
448 |
+
nn.init.constant_(blk.norm2.bias, 0)
|
449 |
+
nn.init.constant_(blk.norm2.weight, 0)
|
450 |
+
|
451 |
+
class PatchEmbed(nn.Module):
|
452 |
+
r""" Image to Patch Embedding
|
453 |
+
Args:
|
454 |
+
img_size (int): Image size. Default: 224.
|
455 |
+
patch_size (int): Patch token size. Default: 4.
|
456 |
+
in_chans (int): Number of input image channels. Default: 3.
|
457 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
458 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
459 |
+
"""
|
460 |
+
|
461 |
+
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
462 |
+
super().__init__()
|
463 |
+
img_size = to_2tuple(img_size)
|
464 |
+
patch_size = to_2tuple(patch_size)
|
465 |
+
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
466 |
+
self.img_size = img_size
|
467 |
+
self.patch_size = patch_size
|
468 |
+
self.patches_resolution = patches_resolution
|
469 |
+
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
470 |
+
|
471 |
+
self.in_chans = in_chans
|
472 |
+
self.embed_dim = embed_dim
|
473 |
+
|
474 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
475 |
+
if norm_layer is not None:
|
476 |
+
self.norm = norm_layer(embed_dim)
|
477 |
+
else:
|
478 |
+
self.norm = None
|
479 |
+
|
480 |
+
def forward(self, x):
|
481 |
+
B, C, H, W = x.shape
|
482 |
+
# FIXME look at relaxing size constraints
|
483 |
+
# assert H == self.img_size[0] and W == self.img_size[1],
|
484 |
+
# f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
485 |
+
x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C
|
486 |
+
if self.norm is not None:
|
487 |
+
x = self.norm(x)
|
488 |
+
return x
|
489 |
+
|
490 |
+
def flops(self):
|
491 |
+
Ho, Wo = self.patches_resolution
|
492 |
+
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
|
493 |
+
if self.norm is not None:
|
494 |
+
flops += Ho * Wo * self.embed_dim
|
495 |
+
return flops
|
496 |
+
|
497 |
+
class RSTB(nn.Module):
|
498 |
+
"""Residual Swin Transformer Block (RSTB).
|
499 |
+
|
500 |
+
Args:
|
501 |
+
dim (int): Number of input channels.
|
502 |
+
input_resolution (tuple[int]): Input resolution.
|
503 |
+
depth (int): Number of blocks.
|
504 |
+
num_heads (int): Number of attention heads.
|
505 |
+
window_size (int): Local window size.
|
506 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
507 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
508 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
509 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
510 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
511 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
512 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
513 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
514 |
+
img_size: Input image size.
|
515 |
+
patch_size: Patch size.
|
516 |
+
resi_connection: The convolutional block before residual connection.
|
517 |
+
"""
|
518 |
+
|
519 |
+
def __init__(self, dim, input_resolution, depth, num_heads, window_size,
|
520 |
+
mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.,
|
521 |
+
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False,
|
522 |
+
img_size=224, patch_size=4, resi_connection='1conv'):
|
523 |
+
super(RSTB, self).__init__()
|
524 |
+
|
525 |
+
self.dim = dim
|
526 |
+
self.input_resolution = input_resolution
|
527 |
+
|
528 |
+
self.residual_group = BasicLayer(dim=dim,
|
529 |
+
input_resolution=input_resolution,
|
530 |
+
depth=depth,
|
531 |
+
num_heads=num_heads,
|
532 |
+
window_size=window_size,
|
533 |
+
mlp_ratio=mlp_ratio,
|
534 |
+
qkv_bias=qkv_bias,
|
535 |
+
drop=drop, attn_drop=attn_drop,
|
536 |
+
drop_path=drop_path,
|
537 |
+
norm_layer=norm_layer,
|
538 |
+
downsample=downsample,
|
539 |
+
use_checkpoint=use_checkpoint)
|
540 |
+
|
541 |
+
if resi_connection == '1conv':
|
542 |
+
self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
|
543 |
+
elif resi_connection == '3conv':
|
544 |
+
# to save parameters and memory
|
545 |
+
self.conv = nn.Sequential(nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
546 |
+
nn.Conv2d(dim // 4, dim // 4, 1, 1, 0),
|
547 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
548 |
+
nn.Conv2d(dim // 4, dim, 3, 1, 1))
|
549 |
+
|
550 |
+
self.patch_embed = PatchEmbed(
|
551 |
+
img_size=img_size, patch_size=patch_size, in_chans=dim, embed_dim=dim,
|
552 |
+
norm_layer=None)
|
553 |
+
|
554 |
+
self.patch_unembed = PatchUnEmbed(
|
555 |
+
img_size=img_size, patch_size=patch_size, in_chans=dim, embed_dim=dim,
|
556 |
+
norm_layer=None)
|
557 |
+
|
558 |
+
def forward(self, x, x_size):
|
559 |
+
return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size), x_size))) + x
|
560 |
+
|
561 |
+
def flops(self):
|
562 |
+
flops = 0
|
563 |
+
flops += self.residual_group.flops()
|
564 |
+
H, W = self.input_resolution
|
565 |
+
flops += H * W * self.dim * self.dim * 9
|
566 |
+
flops += self.patch_embed.flops()
|
567 |
+
flops += self.patch_unembed.flops()
|
568 |
+
|
569 |
+
return flops
|
570 |
+
|
571 |
+
class PatchUnEmbed(nn.Module):
|
572 |
+
r""" Image to Patch Unembedding
|
573 |
+
|
574 |
+
Args:
|
575 |
+
img_size (int): Image size. Default: 224.
|
576 |
+
patch_size (int): Patch token size. Default: 4.
|
577 |
+
in_chans (int): Number of input image channels. Default: 3.
|
578 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
579 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
580 |
+
"""
|
581 |
+
|
582 |
+
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
583 |
+
super().__init__()
|
584 |
+
img_size = to_2tuple(img_size)
|
585 |
+
patch_size = to_2tuple(patch_size)
|
586 |
+
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
587 |
+
self.img_size = img_size
|
588 |
+
self.patch_size = patch_size
|
589 |
+
self.patches_resolution = patches_resolution
|
590 |
+
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
591 |
+
|
592 |
+
self.in_chans = in_chans
|
593 |
+
self.embed_dim = embed_dim
|
594 |
+
|
595 |
+
def forward(self, x, x_size):
|
596 |
+
B, HW, C = x.shape
|
597 |
+
x = x.transpose(1, 2).view(B, self.embed_dim, x_size[0], x_size[1]) # B Ph*Pw C
|
598 |
+
return x
|
599 |
+
|
600 |
+
def flops(self):
|
601 |
+
flops = 0
|
602 |
+
return flops
|
603 |
+
|
604 |
+
|
605 |
+
class Upsample(nn.Sequential):
|
606 |
+
"""Upsample module.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
610 |
+
num_feat (int): Channel number of intermediate features.
|
611 |
+
"""
|
612 |
+
|
613 |
+
def __init__(self, scale, num_feat):
|
614 |
+
m = []
|
615 |
+
if (scale & (scale - 1)) == 0: # scale = 2^n
|
616 |
+
for _ in range(int(math.log(scale, 2))):
|
617 |
+
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
|
618 |
+
m.append(nn.PixelShuffle(2))
|
619 |
+
elif scale == 3:
|
620 |
+
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
|
621 |
+
m.append(nn.PixelShuffle(3))
|
622 |
+
else:
|
623 |
+
raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
|
624 |
+
super(Upsample, self).__init__(*m)
|
625 |
+
|
626 |
+
class Upsample_hf(nn.Sequential):
|
627 |
+
"""Upsample module.
|
628 |
+
|
629 |
+
Args:
|
630 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
631 |
+
num_feat (int): Channel number of intermediate features.
|
632 |
+
"""
|
633 |
+
|
634 |
+
def __init__(self, scale, num_feat):
|
635 |
+
m = []
|
636 |
+
if (scale & (scale - 1)) == 0: # scale = 2^n
|
637 |
+
for _ in range(int(math.log(scale, 2))):
|
638 |
+
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
|
639 |
+
m.append(nn.PixelShuffle(2))
|
640 |
+
elif scale == 3:
|
641 |
+
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
|
642 |
+
m.append(nn.PixelShuffle(3))
|
643 |
+
else:
|
644 |
+
raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
|
645 |
+
super(Upsample_hf, self).__init__(*m)
|
646 |
+
|
647 |
+
|
648 |
+
class UpsampleOneStep(nn.Sequential):
|
649 |
+
"""UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle)
|
650 |
+
Used in lightweight SR to save parameters.
|
651 |
+
|
652 |
+
Args:
|
653 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
654 |
+
num_feat (int): Channel number of intermediate features.
|
655 |
+
|
656 |
+
"""
|
657 |
+
|
658 |
+
def __init__(self, scale, num_feat, num_out_ch, input_resolution=None):
|
659 |
+
self.num_feat = num_feat
|
660 |
+
self.input_resolution = input_resolution
|
661 |
+
m = []
|
662 |
+
m.append(nn.Conv2d(num_feat, (scale ** 2) * num_out_ch, 3, 1, 1))
|
663 |
+
m.append(nn.PixelShuffle(scale))
|
664 |
+
super(UpsampleOneStep, self).__init__(*m)
|
665 |
+
|
666 |
+
def flops(self):
|
667 |
+
H, W = self.input_resolution
|
668 |
+
flops = H * W * self.num_feat * 3 * 9
|
669 |
+
return flops
|
670 |
+
|
671 |
+
|
672 |
+
|
673 |
+
class Swin2SR(nn.Module):
|
674 |
+
r""" Swin2SR
|
675 |
+
A PyTorch impl of : `Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration`.
|
676 |
+
|
677 |
+
Args:
|
678 |
+
img_size (int | tuple(int)): Input image size. Default 64
|
679 |
+
patch_size (int | tuple(int)): Patch size. Default: 1
|
680 |
+
in_chans (int): Number of input image channels. Default: 3
|
681 |
+
embed_dim (int): Patch embedding dimension. Default: 96
|
682 |
+
depths (tuple(int)): Depth of each Swin Transformer layer.
|
683 |
+
num_heads (tuple(int)): Number of attention heads in different layers.
|
684 |
+
window_size (int): Window size. Default: 7
|
685 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
|
686 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
687 |
+
drop_rate (float): Dropout rate. Default: 0
|
688 |
+
attn_drop_rate (float): Attention dropout rate. Default: 0
|
689 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.1
|
690 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
691 |
+
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
|
692 |
+
patch_norm (bool): If True, add normalization after patch embedding. Default: True
|
693 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
|
694 |
+
upscale: Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction
|
695 |
+
img_range: Image range. 1. or 255.
|
696 |
+
upsampler: The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None
|
697 |
+
resi_connection: The convolutional block before residual connection. '1conv'/'3conv'
|
698 |
+
"""
|
699 |
+
|
700 |
+
def __init__(self, img_size=64, patch_size=1, in_chans=3,
|
701 |
+
embed_dim=96, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6],
|
702 |
+
window_size=7, mlp_ratio=4., qkv_bias=True,
|
703 |
+
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
|
704 |
+
norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
|
705 |
+
use_checkpoint=False, upscale=2, img_range=1., upsampler='', resi_connection='1conv',
|
706 |
+
**kwargs):
|
707 |
+
super(Swin2SR, self).__init__()
|
708 |
+
num_in_ch = in_chans
|
709 |
+
num_out_ch = in_chans
|
710 |
+
num_feat = 64
|
711 |
+
self.img_range = img_range
|
712 |
+
if in_chans == 3:
|
713 |
+
rgb_mean = (0.4488, 0.4371, 0.4040)
|
714 |
+
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
|
715 |
+
else:
|
716 |
+
self.mean = torch.zeros(1, 1, 1, 1)
|
717 |
+
self.upscale = upscale
|
718 |
+
self.upsampler = upsampler
|
719 |
+
self.window_size = window_size
|
720 |
+
|
721 |
+
#####################################################################################################
|
722 |
+
################################### 1, shallow feature extraction ###################################
|
723 |
+
self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)
|
724 |
+
|
725 |
+
#####################################################################################################
|
726 |
+
################################### 2, deep feature extraction ######################################
|
727 |
+
self.num_layers = len(depths)
|
728 |
+
self.embed_dim = embed_dim
|
729 |
+
self.ape = ape
|
730 |
+
self.patch_norm = patch_norm
|
731 |
+
self.num_features = embed_dim
|
732 |
+
self.mlp_ratio = mlp_ratio
|
733 |
+
|
734 |
+
# split image into non-overlapping patches
|
735 |
+
self.patch_embed = PatchEmbed(
|
736 |
+
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
|
737 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
738 |
+
num_patches = self.patch_embed.num_patches
|
739 |
+
patches_resolution = self.patch_embed.patches_resolution
|
740 |
+
self.patches_resolution = patches_resolution
|
741 |
+
|
742 |
+
# merge non-overlapping patches into image
|
743 |
+
self.patch_unembed = PatchUnEmbed(
|
744 |
+
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
|
745 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
746 |
+
|
747 |
+
# absolute position embedding
|
748 |
+
if self.ape:
|
749 |
+
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
|
750 |
+
trunc_normal_(self.absolute_pos_embed, std=.02)
|
751 |
+
|
752 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
753 |
+
|
754 |
+
# stochastic depth
|
755 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
756 |
+
|
757 |
+
# build Residual Swin Transformer blocks (RSTB)
|
758 |
+
self.layers = nn.ModuleList()
|
759 |
+
for i_layer in range(self.num_layers):
|
760 |
+
layer = RSTB(dim=embed_dim,
|
761 |
+
input_resolution=(patches_resolution[0],
|
762 |
+
patches_resolution[1]),
|
763 |
+
depth=depths[i_layer],
|
764 |
+
num_heads=num_heads[i_layer],
|
765 |
+
window_size=window_size,
|
766 |
+
mlp_ratio=self.mlp_ratio,
|
767 |
+
qkv_bias=qkv_bias,
|
768 |
+
drop=drop_rate, attn_drop=attn_drop_rate,
|
769 |
+
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results
|
770 |
+
norm_layer=norm_layer,
|
771 |
+
downsample=None,
|
772 |
+
use_checkpoint=use_checkpoint,
|
773 |
+
img_size=img_size,
|
774 |
+
patch_size=patch_size,
|
775 |
+
resi_connection=resi_connection
|
776 |
+
|
777 |
+
)
|
778 |
+
self.layers.append(layer)
|
779 |
+
|
780 |
+
if self.upsampler == 'pixelshuffle_hf':
|
781 |
+
self.layers_hf = nn.ModuleList()
|
782 |
+
for i_layer in range(self.num_layers):
|
783 |
+
layer = RSTB(dim=embed_dim,
|
784 |
+
input_resolution=(patches_resolution[0],
|
785 |
+
patches_resolution[1]),
|
786 |
+
depth=depths[i_layer],
|
787 |
+
num_heads=num_heads[i_layer],
|
788 |
+
window_size=window_size,
|
789 |
+
mlp_ratio=self.mlp_ratio,
|
790 |
+
qkv_bias=qkv_bias,
|
791 |
+
drop=drop_rate, attn_drop=attn_drop_rate,
|
792 |
+
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results
|
793 |
+
norm_layer=norm_layer,
|
794 |
+
downsample=None,
|
795 |
+
use_checkpoint=use_checkpoint,
|
796 |
+
img_size=img_size,
|
797 |
+
patch_size=patch_size,
|
798 |
+
resi_connection=resi_connection
|
799 |
+
|
800 |
+
)
|
801 |
+
self.layers_hf.append(layer)
|
802 |
+
|
803 |
+
self.norm = norm_layer(self.num_features)
|
804 |
+
|
805 |
+
# build the last conv layer in deep feature extraction
|
806 |
+
if resi_connection == '1conv':
|
807 |
+
self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
|
808 |
+
elif resi_connection == '3conv':
|
809 |
+
# to save parameters and memory
|
810 |
+
self.conv_after_body = nn.Sequential(nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1),
|
811 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
812 |
+
nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0),
|
813 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
814 |
+
nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1))
|
815 |
+
|
816 |
+
#####################################################################################################
|
817 |
+
################################ 3, high quality image reconstruction ################################
|
818 |
+
if self.upsampler == 'pixelshuffle':
|
819 |
+
# for classical SR
|
820 |
+
self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
|
821 |
+
nn.LeakyReLU(inplace=True))
|
822 |
+
self.upsample = Upsample(upscale, num_feat)
|
823 |
+
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
824 |
+
elif self.upsampler == 'pixelshuffle_aux':
|
825 |
+
self.conv_bicubic = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
|
826 |
+
self.conv_before_upsample = nn.Sequential(
|
827 |
+
nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
|
828 |
+
nn.LeakyReLU(inplace=True))
|
829 |
+
self.conv_aux = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
830 |
+
self.conv_after_aux = nn.Sequential(
|
831 |
+
nn.Conv2d(3, num_feat, 3, 1, 1),
|
832 |
+
nn.LeakyReLU(inplace=True))
|
833 |
+
self.upsample = Upsample(upscale, num_feat)
|
834 |
+
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
835 |
+
|
836 |
+
elif self.upsampler == 'pixelshuffle_hf':
|
837 |
+
self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
|
838 |
+
nn.LeakyReLU(inplace=True))
|
839 |
+
self.upsample = Upsample(upscale, num_feat)
|
840 |
+
self.upsample_hf = Upsample_hf(upscale, num_feat)
|
841 |
+
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
842 |
+
self.conv_first_hf = nn.Sequential(nn.Conv2d(num_feat, embed_dim, 3, 1, 1),
|
843 |
+
nn.LeakyReLU(inplace=True))
|
844 |
+
self.conv_after_body_hf = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
|
845 |
+
self.conv_before_upsample_hf = nn.Sequential(
|
846 |
+
nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
|
847 |
+
nn.LeakyReLU(inplace=True))
|
848 |
+
self.conv_last_hf = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
849 |
+
|
850 |
+
elif self.upsampler == 'pixelshuffledirect':
|
851 |
+
# for lightweight SR (to save parameters)
|
852 |
+
self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch,
|
853 |
+
(patches_resolution[0], patches_resolution[1]))
|
854 |
+
elif self.upsampler == 'nearest+conv':
|
855 |
+
# for real-world SR (less artifacts)
|
856 |
+
assert self.upscale == 4, 'only support x4 now.'
|
857 |
+
self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
|
858 |
+
nn.LeakyReLU(inplace=True))
|
859 |
+
self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
860 |
+
self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
861 |
+
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
862 |
+
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
863 |
+
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
864 |
+
else:
|
865 |
+
# for image denoising and JPEG compression artifact reduction
|
866 |
+
self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1)
|
867 |
+
|
868 |
+
self.apply(self._init_weights)
|
869 |
+
|
870 |
+
def _init_weights(self, m):
|
871 |
+
if isinstance(m, nn.Linear):
|
872 |
+
trunc_normal_(m.weight, std=.02)
|
873 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
874 |
+
nn.init.constant_(m.bias, 0)
|
875 |
+
elif isinstance(m, nn.LayerNorm):
|
876 |
+
nn.init.constant_(m.bias, 0)
|
877 |
+
nn.init.constant_(m.weight, 1.0)
|
878 |
+
|
879 |
+
@torch.jit.ignore
|
880 |
+
def no_weight_decay(self):
|
881 |
+
return {'absolute_pos_embed'}
|
882 |
+
|
883 |
+
@torch.jit.ignore
|
884 |
+
def no_weight_decay_keywords(self):
|
885 |
+
return {'relative_position_bias_table'}
|
886 |
+
|
887 |
+
def check_image_size(self, x):
|
888 |
+
_, _, h, w = x.size()
|
889 |
+
mod_pad_h = (self.window_size - h % self.window_size) % self.window_size
|
890 |
+
mod_pad_w = (self.window_size - w % self.window_size) % self.window_size
|
891 |
+
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect')
|
892 |
+
return x
|
893 |
+
|
894 |
+
def forward_features(self, x):
|
895 |
+
x_size = (x.shape[2], x.shape[3])
|
896 |
+
x = self.patch_embed(x)
|
897 |
+
if self.ape:
|
898 |
+
x = x + self.absolute_pos_embed
|
899 |
+
x = self.pos_drop(x)
|
900 |
+
|
901 |
+
for layer in self.layers:
|
902 |
+
x = layer(x, x_size)
|
903 |
+
|
904 |
+
x = self.norm(x) # B L C
|
905 |
+
x = self.patch_unembed(x, x_size)
|
906 |
+
|
907 |
+
return x
|
908 |
+
|
909 |
+
def forward_features_hf(self, x):
|
910 |
+
x_size = (x.shape[2], x.shape[3])
|
911 |
+
x = self.patch_embed(x)
|
912 |
+
if self.ape:
|
913 |
+
x = x + self.absolute_pos_embed
|
914 |
+
x = self.pos_drop(x)
|
915 |
+
|
916 |
+
for layer in self.layers_hf:
|
917 |
+
x = layer(x, x_size)
|
918 |
+
|
919 |
+
x = self.norm(x) # B L C
|
920 |
+
x = self.patch_unembed(x, x_size)
|
921 |
+
|
922 |
+
return x
|
923 |
+
|
924 |
+
def forward(self, x):
|
925 |
+
H, W = x.shape[2:]
|
926 |
+
x = self.check_image_size(x)
|
927 |
+
|
928 |
+
self.mean = self.mean.type_as(x)
|
929 |
+
x = (x - self.mean) * self.img_range
|
930 |
+
|
931 |
+
if self.upsampler == 'pixelshuffle':
|
932 |
+
# for classical SR
|
933 |
+
x = self.conv_first(x)
|
934 |
+
x = self.conv_after_body(self.forward_features(x)) + x
|
935 |
+
x = self.conv_before_upsample(x)
|
936 |
+
x = self.conv_last(self.upsample(x))
|
937 |
+
elif self.upsampler == 'pixelshuffle_aux':
|
938 |
+
bicubic = F.interpolate(x, size=(H * self.upscale, W * self.upscale), mode='bicubic', align_corners=False)
|
939 |
+
bicubic = self.conv_bicubic(bicubic)
|
940 |
+
x = self.conv_first(x)
|
941 |
+
x = self.conv_after_body(self.forward_features(x)) + x
|
942 |
+
x = self.conv_before_upsample(x)
|
943 |
+
aux = self.conv_aux(x) # b, 3, LR_H, LR_W
|
944 |
+
x = self.conv_after_aux(aux)
|
945 |
+
x = self.upsample(x)[:, :, :H * self.upscale, :W * self.upscale] + bicubic[:, :, :H * self.upscale, :W * self.upscale]
|
946 |
+
x = self.conv_last(x)
|
947 |
+
aux = aux / self.img_range + self.mean
|
948 |
+
elif self.upsampler == 'pixelshuffle_hf':
|
949 |
+
# for classical SR with HF
|
950 |
+
x = self.conv_first(x)
|
951 |
+
x = self.conv_after_body(self.forward_features(x)) + x
|
952 |
+
x_before = self.conv_before_upsample(x)
|
953 |
+
x_out = self.conv_last(self.upsample(x_before))
|
954 |
+
|
955 |
+
x_hf = self.conv_first_hf(x_before)
|
956 |
+
x_hf = self.conv_after_body_hf(self.forward_features_hf(x_hf)) + x_hf
|
957 |
+
x_hf = self.conv_before_upsample_hf(x_hf)
|
958 |
+
x_hf = self.conv_last_hf(self.upsample_hf(x_hf))
|
959 |
+
x = x_out + x_hf
|
960 |
+
x_hf = x_hf / self.img_range + self.mean
|
961 |
+
|
962 |
+
elif self.upsampler == 'pixelshuffledirect':
|
963 |
+
# for lightweight SR
|
964 |
+
x = self.conv_first(x)
|
965 |
+
x = self.conv_after_body(self.forward_features(x)) + x
|
966 |
+
x = self.upsample(x)
|
967 |
+
elif self.upsampler == 'nearest+conv':
|
968 |
+
# for real-world SR
|
969 |
+
x = self.conv_first(x)
|
970 |
+
x = self.conv_after_body(self.forward_features(x)) + x
|
971 |
+
x = self.conv_before_upsample(x)
|
972 |
+
x = self.lrelu(self.conv_up1(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
|
973 |
+
x = self.lrelu(self.conv_up2(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
|
974 |
+
x = self.conv_last(self.lrelu(self.conv_hr(x)))
|
975 |
+
else:
|
976 |
+
# for image denoising and JPEG compression artifact reduction
|
977 |
+
x_first = self.conv_first(x)
|
978 |
+
res = self.conv_after_body(self.forward_features(x_first)) + x_first
|
979 |
+
x = x + self.conv_last(res)
|
980 |
+
|
981 |
+
x = x / self.img_range + self.mean
|
982 |
+
if self.upsampler == "pixelshuffle_aux":
|
983 |
+
return x[:, :, :H*self.upscale, :W*self.upscale], aux
|
984 |
+
|
985 |
+
elif self.upsampler == "pixelshuffle_hf":
|
986 |
+
x_out = x_out / self.img_range + self.mean
|
987 |
+
return x_out[:, :, :H*self.upscale, :W*self.upscale], x[:, :, :H*self.upscale, :W*self.upscale], x_hf[:, :, :H*self.upscale, :W*self.upscale]
|
988 |
+
|
989 |
+
else:
|
990 |
+
return x[:, :, :H*self.upscale, :W*self.upscale]
|
991 |
+
|
992 |
+
def flops(self):
|
993 |
+
flops = 0
|
994 |
+
H, W = self.patches_resolution
|
995 |
+
flops += H * W * 3 * self.embed_dim * 9
|
996 |
+
flops += self.patch_embed.flops()
|
997 |
+
for i, layer in enumerate(self.layers):
|
998 |
+
flops += layer.flops()
|
999 |
+
flops += H * W * 3 * self.embed_dim * self.embed_dim
|
1000 |
+
flops += self.upsample.flops()
|
1001 |
+
return flops
|
1002 |
+
|
1003 |
+
|
1004 |
+
if __name__ == '__main__':
|
1005 |
+
upscale = 4
|
1006 |
+
window_size = 8
|
1007 |
+
height = (1024 // upscale // window_size + 1) * window_size
|
1008 |
+
width = (720 // upscale // window_size + 1) * window_size
|
1009 |
+
model = Swin2SR(upscale=2, img_size=(height, width),
|
1010 |
+
window_size=window_size, img_range=1., depths=[6, 6, 6, 6],
|
1011 |
+
embed_dim=60, num_heads=[6, 6, 6, 6], mlp_ratio=2, upsampler='pixelshuffledirect')
|
1012 |
+
print(model)
|
1013 |
+
print(height, width, model.flops() / 1e9)
|
1014 |
+
|
1015 |
+
x = torch.randn((1, 3, height, width))
|
1016 |
+
x = model(x)
|
1017 |
+
print(x.shape)
|
extensions-builtin/prompt-bracket-checker/javascript/prompt-bracket-checker.js
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Stable Diffusion WebUI - Bracket checker
|
2 |
+
// Version 1.0
|
3 |
+
// By Hingashi no Florin/Bwin4L
|
4 |
+
// Counts open and closed brackets (round, square, curly) in the prompt and negative prompt text boxes in the txt2img and img2img tabs.
|
5 |
+
// If there's a mismatch, the keyword counter turns red and if you hover on it, a tooltip tells you what's wrong.
|
6 |
+
|
7 |
+
function checkBrackets(evt, textArea, counterElt) {
|
8 |
+
errorStringParen = '(...) - Different number of opening and closing parentheses detected.\n';
|
9 |
+
errorStringSquare = '[...] - Different number of opening and closing square brackets detected.\n';
|
10 |
+
errorStringCurly = '{...} - Different number of opening and closing curly brackets detected.\n';
|
11 |
+
|
12 |
+
openBracketRegExp = /\(/g;
|
13 |
+
closeBracketRegExp = /\)/g;
|
14 |
+
|
15 |
+
openSquareBracketRegExp = /\[/g;
|
16 |
+
closeSquareBracketRegExp = /\]/g;
|
17 |
+
|
18 |
+
openCurlyBracketRegExp = /\{/g;
|
19 |
+
closeCurlyBracketRegExp = /\}/g;
|
20 |
+
|
21 |
+
totalOpenBracketMatches = 0;
|
22 |
+
totalCloseBracketMatches = 0;
|
23 |
+
totalOpenSquareBracketMatches = 0;
|
24 |
+
totalCloseSquareBracketMatches = 0;
|
25 |
+
totalOpenCurlyBracketMatches = 0;
|
26 |
+
totalCloseCurlyBracketMatches = 0;
|
27 |
+
|
28 |
+
openBracketMatches = textArea.value.match(openBracketRegExp);
|
29 |
+
if(openBracketMatches) {
|
30 |
+
totalOpenBracketMatches = openBracketMatches.length;
|
31 |
+
}
|
32 |
+
|
33 |
+
closeBracketMatches = textArea.value.match(closeBracketRegExp);
|
34 |
+
if(closeBracketMatches) {
|
35 |
+
totalCloseBracketMatches = closeBracketMatches.length;
|
36 |
+
}
|
37 |
+
|
38 |
+
openSquareBracketMatches = textArea.value.match(openSquareBracketRegExp);
|
39 |
+
if(openSquareBracketMatches) {
|
40 |
+
totalOpenSquareBracketMatches = openSquareBracketMatches.length;
|
41 |
+
}
|
42 |
+
|
43 |
+
closeSquareBracketMatches = textArea.value.match(closeSquareBracketRegExp);
|
44 |
+
if(closeSquareBracketMatches) {
|
45 |
+
totalCloseSquareBracketMatches = closeSquareBracketMatches.length;
|
46 |
+
}
|
47 |
+
|
48 |
+
openCurlyBracketMatches = textArea.value.match(openCurlyBracketRegExp);
|
49 |
+
if(openCurlyBracketMatches) {
|
50 |
+
totalOpenCurlyBracketMatches = openCurlyBracketMatches.length;
|
51 |
+
}
|
52 |
+
|
53 |
+
closeCurlyBracketMatches = textArea.value.match(closeCurlyBracketRegExp);
|
54 |
+
if(closeCurlyBracketMatches) {
|
55 |
+
totalCloseCurlyBracketMatches = closeCurlyBracketMatches.length;
|
56 |
+
}
|
57 |
+
|
58 |
+
if(totalOpenBracketMatches != totalCloseBracketMatches) {
|
59 |
+
if(!counterElt.title.includes(errorStringParen)) {
|
60 |
+
counterElt.title += errorStringParen;
|
61 |
+
}
|
62 |
+
} else {
|
63 |
+
counterElt.title = counterElt.title.replace(errorStringParen, '');
|
64 |
+
}
|
65 |
+
|
66 |
+
if(totalOpenSquareBracketMatches != totalCloseSquareBracketMatches) {
|
67 |
+
if(!counterElt.title.includes(errorStringSquare)) {
|
68 |
+
counterElt.title += errorStringSquare;
|
69 |
+
}
|
70 |
+
} else {
|
71 |
+
counterElt.title = counterElt.title.replace(errorStringSquare, '');
|
72 |
+
}
|
73 |
+
|
74 |
+
if(totalOpenCurlyBracketMatches != totalCloseCurlyBracketMatches) {
|
75 |
+
if(!counterElt.title.includes(errorStringCurly)) {
|
76 |
+
counterElt.title += errorStringCurly;
|
77 |
+
}
|
78 |
+
} else {
|
79 |
+
counterElt.title = counterElt.title.replace(errorStringCurly, '');
|
80 |
+
}
|
81 |
+
|
82 |
+
if(counterElt.title != '') {
|
83 |
+
counterElt.classList.add('error');
|
84 |
+
} else {
|
85 |
+
counterElt.classList.remove('error');
|
86 |
+
}
|
87 |
+
}
|
88 |
+
|
89 |
+
function setupBracketChecking(id_prompt, id_counter){
|
90 |
+
var textarea = gradioApp().querySelector("#" + id_prompt + " > label > textarea");
|
91 |
+
var counter = gradioApp().getElementById(id_counter)
|
92 |
+
textarea.addEventListener("input", function(evt){
|
93 |
+
checkBrackets(evt, textarea, counter)
|
94 |
+
});
|
95 |
+
}
|
96 |
+
|
97 |
+
var shadowRootLoaded = setInterval(function() {
|
98 |
+
var shadowRoot = document.querySelector('gradio-app').shadowRoot;
|
99 |
+
if(! shadowRoot) return false;
|
100 |
+
|
101 |
+
var shadowTextArea = shadowRoot.querySelectorAll('#txt2img_prompt > label > textarea');
|
102 |
+
if(shadowTextArea.length < 1) return false;
|
103 |
+
|
104 |
+
clearInterval(shadowRootLoaded);
|
105 |
+
|
106 |
+
setupBracketChecking('txt2img_prompt', 'txt2img_token_counter')
|
107 |
+
setupBracketChecking('txt2img_neg_prompt', 'txt2img_negative_token_counter')
|
108 |
+
setupBracketChecking('img2img_prompt', 'imgimg_token_counter')
|
109 |
+
setupBracketChecking('img2img_neg_prompt', 'img2img_negative_token_counter')
|
110 |
+
}, 1000);
|
handler.py
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# inference handler for huggingface
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
import time
|
5 |
+
import importlib
|
6 |
+
import signal
|
7 |
+
import re
|
8 |
+
from typing import Dict, List, Any
|
9 |
+
# from fastapi import FastAPI
|
10 |
+
# from fastapi.middleware.cors import CORSMiddleware
|
11 |
+
# from fastapi.middleware.gzip import GZipMiddleware
|
12 |
+
from packaging import version
|
13 |
+
|
14 |
+
import logging
|
15 |
+
logging.getLogger("xformers").addFilter(lambda record: 'A matching Triton is not available' not in record.getMessage())
|
16 |
+
|
17 |
+
from modules import errors
|
18 |
+
from modules.call_queue import wrap_queued_call, queue_lock, wrap_gradio_gpu_call
|
19 |
+
|
20 |
+
import torch
|
21 |
+
|
22 |
+
# Truncate version number of nightly/local build of PyTorch to not cause exceptions with CodeFormer or Safetensors
|
23 |
+
if ".dev" in torch.__version__ or "+git" in torch.__version__:
|
24 |
+
torch.__long_version__ = torch.__version__
|
25 |
+
torch.__version__ = re.search(r'[\d.]+[\d]', torch.__version__).group(0)
|
26 |
+
|
27 |
+
from modules import shared, devices, ui_tempdir
|
28 |
+
import modules.codeformer_model as codeformer
|
29 |
+
import modules.face_restoration
|
30 |
+
import modules.gfpgan_model as gfpgan
|
31 |
+
import modules.img2img
|
32 |
+
|
33 |
+
import modules.lowvram
|
34 |
+
import modules.paths
|
35 |
+
import modules.scripts
|
36 |
+
import modules.sd_hijack
|
37 |
+
import modules.sd_models
|
38 |
+
import modules.sd_vae
|
39 |
+
import modules.txt2img
|
40 |
+
import modules.script_callbacks
|
41 |
+
import modules.textual_inversion.textual_inversion
|
42 |
+
import modules.progress
|
43 |
+
|
44 |
+
import modules.ui
|
45 |
+
from modules import modelloader
|
46 |
+
from modules.shared import cmd_opts, opts
|
47 |
+
import modules.hypernetworks.hypernetwork
|
48 |
+
|
49 |
+
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
|
50 |
+
import base64
|
51 |
+
import io
|
52 |
+
from fastapi import HTTPException
|
53 |
+
from io import BytesIO
|
54 |
+
import piexif
|
55 |
+
import piexif.helper
|
56 |
+
from PIL import PngImagePlugin,Image
|
57 |
+
|
58 |
+
|
59 |
+
def initialize():
|
60 |
+
# check_versions()
|
61 |
+
|
62 |
+
# extensions.list_extensions()
|
63 |
+
# localization.list_localizations(cmd_opts.localizations_dir)
|
64 |
+
|
65 |
+
# if cmd_opts.ui_debug_mode:
|
66 |
+
# shared.sd_upscalers = upscaler.UpscalerLanczos().scalers
|
67 |
+
# modules.scripts.load_scripts()
|
68 |
+
# return
|
69 |
+
|
70 |
+
modelloader.cleanup_models()
|
71 |
+
modules.sd_models.setup_model()
|
72 |
+
codeformer.setup_model(cmd_opts.codeformer_models_path)
|
73 |
+
gfpgan.setup_model(cmd_opts.gfpgan_models_path)
|
74 |
+
|
75 |
+
modelloader.list_builtin_upscalers()
|
76 |
+
# modules.scripts.load_scripts()
|
77 |
+
modelloader.load_upscalers()
|
78 |
+
|
79 |
+
modules.sd_vae.refresh_vae_list()
|
80 |
+
|
81 |
+
# modules.textual_inversion.textual_inversion.list_textual_inversion_templates()
|
82 |
+
|
83 |
+
try:
|
84 |
+
modules.sd_models.load_model()
|
85 |
+
except Exception as e:
|
86 |
+
errors.display(e, "loading stable diffusion model")
|
87 |
+
print("", file=sys.stderr)
|
88 |
+
print("Stable diffusion model failed to load, exiting", file=sys.stderr)
|
89 |
+
exit(1)
|
90 |
+
|
91 |
+
shared.opts.data["sd_model_checkpoint"] = shared.sd_model.sd_checkpoint_info.title
|
92 |
+
|
93 |
+
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights()))
|
94 |
+
shared.opts.onchange("sd_vae", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
|
95 |
+
shared.opts.onchange("sd_vae_as_default", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
|
96 |
+
shared.opts.onchange("temp_dir", ui_tempdir.on_tmpdir_changed)
|
97 |
+
|
98 |
+
# shared.reload_hypernetworks()
|
99 |
+
|
100 |
+
# ui_extra_networks.intialize()
|
101 |
+
# ui_extra_networks.register_page(ui_extra_networks_textual_inversion.ExtraNetworksPageTextualInversion())
|
102 |
+
# ui_extra_networks.register_page(ui_extra_networks_hypernets.ExtraNetworksPageHypernetworks())
|
103 |
+
# ui_extra_networks.register_page(ui_extra_networks_checkpoints.ExtraNetworksPageCheckpoints())
|
104 |
+
|
105 |
+
# extra_networks.initialize()
|
106 |
+
# extra_networks.register_extra_network(extra_networks_hypernet.ExtraNetworkHypernet())
|
107 |
+
|
108 |
+
# if cmd_opts.tls_keyfile is not None and cmd_opts.tls_keyfile is not None:
|
109 |
+
|
110 |
+
# try:
|
111 |
+
# if not os.path.exists(cmd_opts.tls_keyfile):
|
112 |
+
# print("Invalid path to TLS keyfile given")
|
113 |
+
# if not os.path.exists(cmd_opts.tls_certfile):
|
114 |
+
# print(f"Invalid path to TLS certfile: '{cmd_opts.tls_certfile}'")
|
115 |
+
# except TypeError:
|
116 |
+
# cmd_opts.tls_keyfile = cmd_opts.tls_certfile = None
|
117 |
+
# print("TLS setup invalid, running webui without TLS")
|
118 |
+
# else:
|
119 |
+
# print("Running with TLS")
|
120 |
+
|
121 |
+
# make the program just exit at ctrl+c without waiting for anything
|
122 |
+
def sigint_handler(sig, frame):
|
123 |
+
print(f'Interrupted with signal {sig} in {frame}')
|
124 |
+
os._exit(0)
|
125 |
+
|
126 |
+
signal.signal(signal.SIGINT, sigint_handler)
|
127 |
+
|
128 |
+
|
129 |
+
class EndpointHandler():
|
130 |
+
def __init__(self, path=""):
|
131 |
+
# Preload all the elements you are going to need at inference.
|
132 |
+
# pseudo:
|
133 |
+
# self.model= load_model(path)
|
134 |
+
initialize()
|
135 |
+
self.shared = shared
|
136 |
+
|
137 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
138 |
+
"""
|
139 |
+
data args:
|
140 |
+
inputs (:obj: `str` | `PIL.Image` | `np.array`)
|
141 |
+
kwargs
|
142 |
+
Return:
|
143 |
+
A :obj:`list` | `dict`: will be serialized and returned
|
144 |
+
"""
|
145 |
+
args = {
|
146 |
+
"do_not_save_samples": True,
|
147 |
+
"do_not_save_grid": True,
|
148 |
+
"outpath_samples": "./output",
|
149 |
+
"prompt": "lora:koreanDollLikeness_v15:0.66, best quality, ultra high res, (photorealistic:1.4), 1girl, beige sweater, black choker, smile, laughing, bare shoulders, solo focus, ((full body), (brown hair:1), looking at viewer",
|
150 |
+
"negative_prompt": "paintings, sketches, (worst quality:2), (low quality:2), (normal quality:2), lowres, normal quality, ((monochrome)), ((grayscale)), skin spots, acnes, skin blemishes, age spot, glans, (ugly:1.331), (duplicate:1.331), (morbid:1.21), (mutilated:1.21), (tranny:1.331), mutated hands, (poorly drawn hands:1.331), blurry, 3hands,4fingers,3arms, bad anatomy, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts,poorly drawn face,mutation,deformed",
|
151 |
+
"sampler_name": "DPM++ SDE Karras",
|
152 |
+
"steps": 20, # 25
|
153 |
+
"cfg_scale": 8,
|
154 |
+
"width": 512,
|
155 |
+
"height": 768,
|
156 |
+
"seed": -1,
|
157 |
+
}
|
158 |
+
if data["inputs"]:
|
159 |
+
if "prompt" in data["inputs"].keys():
|
160 |
+
prompt = data["inputs"]["prompt"]
|
161 |
+
print("get prompt from request: ", prompt)
|
162 |
+
args["prompt"] = prompt
|
163 |
+
p = StableDiffusionProcessingTxt2Img(sd_model=self.shared.sd_model, **args)
|
164 |
+
processed = process_images(p)
|
165 |
+
single_image_b64 = encode_pil_to_base64(processed.images[0]).decode('utf-8')
|
166 |
+
return {
|
167 |
+
"img_data": single_image_b64,
|
168 |
+
"parameters": processed.images[0].info.get('parameters', ""),
|
169 |
+
}
|
170 |
+
|
171 |
+
|
172 |
+
def manual_hack():
|
173 |
+
initialize()
|
174 |
+
args = {
|
175 |
+
# todo: don't output res
|
176 |
+
"outpath_samples": "C:\\Users\\wolvz\\Desktop",
|
177 |
+
"prompt": "lora:koreanDollLikeness_v15:0.66, best quality, ultra high res, (photorealistic:1.4), 1girl, beige sweater, black choker, smile, laughing, bare shoulders, solo focus, ((full body), (brown hair:1), looking at viewer",
|
178 |
+
"negative_prompt": "paintings, sketches, (worst quality:2), (low quality:2), (normal quality:2), lowres, normal quality, ((monochrome)), ((grayscale)), skin spots, acnes, skin blemishes, age spot, glans",
|
179 |
+
"sampler_name": "DPM++ SDE Karras",
|
180 |
+
"steps": 20, # 25
|
181 |
+
"cfg_scale": 8,
|
182 |
+
"width": 512,
|
183 |
+
"height": 768,
|
184 |
+
"seed": -1,
|
185 |
+
}
|
186 |
+
p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args)
|
187 |
+
processed = process_images(p)
|
188 |
+
|
189 |
+
|
190 |
+
def decode_base64_to_image(encoding):
|
191 |
+
if encoding.startswith("data:image/"):
|
192 |
+
encoding = encoding.split(";")[1].split(",")[1]
|
193 |
+
try:
|
194 |
+
image = Image.open(BytesIO(base64.b64decode(encoding)))
|
195 |
+
return image
|
196 |
+
except Exception as err:
|
197 |
+
raise HTTPException(status_code=500, detail="Invalid encoded image")
|
198 |
+
|
199 |
+
def encode_pil_to_base64(image):
|
200 |
+
with io.BytesIO() as output_bytes:
|
201 |
+
|
202 |
+
if opts.samples_format.lower() == 'png':
|
203 |
+
use_metadata = False
|
204 |
+
metadata = PngImagePlugin.PngInfo()
|
205 |
+
for key, value in image.info.items():
|
206 |
+
if isinstance(key, str) and isinstance(value, str):
|
207 |
+
metadata.add_text(key, value)
|
208 |
+
use_metadata = True
|
209 |
+
image.save(output_bytes, format="PNG", pnginfo=(metadata if use_metadata else None), quality=opts.jpeg_quality)
|
210 |
+
|
211 |
+
elif opts.samples_format.lower() in ("jpg", "jpeg", "webp"):
|
212 |
+
parameters = image.info.get('parameters', None)
|
213 |
+
exif_bytes = piexif.dump({
|
214 |
+
"Exif": { piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(parameters or "", encoding="unicode") }
|
215 |
+
})
|
216 |
+
if opts.samples_format.lower() in ("jpg", "jpeg"):
|
217 |
+
image.save(output_bytes, format="JPEG", exif = exif_bytes, quality=opts.jpeg_quality)
|
218 |
+
else:
|
219 |
+
image.save(output_bytes, format="WEBP", exif = exif_bytes, quality=opts.jpeg_quality)
|
220 |
+
|
221 |
+
else:
|
222 |
+
raise HTTPException(status_code=500, detail="Invalid image format")
|
223 |
+
|
224 |
+
bytes_data = output_bytes.getvalue()
|
225 |
+
|
226 |
+
return base64.b64encode(bytes_data)
|
227 |
+
|
228 |
+
|
229 |
+
if __name__ == "__main__":
|
230 |
+
# manual_hack()
|
231 |
+
handler = EndpointHandler("./")
|
232 |
+
res = handler.__call__({})
|
233 |
+
# print(res)
|
models/Lora/koreanDollLikeness_v10.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:62efe75048d55a096a238c6e8c4e12d61b36bf59e388a90589335f750923954c
|
3 |
+
size 151116540
|
models/Lora/stLouisLuxuriousWheels_v1.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f1efd7b748634120b70343bc3c3b425c06c51548431a1264a2fcb5368352349f
|
3 |
+
size 151112068
|
models/Lora/taiwanDollLikeness_v10.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5bbaabc04553d5821a3a45e4de5a02b2e66ecb00da677dd8ae862efd8ba59050
|
3 |
+
size 151116105
|
models/Stable-diffusion/Put Stable Diffusion checkpoints here.txt
ADDED
File without changes
|
models/Stable-diffusion/chilloutmix_NiPrunedFp32Fix.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc2511737a54c5e80b89ab03e0ab4b98d051ab187f92860f3cd664dc9d08b271
|
3 |
+
size 4265097179
|
models/VAE-approx/model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f88c9078bb2238cdd0d8864671dd33e3f42e091e41f08903f3c15e4a54a9b39
|
3 |
+
size 213777
|
models/VAE/Put VAE here.txt
ADDED
File without changes
|
models/VAE/vae-ft-mse-840000-ema-pruned.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c6a580b13a5bc05a5e16e4dbb80608ff2ec251a162311590c1f34c013d7f3dab
|
3 |
+
size 334695179
|
models/deepbooru/Put your deepbooru release project folder here.txt
ADDED
File without changes
|
modules/api/api.py
ADDED
@@ -0,0 +1,551 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import io
|
3 |
+
import time
|
4 |
+
import datetime
|
5 |
+
import uvicorn
|
6 |
+
from threading import Lock
|
7 |
+
from io import BytesIO
|
8 |
+
from gradio.processing_utils import decode_base64_to_file
|
9 |
+
from fastapi import APIRouter, Depends, FastAPI, HTTPException, Request, Response
|
10 |
+
from fastapi.security import HTTPBasic, HTTPBasicCredentials
|
11 |
+
from secrets import compare_digest
|
12 |
+
|
13 |
+
import modules.shared as shared
|
14 |
+
from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui, postprocessing
|
15 |
+
from modules.api.models import *
|
16 |
+
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
|
17 |
+
from modules.textual_inversion.textual_inversion import create_embedding, train_embedding
|
18 |
+
from modules.textual_inversion.preprocess import preprocess
|
19 |
+
from modules.hypernetworks.hypernetwork import create_hypernetwork, train_hypernetwork
|
20 |
+
from PIL import PngImagePlugin,Image
|
21 |
+
from modules.sd_models import checkpoints_list
|
22 |
+
from modules.sd_models_config import find_checkpoint_config_near_filename
|
23 |
+
from modules.realesrgan_model import get_realesrgan_models
|
24 |
+
from modules import devices
|
25 |
+
from typing import List
|
26 |
+
import piexif
|
27 |
+
import piexif.helper
|
28 |
+
|
29 |
+
def upscaler_to_index(name: str):
|
30 |
+
try:
|
31 |
+
return [x.name.lower() for x in shared.sd_upscalers].index(name.lower())
|
32 |
+
except:
|
33 |
+
raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be one of these: {' , '.join([x.name for x in sd_upscalers])}")
|
34 |
+
|
35 |
+
def script_name_to_index(name, scripts):
|
36 |
+
try:
|
37 |
+
return [script.title().lower() for script in scripts].index(name.lower())
|
38 |
+
except:
|
39 |
+
raise HTTPException(status_code=422, detail=f"Script '{name}' not found")
|
40 |
+
|
41 |
+
def validate_sampler_name(name):
|
42 |
+
config = sd_samplers.all_samplers_map.get(name, None)
|
43 |
+
if config is None:
|
44 |
+
raise HTTPException(status_code=404, detail="Sampler not found")
|
45 |
+
|
46 |
+
return name
|
47 |
+
|
48 |
+
def setUpscalers(req: dict):
|
49 |
+
reqDict = vars(req)
|
50 |
+
reqDict['extras_upscaler_1'] = reqDict.pop('upscaler_1', None)
|
51 |
+
reqDict['extras_upscaler_2'] = reqDict.pop('upscaler_2', None)
|
52 |
+
return reqDict
|
53 |
+
|
54 |
+
def decode_base64_to_image(encoding):
|
55 |
+
if encoding.startswith("data:image/"):
|
56 |
+
encoding = encoding.split(";")[1].split(",")[1]
|
57 |
+
try:
|
58 |
+
image = Image.open(BytesIO(base64.b64decode(encoding)))
|
59 |
+
return image
|
60 |
+
except Exception as err:
|
61 |
+
raise HTTPException(status_code=500, detail="Invalid encoded image")
|
62 |
+
|
63 |
+
def encode_pil_to_base64(image):
|
64 |
+
with io.BytesIO() as output_bytes:
|
65 |
+
|
66 |
+
if opts.samples_format.lower() == 'png':
|
67 |
+
use_metadata = False
|
68 |
+
metadata = PngImagePlugin.PngInfo()
|
69 |
+
for key, value in image.info.items():
|
70 |
+
if isinstance(key, str) and isinstance(value, str):
|
71 |
+
metadata.add_text(key, value)
|
72 |
+
use_metadata = True
|
73 |
+
image.save(output_bytes, format="PNG", pnginfo=(metadata if use_metadata else None), quality=opts.jpeg_quality)
|
74 |
+
|
75 |
+
elif opts.samples_format.lower() in ("jpg", "jpeg", "webp"):
|
76 |
+
parameters = image.info.get('parameters', None)
|
77 |
+
exif_bytes = piexif.dump({
|
78 |
+
"Exif": { piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(parameters or "", encoding="unicode") }
|
79 |
+
})
|
80 |
+
if opts.samples_format.lower() in ("jpg", "jpeg"):
|
81 |
+
image.save(output_bytes, format="JPEG", exif = exif_bytes, quality=opts.jpeg_quality)
|
82 |
+
else:
|
83 |
+
image.save(output_bytes, format="WEBP", exif = exif_bytes, quality=opts.jpeg_quality)
|
84 |
+
|
85 |
+
else:
|
86 |
+
raise HTTPException(status_code=500, detail="Invalid image format")
|
87 |
+
|
88 |
+
bytes_data = output_bytes.getvalue()
|
89 |
+
|
90 |
+
return base64.b64encode(bytes_data)
|
91 |
+
|
92 |
+
def api_middleware(app: FastAPI):
|
93 |
+
@app.middleware("http")
|
94 |
+
async def log_and_time(req: Request, call_next):
|
95 |
+
ts = time.time()
|
96 |
+
res: Response = await call_next(req)
|
97 |
+
duration = str(round(time.time() - ts, 4))
|
98 |
+
res.headers["X-Process-Time"] = duration
|
99 |
+
endpoint = req.scope.get('path', 'err')
|
100 |
+
if shared.cmd_opts.api_log and endpoint.startswith('/sdapi'):
|
101 |
+
print('API {t} {code} {prot}/{ver} {method} {endpoint} {cli} {duration}'.format(
|
102 |
+
t = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f"),
|
103 |
+
code = res.status_code,
|
104 |
+
ver = req.scope.get('http_version', '0.0'),
|
105 |
+
cli = req.scope.get('client', ('0:0.0.0', 0))[0],
|
106 |
+
prot = req.scope.get('scheme', 'err'),
|
107 |
+
method = req.scope.get('method', 'err'),
|
108 |
+
endpoint = endpoint,
|
109 |
+
duration = duration,
|
110 |
+
))
|
111 |
+
return res
|
112 |
+
|
113 |
+
|
114 |
+
class Api:
|
115 |
+
def __init__(self, app: FastAPI, queue_lock: Lock):
|
116 |
+
if shared.cmd_opts.api_auth:
|
117 |
+
self.credentials = dict()
|
118 |
+
for auth in shared.cmd_opts.api_auth.split(","):
|
119 |
+
user, password = auth.split(":")
|
120 |
+
self.credentials[user] = password
|
121 |
+
|
122 |
+
self.router = APIRouter()
|
123 |
+
self.app = app
|
124 |
+
self.queue_lock = queue_lock
|
125 |
+
api_middleware(self.app)
|
126 |
+
self.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=TextToImageResponse)
|
127 |
+
self.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=ImageToImageResponse)
|
128 |
+
self.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse)
|
129 |
+
self.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse)
|
130 |
+
self.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=PNGInfoResponse)
|
131 |
+
self.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=ProgressResponse)
|
132 |
+
self.add_api_route("/sdapi/v1/interrogate", self.interrogateapi, methods=["POST"])
|
133 |
+
self.add_api_route("/sdapi/v1/interrupt", self.interruptapi, methods=["POST"])
|
134 |
+
self.add_api_route("/sdapi/v1/skip", self.skip, methods=["POST"])
|
135 |
+
self.add_api_route("/sdapi/v1/options", self.get_config, methods=["GET"], response_model=OptionsModel)
|
136 |
+
self.add_api_route("/sdapi/v1/options", self.set_config, methods=["POST"])
|
137 |
+
self.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=FlagsModel)
|
138 |
+
self.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=List[SamplerItem])
|
139 |
+
self.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=List[UpscalerItem])
|
140 |
+
self.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=List[SDModelItem])
|
141 |
+
self.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=List[HypernetworkItem])
|
142 |
+
self.add_api_route("/sdapi/v1/face-restorers", self.get_face_restorers, methods=["GET"], response_model=List[FaceRestorerItem])
|
143 |
+
self.add_api_route("/sdapi/v1/realesrgan-models", self.get_realesrgan_models, methods=["GET"], response_model=List[RealesrganItem])
|
144 |
+
self.add_api_route("/sdapi/v1/prompt-styles", self.get_prompt_styles, methods=["GET"], response_model=List[PromptStyleItem])
|
145 |
+
self.add_api_route("/sdapi/v1/embeddings", self.get_embeddings, methods=["GET"], response_model=EmbeddingsResponse)
|
146 |
+
self.add_api_route("/sdapi/v1/refresh-checkpoints", self.refresh_checkpoints, methods=["POST"])
|
147 |
+
self.add_api_route("/sdapi/v1/create/embedding", self.create_embedding, methods=["POST"], response_model=CreateResponse)
|
148 |
+
self.add_api_route("/sdapi/v1/create/hypernetwork", self.create_hypernetwork, methods=["POST"], response_model=CreateResponse)
|
149 |
+
self.add_api_route("/sdapi/v1/preprocess", self.preprocess, methods=["POST"], response_model=PreprocessResponse)
|
150 |
+
self.add_api_route("/sdapi/v1/train/embedding", self.train_embedding, methods=["POST"], response_model=TrainResponse)
|
151 |
+
self.add_api_route("/sdapi/v1/train/hypernetwork", self.train_hypernetwork, methods=["POST"], response_model=TrainResponse)
|
152 |
+
self.add_api_route("/sdapi/v1/memory", self.get_memory, methods=["GET"], response_model=MemoryResponse)
|
153 |
+
|
154 |
+
def add_api_route(self, path: str, endpoint, **kwargs):
|
155 |
+
if shared.cmd_opts.api_auth:
|
156 |
+
return self.app.add_api_route(path, endpoint, dependencies=[Depends(self.auth)], **kwargs)
|
157 |
+
return self.app.add_api_route(path, endpoint, **kwargs)
|
158 |
+
|
159 |
+
def auth(self, credentials: HTTPBasicCredentials = Depends(HTTPBasic())):
|
160 |
+
if credentials.username in self.credentials:
|
161 |
+
if compare_digest(credentials.password, self.credentials[credentials.username]):
|
162 |
+
return True
|
163 |
+
|
164 |
+
raise HTTPException(status_code=401, detail="Incorrect username or password", headers={"WWW-Authenticate": "Basic"})
|
165 |
+
|
166 |
+
def get_script(self, script_name, script_runner):
|
167 |
+
if script_name is None:
|
168 |
+
return None, None
|
169 |
+
|
170 |
+
if not script_runner.scripts:
|
171 |
+
script_runner.initialize_scripts(False)
|
172 |
+
ui.create_ui()
|
173 |
+
|
174 |
+
script_idx = script_name_to_index(script_name, script_runner.selectable_scripts)
|
175 |
+
script = script_runner.selectable_scripts[script_idx]
|
176 |
+
return script, script_idx
|
177 |
+
|
178 |
+
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
|
179 |
+
script, script_idx = self.get_script(txt2imgreq.script_name, scripts.scripts_txt2img)
|
180 |
+
|
181 |
+
populate = txt2imgreq.copy(update={ # Override __init__ params
|
182 |
+
"sampler_name": validate_sampler_name(txt2imgreq.sampler_name or txt2imgreq.sampler_index),
|
183 |
+
"do_not_save_samples": True,
|
184 |
+
"do_not_save_grid": True
|
185 |
+
}
|
186 |
+
)
|
187 |
+
if populate.sampler_name:
|
188 |
+
populate.sampler_index = None # prevent a warning later on
|
189 |
+
|
190 |
+
args = vars(populate)
|
191 |
+
args.pop('script_name', None)
|
192 |
+
|
193 |
+
with self.queue_lock:
|
194 |
+
p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args)
|
195 |
+
|
196 |
+
shared.state.begin()
|
197 |
+
if script is not None:
|
198 |
+
p.outpath_grids = opts.outdir_txt2img_grids
|
199 |
+
p.outpath_samples = opts.outdir_txt2img_samples
|
200 |
+
p.script_args = [script_idx + 1] + [None] * (script.args_from - 1) + p.script_args
|
201 |
+
processed = scripts.scripts_txt2img.run(p, *p.script_args)
|
202 |
+
else:
|
203 |
+
processed = process_images(p)
|
204 |
+
shared.state.end()
|
205 |
+
|
206 |
+
b64images = list(map(encode_pil_to_base64, processed.images))
|
207 |
+
|
208 |
+
return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js())
|
209 |
+
|
210 |
+
def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI):
|
211 |
+
init_images = img2imgreq.init_images
|
212 |
+
if init_images is None:
|
213 |
+
raise HTTPException(status_code=404, detail="Init image not found")
|
214 |
+
|
215 |
+
script, script_idx = self.get_script(img2imgreq.script_name, scripts.scripts_img2img)
|
216 |
+
|
217 |
+
mask = img2imgreq.mask
|
218 |
+
if mask:
|
219 |
+
mask = decode_base64_to_image(mask)
|
220 |
+
|
221 |
+
populate = img2imgreq.copy(update={ # Override __init__ params
|
222 |
+
"sampler_name": validate_sampler_name(img2imgreq.sampler_name or img2imgreq.sampler_index),
|
223 |
+
"do_not_save_samples": True,
|
224 |
+
"do_not_save_grid": True,
|
225 |
+
"mask": mask
|
226 |
+
}
|
227 |
+
)
|
228 |
+
if populate.sampler_name:
|
229 |
+
populate.sampler_index = None # prevent a warning later on
|
230 |
+
|
231 |
+
args = vars(populate)
|
232 |
+
args.pop('include_init_images', None) # this is meant to be done by "exclude": True in model, but it's for a reason that I cannot determine.
|
233 |
+
args.pop('script_name', None)
|
234 |
+
|
235 |
+
with self.queue_lock:
|
236 |
+
p = StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args)
|
237 |
+
p.init_images = [decode_base64_to_image(x) for x in init_images]
|
238 |
+
|
239 |
+
shared.state.begin()
|
240 |
+
if script is not None:
|
241 |
+
p.outpath_grids = opts.outdir_img2img_grids
|
242 |
+
p.outpath_samples = opts.outdir_img2img_samples
|
243 |
+
p.script_args = [script_idx + 1] + [None] * (script.args_from - 1) + p.script_args
|
244 |
+
processed = scripts.scripts_img2img.run(p, *p.script_args)
|
245 |
+
else:
|
246 |
+
processed = process_images(p)
|
247 |
+
shared.state.end()
|
248 |
+
|
249 |
+
b64images = list(map(encode_pil_to_base64, processed.images))
|
250 |
+
|
251 |
+
if not img2imgreq.include_init_images:
|
252 |
+
img2imgreq.init_images = None
|
253 |
+
img2imgreq.mask = None
|
254 |
+
|
255 |
+
return ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.js())
|
256 |
+
|
257 |
+
def extras_single_image_api(self, req: ExtrasSingleImageRequest):
|
258 |
+
reqDict = setUpscalers(req)
|
259 |
+
|
260 |
+
reqDict['image'] = decode_base64_to_image(reqDict['image'])
|
261 |
+
|
262 |
+
with self.queue_lock:
|
263 |
+
result = postprocessing.run_extras(extras_mode=0, image_folder="", input_dir="", output_dir="", save_output=False, **reqDict)
|
264 |
+
|
265 |
+
return ExtrasSingleImageResponse(image=encode_pil_to_base64(result[0][0]), html_info=result[1])
|
266 |
+
|
267 |
+
def extras_batch_images_api(self, req: ExtrasBatchImagesRequest):
|
268 |
+
reqDict = setUpscalers(req)
|
269 |
+
|
270 |
+
def prepareFiles(file):
|
271 |
+
file = decode_base64_to_file(file.data, file_path=file.name)
|
272 |
+
file.orig_name = file.name
|
273 |
+
return file
|
274 |
+
|
275 |
+
reqDict['image_folder'] = list(map(prepareFiles, reqDict['imageList']))
|
276 |
+
reqDict.pop('imageList')
|
277 |
+
|
278 |
+
with self.queue_lock:
|
279 |
+
result = postprocessing.run_extras(extras_mode=1, image="", input_dir="", output_dir="", save_output=False, **reqDict)
|
280 |
+
|
281 |
+
return ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1])
|
282 |
+
|
283 |
+
def pnginfoapi(self, req: PNGInfoRequest):
|
284 |
+
if(not req.image.strip()):
|
285 |
+
return PNGInfoResponse(info="")
|
286 |
+
|
287 |
+
image = decode_base64_to_image(req.image.strip())
|
288 |
+
if image is None:
|
289 |
+
return PNGInfoResponse(info="")
|
290 |
+
|
291 |
+
geninfo, items = images.read_info_from_image(image)
|
292 |
+
if geninfo is None:
|
293 |
+
geninfo = ""
|
294 |
+
|
295 |
+
items = {**{'parameters': geninfo}, **items}
|
296 |
+
|
297 |
+
return PNGInfoResponse(info=geninfo, items=items)
|
298 |
+
|
299 |
+
def progressapi(self, req: ProgressRequest = Depends()):
|
300 |
+
# copy from check_progress_call of ui.py
|
301 |
+
|
302 |
+
if shared.state.job_count == 0:
|
303 |
+
return ProgressResponse(progress=0, eta_relative=0, state=shared.state.dict(), textinfo=shared.state.textinfo)
|
304 |
+
|
305 |
+
# avoid dividing zero
|
306 |
+
progress = 0.01
|
307 |
+
|
308 |
+
if shared.state.job_count > 0:
|
309 |
+
progress += shared.state.job_no / shared.state.job_count
|
310 |
+
if shared.state.sampling_steps > 0:
|
311 |
+
progress += 1 / shared.state.job_count * shared.state.sampling_step / shared.state.sampling_steps
|
312 |
+
|
313 |
+
time_since_start = time.time() - shared.state.time_start
|
314 |
+
eta = (time_since_start/progress)
|
315 |
+
eta_relative = eta-time_since_start
|
316 |
+
|
317 |
+
progress = min(progress, 1)
|
318 |
+
|
319 |
+
shared.state.set_current_image()
|
320 |
+
|
321 |
+
current_image = None
|
322 |
+
if shared.state.current_image and not req.skip_current_image:
|
323 |
+
current_image = encode_pil_to_base64(shared.state.current_image)
|
324 |
+
|
325 |
+
return ProgressResponse(progress=progress, eta_relative=eta_relative, state=shared.state.dict(), current_image=current_image, textinfo=shared.state.textinfo)
|
326 |
+
|
327 |
+
def interrogateapi(self, interrogatereq: InterrogateRequest):
|
328 |
+
image_b64 = interrogatereq.image
|
329 |
+
if image_b64 is None:
|
330 |
+
raise HTTPException(status_code=404, detail="Image not found")
|
331 |
+
|
332 |
+
img = decode_base64_to_image(image_b64)
|
333 |
+
img = img.convert('RGB')
|
334 |
+
|
335 |
+
# Override object param
|
336 |
+
with self.queue_lock:
|
337 |
+
if interrogatereq.model == "clip":
|
338 |
+
processed = shared.interrogator.interrogate(img)
|
339 |
+
elif interrogatereq.model == "deepdanbooru":
|
340 |
+
processed = deepbooru.model.tag(img)
|
341 |
+
else:
|
342 |
+
raise HTTPException(status_code=404, detail="Model not found")
|
343 |
+
|
344 |
+
return InterrogateResponse(caption=processed)
|
345 |
+
|
346 |
+
def interruptapi(self):
|
347 |
+
shared.state.interrupt()
|
348 |
+
|
349 |
+
return {}
|
350 |
+
|
351 |
+
def skip(self):
|
352 |
+
shared.state.skip()
|
353 |
+
|
354 |
+
def get_config(self):
|
355 |
+
options = {}
|
356 |
+
for key in shared.opts.data.keys():
|
357 |
+
metadata = shared.opts.data_labels.get(key)
|
358 |
+
if(metadata is not None):
|
359 |
+
options.update({key: shared.opts.data.get(key, shared.opts.data_labels.get(key).default)})
|
360 |
+
else:
|
361 |
+
options.update({key: shared.opts.data.get(key, None)})
|
362 |
+
|
363 |
+
return options
|
364 |
+
|
365 |
+
def set_config(self, req: Dict[str, Any]):
|
366 |
+
for k, v in req.items():
|
367 |
+
shared.opts.set(k, v)
|
368 |
+
|
369 |
+
shared.opts.save(shared.config_filename)
|
370 |
+
return
|
371 |
+
|
372 |
+
def get_cmd_flags(self):
|
373 |
+
return vars(shared.cmd_opts)
|
374 |
+
|
375 |
+
def get_samplers(self):
|
376 |
+
return [{"name": sampler[0], "aliases":sampler[2], "options":sampler[3]} for sampler in sd_samplers.all_samplers]
|
377 |
+
|
378 |
+
def get_upscalers(self):
|
379 |
+
return [
|
380 |
+
{
|
381 |
+
"name": upscaler.name,
|
382 |
+
"model_name": upscaler.scaler.model_name,
|
383 |
+
"model_path": upscaler.data_path,
|
384 |
+
"model_url": None,
|
385 |
+
"scale": upscaler.scale,
|
386 |
+
}
|
387 |
+
for upscaler in shared.sd_upscalers
|
388 |
+
]
|
389 |
+
|
390 |
+
def get_sd_models(self):
|
391 |
+
return [{"title": x.title, "model_name": x.model_name, "hash": x.shorthash, "sha256": x.sha256, "filename": x.filename, "config": find_checkpoint_config_near_filename(x)} for x in checkpoints_list.values()]
|
392 |
+
|
393 |
+
def get_hypernetworks(self):
|
394 |
+
return [{"name": name, "path": shared.hypernetworks[name]} for name in shared.hypernetworks]
|
395 |
+
|
396 |
+
def get_face_restorers(self):
|
397 |
+
return [{"name":x.name(), "cmd_dir": getattr(x, "cmd_dir", None)} for x in shared.face_restorers]
|
398 |
+
|
399 |
+
def get_realesrgan_models(self):
|
400 |
+
return [{"name":x.name,"path":x.data_path, "scale":x.scale} for x in get_realesrgan_models(None)]
|
401 |
+
|
402 |
+
def get_prompt_styles(self):
|
403 |
+
styleList = []
|
404 |
+
for k in shared.prompt_styles.styles:
|
405 |
+
style = shared.prompt_styles.styles[k]
|
406 |
+
styleList.append({"name":style[0], "prompt": style[1], "negative_prompt": style[2]})
|
407 |
+
|
408 |
+
return styleList
|
409 |
+
|
410 |
+
def get_embeddings(self):
|
411 |
+
db = sd_hijack.model_hijack.embedding_db
|
412 |
+
|
413 |
+
def convert_embedding(embedding):
|
414 |
+
return {
|
415 |
+
"step": embedding.step,
|
416 |
+
"sd_checkpoint": embedding.sd_checkpoint,
|
417 |
+
"sd_checkpoint_name": embedding.sd_checkpoint_name,
|
418 |
+
"shape": embedding.shape,
|
419 |
+
"vectors": embedding.vectors,
|
420 |
+
}
|
421 |
+
|
422 |
+
def convert_embeddings(embeddings):
|
423 |
+
return {embedding.name: convert_embedding(embedding) for embedding in embeddings.values()}
|
424 |
+
|
425 |
+
return {
|
426 |
+
"loaded": convert_embeddings(db.word_embeddings),
|
427 |
+
"skipped": convert_embeddings(db.skipped_embeddings),
|
428 |
+
}
|
429 |
+
|
430 |
+
def refresh_checkpoints(self):
|
431 |
+
shared.refresh_checkpoints()
|
432 |
+
|
433 |
+
def create_embedding(self, args: dict):
|
434 |
+
try:
|
435 |
+
shared.state.begin()
|
436 |
+
filename = create_embedding(**args) # create empty embedding
|
437 |
+
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings() # reload embeddings so new one can be immediately used
|
438 |
+
shared.state.end()
|
439 |
+
return CreateResponse(info = "create embedding filename: {filename}".format(filename = filename))
|
440 |
+
except AssertionError as e:
|
441 |
+
shared.state.end()
|
442 |
+
return TrainResponse(info = "create embedding error: {error}".format(error = e))
|
443 |
+
|
444 |
+
def create_hypernetwork(self, args: dict):
|
445 |
+
try:
|
446 |
+
shared.state.begin()
|
447 |
+
filename = create_hypernetwork(**args) # create empty embedding
|
448 |
+
shared.state.end()
|
449 |
+
return CreateResponse(info = "create hypernetwork filename: {filename}".format(filename = filename))
|
450 |
+
except AssertionError as e:
|
451 |
+
shared.state.end()
|
452 |
+
return TrainResponse(info = "create hypernetwork error: {error}".format(error = e))
|
453 |
+
|
454 |
+
def preprocess(self, args: dict):
|
455 |
+
try:
|
456 |
+
shared.state.begin()
|
457 |
+
preprocess(**args) # quick operation unless blip/booru interrogation is enabled
|
458 |
+
shared.state.end()
|
459 |
+
return PreprocessResponse(info = 'preprocess complete')
|
460 |
+
except KeyError as e:
|
461 |
+
shared.state.end()
|
462 |
+
return PreprocessResponse(info = "preprocess error: invalid token: {error}".format(error = e))
|
463 |
+
except AssertionError as e:
|
464 |
+
shared.state.end()
|
465 |
+
return PreprocessResponse(info = "preprocess error: {error}".format(error = e))
|
466 |
+
except FileNotFoundError as e:
|
467 |
+
shared.state.end()
|
468 |
+
return PreprocessResponse(info = 'preprocess error: {error}'.format(error = e))
|
469 |
+
|
470 |
+
def train_embedding(self, args: dict):
|
471 |
+
try:
|
472 |
+
shared.state.begin()
|
473 |
+
apply_optimizations = shared.opts.training_xattention_optimizations
|
474 |
+
error = None
|
475 |
+
filename = ''
|
476 |
+
if not apply_optimizations:
|
477 |
+
sd_hijack.undo_optimizations()
|
478 |
+
try:
|
479 |
+
embedding, filename = train_embedding(**args) # can take a long time to complete
|
480 |
+
except Exception as e:
|
481 |
+
error = e
|
482 |
+
finally:
|
483 |
+
if not apply_optimizations:
|
484 |
+
sd_hijack.apply_optimizations()
|
485 |
+
shared.state.end()
|
486 |
+
return TrainResponse(info = "train embedding complete: filename: {filename} error: {error}".format(filename = filename, error = error))
|
487 |
+
except AssertionError as msg:
|
488 |
+
shared.state.end()
|
489 |
+
return TrainResponse(info = "train embedding error: {msg}".format(msg = msg))
|
490 |
+
|
491 |
+
def train_hypernetwork(self, args: dict):
|
492 |
+
try:
|
493 |
+
shared.state.begin()
|
494 |
+
shared.loaded_hypernetworks = []
|
495 |
+
apply_optimizations = shared.opts.training_xattention_optimizations
|
496 |
+
error = None
|
497 |
+
filename = ''
|
498 |
+
if not apply_optimizations:
|
499 |
+
sd_hijack.undo_optimizations()
|
500 |
+
try:
|
501 |
+
hypernetwork, filename = train_hypernetwork(**args)
|
502 |
+
except Exception as e:
|
503 |
+
error = e
|
504 |
+
finally:
|
505 |
+
shared.sd_model.cond_stage_model.to(devices.device)
|
506 |
+
shared.sd_model.first_stage_model.to(devices.device)
|
507 |
+
if not apply_optimizations:
|
508 |
+
sd_hijack.apply_optimizations()
|
509 |
+
shared.state.end()
|
510 |
+
return TrainResponse(info="train embedding complete: filename: {filename} error: {error}".format(filename=filename, error=error))
|
511 |
+
except AssertionError as msg:
|
512 |
+
shared.state.end()
|
513 |
+
return TrainResponse(info="train embedding error: {error}".format(error=error))
|
514 |
+
|
515 |
+
def get_memory(self):
|
516 |
+
try:
|
517 |
+
import os, psutil
|
518 |
+
process = psutil.Process(os.getpid())
|
519 |
+
res = process.memory_info() # only rss is cross-platform guaranteed so we dont rely on other values
|
520 |
+
ram_total = 100 * res.rss / process.memory_percent() # and total memory is calculated as actual value is not cross-platform safe
|
521 |
+
ram = { 'free': ram_total - res.rss, 'used': res.rss, 'total': ram_total }
|
522 |
+
except Exception as err:
|
523 |
+
ram = { 'error': f'{err}' }
|
524 |
+
try:
|
525 |
+
import torch
|
526 |
+
if torch.cuda.is_available():
|
527 |
+
s = torch.cuda.mem_get_info()
|
528 |
+
system = { 'free': s[0], 'used': s[1] - s[0], 'total': s[1] }
|
529 |
+
s = dict(torch.cuda.memory_stats(shared.device))
|
530 |
+
allocated = { 'current': s['allocated_bytes.all.current'], 'peak': s['allocated_bytes.all.peak'] }
|
531 |
+
reserved = { 'current': s['reserved_bytes.all.current'], 'peak': s['reserved_bytes.all.peak'] }
|
532 |
+
active = { 'current': s['active_bytes.all.current'], 'peak': s['active_bytes.all.peak'] }
|
533 |
+
inactive = { 'current': s['inactive_split_bytes.all.current'], 'peak': s['inactive_split_bytes.all.peak'] }
|
534 |
+
warnings = { 'retries': s['num_alloc_retries'], 'oom': s['num_ooms'] }
|
535 |
+
cuda = {
|
536 |
+
'system': system,
|
537 |
+
'active': active,
|
538 |
+
'allocated': allocated,
|
539 |
+
'reserved': reserved,
|
540 |
+
'inactive': inactive,
|
541 |
+
'events': warnings,
|
542 |
+
}
|
543 |
+
else:
|
544 |
+
cuda = { 'error': 'unavailable' }
|
545 |
+
except Exception as err:
|
546 |
+
cuda = { 'error': f'{err}' }
|
547 |
+
return MemoryResponse(ram = ram, cuda = cuda)
|
548 |
+
|
549 |
+
def launch(self, server_name, port):
|
550 |
+
self.app.include_router(self.router)
|
551 |
+
uvicorn.run(self.app, host=server_name, port=port)
|
modules/api/models.py
ADDED
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
from pydantic import BaseModel, Field, create_model
|
3 |
+
from typing import Any, Optional
|
4 |
+
from typing_extensions import Literal
|
5 |
+
from inflection import underscore
|
6 |
+
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img
|
7 |
+
from modules.shared import sd_upscalers, opts, parser
|
8 |
+
from typing import Dict, List
|
9 |
+
|
10 |
+
API_NOT_ALLOWED = [
|
11 |
+
"self",
|
12 |
+
"kwargs",
|
13 |
+
"sd_model",
|
14 |
+
"outpath_samples",
|
15 |
+
"outpath_grids",
|
16 |
+
"sampler_index",
|
17 |
+
"do_not_save_samples",
|
18 |
+
"do_not_save_grid",
|
19 |
+
"extra_generation_params",
|
20 |
+
"overlay_images",
|
21 |
+
"do_not_reload_embeddings",
|
22 |
+
"seed_enable_extras",
|
23 |
+
"prompt_for_display",
|
24 |
+
"sampler_noise_scheduler_override",
|
25 |
+
"ddim_discretize"
|
26 |
+
]
|
27 |
+
|
28 |
+
class ModelDef(BaseModel):
|
29 |
+
"""Assistance Class for Pydantic Dynamic Model Generation"""
|
30 |
+
|
31 |
+
field: str
|
32 |
+
field_alias: str
|
33 |
+
field_type: Any
|
34 |
+
field_value: Any
|
35 |
+
field_exclude: bool = False
|
36 |
+
|
37 |
+
|
38 |
+
class PydanticModelGenerator:
|
39 |
+
"""
|
40 |
+
Takes in created classes and stubs them out in a way FastAPI/Pydantic is happy about:
|
41 |
+
source_data is a snapshot of the default values produced by the class
|
42 |
+
params are the names of the actual keys required by __init__
|
43 |
+
"""
|
44 |
+
|
45 |
+
def __init__(
|
46 |
+
self,
|
47 |
+
model_name: str = None,
|
48 |
+
class_instance = None,
|
49 |
+
additional_fields = None,
|
50 |
+
):
|
51 |
+
def field_type_generator(k, v):
|
52 |
+
# field_type = str if not overrides.get(k) else overrides[k]["type"]
|
53 |
+
# print(k, v.annotation, v.default)
|
54 |
+
field_type = v.annotation
|
55 |
+
|
56 |
+
return Optional[field_type]
|
57 |
+
|
58 |
+
def merge_class_params(class_):
|
59 |
+
all_classes = list(filter(lambda x: x is not object, inspect.getmro(class_)))
|
60 |
+
parameters = {}
|
61 |
+
for classes in all_classes:
|
62 |
+
parameters = {**parameters, **inspect.signature(classes.__init__).parameters}
|
63 |
+
return parameters
|
64 |
+
|
65 |
+
|
66 |
+
self._model_name = model_name
|
67 |
+
self._class_data = merge_class_params(class_instance)
|
68 |
+
|
69 |
+
self._model_def = [
|
70 |
+
ModelDef(
|
71 |
+
field=underscore(k),
|
72 |
+
field_alias=k,
|
73 |
+
field_type=field_type_generator(k, v),
|
74 |
+
field_value=v.default
|
75 |
+
)
|
76 |
+
for (k,v) in self._class_data.items() if k not in API_NOT_ALLOWED
|
77 |
+
]
|
78 |
+
|
79 |
+
for fields in additional_fields:
|
80 |
+
self._model_def.append(ModelDef(
|
81 |
+
field=underscore(fields["key"]),
|
82 |
+
field_alias=fields["key"],
|
83 |
+
field_type=fields["type"],
|
84 |
+
field_value=fields["default"],
|
85 |
+
field_exclude=fields["exclude"] if "exclude" in fields else False))
|
86 |
+
|
87 |
+
def generate_model(self):
|
88 |
+
"""
|
89 |
+
Creates a pydantic BaseModel
|
90 |
+
from the json and overrides provided at initialization
|
91 |
+
"""
|
92 |
+
fields = {
|
93 |
+
d.field: (d.field_type, Field(default=d.field_value, alias=d.field_alias, exclude=d.field_exclude)) for d in self._model_def
|
94 |
+
}
|
95 |
+
DynamicModel = create_model(self._model_name, **fields)
|
96 |
+
DynamicModel.__config__.allow_population_by_field_name = True
|
97 |
+
DynamicModel.__config__.allow_mutation = True
|
98 |
+
return DynamicModel
|
99 |
+
|
100 |
+
StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator(
|
101 |
+
"StableDiffusionProcessingTxt2Img",
|
102 |
+
StableDiffusionProcessingTxt2Img,
|
103 |
+
[{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}]
|
104 |
+
).generate_model()
|
105 |
+
|
106 |
+
StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator(
|
107 |
+
"StableDiffusionProcessingImg2Img",
|
108 |
+
StableDiffusionProcessingImg2Img,
|
109 |
+
[{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}]
|
110 |
+
).generate_model()
|
111 |
+
|
112 |
+
class TextToImageResponse(BaseModel):
|
113 |
+
images: List[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
|
114 |
+
parameters: dict
|
115 |
+
info: str
|
116 |
+
|
117 |
+
class ImageToImageResponse(BaseModel):
|
118 |
+
images: List[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
|
119 |
+
parameters: dict
|
120 |
+
info: str
|
121 |
+
|
122 |
+
class ExtrasBaseRequest(BaseModel):
|
123 |
+
resize_mode: Literal[0, 1] = Field(default=0, title="Resize Mode", description="Sets the resize mode: 0 to upscale by upscaling_resize amount, 1 to upscale up to upscaling_resize_h x upscaling_resize_w.")
|
124 |
+
show_extras_results: bool = Field(default=True, title="Show results", description="Should the backend return the generated image?")
|
125 |
+
gfpgan_visibility: float = Field(default=0, title="GFPGAN Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of GFPGAN, values should be between 0 and 1.")
|
126 |
+
codeformer_visibility: float = Field(default=0, title="CodeFormer Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of CodeFormer, values should be between 0 and 1.")
|
127 |
+
codeformer_weight: float = Field(default=0, title="CodeFormer Weight", ge=0, le=1, allow_inf_nan=False, description="Sets the weight of CodeFormer, values should be between 0 and 1.")
|
128 |
+
upscaling_resize: float = Field(default=2, title="Upscaling Factor", ge=1, le=8, description="By how much to upscale the image, only used when resize_mode=0.")
|
129 |
+
upscaling_resize_w: int = Field(default=512, title="Target Width", ge=1, description="Target width for the upscaler to hit. Only used when resize_mode=1.")
|
130 |
+
upscaling_resize_h: int = Field(default=512, title="Target Height", ge=1, description="Target height for the upscaler to hit. Only used when resize_mode=1.")
|
131 |
+
upscaling_crop: bool = Field(default=True, title="Crop to fit", description="Should the upscaler crop the image to fit in the chosen size?")
|
132 |
+
upscaler_1: str = Field(default="None", title="Main upscaler", description=f"The name of the main upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}")
|
133 |
+
upscaler_2: str = Field(default="None", title="Secondary upscaler", description=f"The name of the secondary upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}")
|
134 |
+
extras_upscaler_2_visibility: float = Field(default=0, title="Secondary upscaler visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of secondary upscaler, values should be between 0 and 1.")
|
135 |
+
upscale_first: bool = Field(default=False, title="Upscale first", description="Should the upscaler run before restoring faces?")
|
136 |
+
|
137 |
+
class ExtraBaseResponse(BaseModel):
|
138 |
+
html_info: str = Field(title="HTML info", description="A series of HTML tags containing the process info.")
|
139 |
+
|
140 |
+
class ExtrasSingleImageRequest(ExtrasBaseRequest):
|
141 |
+
image: str = Field(default="", title="Image", description="Image to work on, must be a Base64 string containing the image's data.")
|
142 |
+
|
143 |
+
class ExtrasSingleImageResponse(ExtraBaseResponse):
|
144 |
+
image: str = Field(default=None, title="Image", description="The generated image in base64 format.")
|
145 |
+
|
146 |
+
class FileData(BaseModel):
|
147 |
+
data: str = Field(title="File data", description="Base64 representation of the file")
|
148 |
+
name: str = Field(title="File name")
|
149 |
+
|
150 |
+
class ExtrasBatchImagesRequest(ExtrasBaseRequest):
|
151 |
+
imageList: List[FileData] = Field(title="Images", description="List of images to work on. Must be Base64 strings")
|
152 |
+
|
153 |
+
class ExtrasBatchImagesResponse(ExtraBaseResponse):
|
154 |
+
images: List[str] = Field(title="Images", description="The generated images in base64 format.")
|
155 |
+
|
156 |
+
class PNGInfoRequest(BaseModel):
|
157 |
+
image: str = Field(title="Image", description="The base64 encoded PNG image")
|
158 |
+
|
159 |
+
class PNGInfoResponse(BaseModel):
|
160 |
+
info: str = Field(title="Image info", description="A string with the parameters used to generate the image")
|
161 |
+
items: dict = Field(title="Items", description="An object containing all the info the image had")
|
162 |
+
|
163 |
+
class ProgressRequest(BaseModel):
|
164 |
+
skip_current_image: bool = Field(default=False, title="Skip current image", description="Skip current image serialization")
|
165 |
+
|
166 |
+
class ProgressResponse(BaseModel):
|
167 |
+
progress: float = Field(title="Progress", description="The progress with a range of 0 to 1")
|
168 |
+
eta_relative: float = Field(title="ETA in secs")
|
169 |
+
state: dict = Field(title="State", description="The current state snapshot")
|
170 |
+
current_image: str = Field(default=None, title="Current image", description="The current image in base64 format. opts.show_progress_every_n_steps is required for this to work.")
|
171 |
+
textinfo: str = Field(default=None, title="Info text", description="Info text used by WebUI.")
|
172 |
+
|
173 |
+
class InterrogateRequest(BaseModel):
|
174 |
+
image: str = Field(default="", title="Image", description="Image to work on, must be a Base64 string containing the image's data.")
|
175 |
+
model: str = Field(default="clip", title="Model", description="The interrogate model used.")
|
176 |
+
|
177 |
+
class InterrogateResponse(BaseModel):
|
178 |
+
caption: str = Field(default=None, title="Caption", description="The generated caption for the image.")
|
179 |
+
|
180 |
+
class TrainResponse(BaseModel):
|
181 |
+
info: str = Field(title="Train info", description="Response string from train embedding or hypernetwork task.")
|
182 |
+
|
183 |
+
class CreateResponse(BaseModel):
|
184 |
+
info: str = Field(title="Create info", description="Response string from create embedding or hypernetwork task.")
|
185 |
+
|
186 |
+
class PreprocessResponse(BaseModel):
|
187 |
+
info: str = Field(title="Preprocess info", description="Response string from preprocessing task.")
|
188 |
+
|
189 |
+
fields = {}
|
190 |
+
for key, metadata in opts.data_labels.items():
|
191 |
+
value = opts.data.get(key)
|
192 |
+
optType = opts.typemap.get(type(metadata.default), type(value))
|
193 |
+
|
194 |
+
if (metadata is not None):
|
195 |
+
fields.update({key: (Optional[optType], Field(
|
196 |
+
default=metadata.default ,description=metadata.label))})
|
197 |
+
else:
|
198 |
+
fields.update({key: (Optional[optType], Field())})
|
199 |
+
|
200 |
+
OptionsModel = create_model("Options", **fields)
|
201 |
+
|
202 |
+
flags = {}
|
203 |
+
_options = vars(parser)['_option_string_actions']
|
204 |
+
for key in _options:
|
205 |
+
if(_options[key].dest != 'help'):
|
206 |
+
flag = _options[key]
|
207 |
+
_type = str
|
208 |
+
if _options[key].default is not None: _type = type(_options[key].default)
|
209 |
+
flags.update({flag.dest: (_type,Field(default=flag.default, description=flag.help))})
|
210 |
+
|
211 |
+
FlagsModel = create_model("Flags", **flags)
|
212 |
+
|
213 |
+
class SamplerItem(BaseModel):
|
214 |
+
name: str = Field(title="Name")
|
215 |
+
aliases: List[str] = Field(title="Aliases")
|
216 |
+
options: Dict[str, str] = Field(title="Options")
|
217 |
+
|
218 |
+
class UpscalerItem(BaseModel):
|
219 |
+
name: str = Field(title="Name")
|
220 |
+
model_name: Optional[str] = Field(title="Model Name")
|
221 |
+
model_path: Optional[str] = Field(title="Path")
|
222 |
+
model_url: Optional[str] = Field(title="URL")
|
223 |
+
scale: Optional[float] = Field(title="Scale")
|
224 |
+
|
225 |
+
class SDModelItem(BaseModel):
|
226 |
+
title: str = Field(title="Title")
|
227 |
+
model_name: str = Field(title="Model Name")
|
228 |
+
hash: Optional[str] = Field(title="Short hash")
|
229 |
+
sha256: Optional[str] = Field(title="sha256 hash")
|
230 |
+
filename: str = Field(title="Filename")
|
231 |
+
config: Optional[str] = Field(title="Config file")
|
232 |
+
|
233 |
+
class HypernetworkItem(BaseModel):
|
234 |
+
name: str = Field(title="Name")
|
235 |
+
path: Optional[str] = Field(title="Path")
|
236 |
+
|
237 |
+
class FaceRestorerItem(BaseModel):
|
238 |
+
name: str = Field(title="Name")
|
239 |
+
cmd_dir: Optional[str] = Field(title="Path")
|
240 |
+
|
241 |
+
class RealesrganItem(BaseModel):
|
242 |
+
name: str = Field(title="Name")
|
243 |
+
path: Optional[str] = Field(title="Path")
|
244 |
+
scale: Optional[int] = Field(title="Scale")
|
245 |
+
|
246 |
+
class PromptStyleItem(BaseModel):
|
247 |
+
name: str = Field(title="Name")
|
248 |
+
prompt: Optional[str] = Field(title="Prompt")
|
249 |
+
negative_prompt: Optional[str] = Field(title="Negative Prompt")
|
250 |
+
|
251 |
+
class ArtistItem(BaseModel):
|
252 |
+
name: str = Field(title="Name")
|
253 |
+
score: float = Field(title="Score")
|
254 |
+
category: str = Field(title="Category")
|
255 |
+
|
256 |
+
class EmbeddingItem(BaseModel):
|
257 |
+
step: Optional[int] = Field(title="Step", description="The number of steps that were used to train this embedding, if available")
|
258 |
+
sd_checkpoint: Optional[str] = Field(title="SD Checkpoint", description="The hash of the checkpoint this embedding was trained on, if available")
|
259 |
+
sd_checkpoint_name: Optional[str] = Field(title="SD Checkpoint Name", description="The name of the checkpoint this embedding was trained on, if available. Note that this is the name that was used by the trainer; for a stable identifier, use `sd_checkpoint` instead")
|
260 |
+
shape: int = Field(title="Shape", description="The length of each individual vector in the embedding")
|
261 |
+
vectors: int = Field(title="Vectors", description="The number of vectors in the embedding")
|
262 |
+
|
263 |
+
class EmbeddingsResponse(BaseModel):
|
264 |
+
loaded: Dict[str, EmbeddingItem] = Field(title="Loaded", description="Embeddings loaded for the current model")
|
265 |
+
skipped: Dict[str, EmbeddingItem] = Field(title="Skipped", description="Embeddings skipped for the current model (likely due to architecture incompatibility)")
|
266 |
+
|
267 |
+
class MemoryResponse(BaseModel):
|
268 |
+
ram: dict = Field(title="RAM", description="System memory stats")
|
269 |
+
cuda: dict = Field(title="CUDA", description="nVidia CUDA memory stats")
|
modules/call_queue.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import html
|
2 |
+
import sys
|
3 |
+
import threading
|
4 |
+
import traceback
|
5 |
+
import time
|
6 |
+
|
7 |
+
from modules import shared, progress
|
8 |
+
|
9 |
+
queue_lock = threading.Lock()
|
10 |
+
|
11 |
+
|
12 |
+
def wrap_queued_call(func):
|
13 |
+
def f(*args, **kwargs):
|
14 |
+
with queue_lock:
|
15 |
+
res = func(*args, **kwargs)
|
16 |
+
|
17 |
+
return res
|
18 |
+
|
19 |
+
return f
|
20 |
+
|
21 |
+
|
22 |
+
def wrap_gradio_gpu_call(func, extra_outputs=None):
|
23 |
+
def f(*args, **kwargs):
|
24 |
+
|
25 |
+
# if the first argument is a string that says "task(...)", it is treated as a job id
|
26 |
+
if len(args) > 0 and type(args[0]) == str and args[0][0:5] == "task(" and args[0][-1] == ")":
|
27 |
+
id_task = args[0]
|
28 |
+
progress.add_task_to_queue(id_task)
|
29 |
+
else:
|
30 |
+
id_task = None
|
31 |
+
|
32 |
+
with queue_lock:
|
33 |
+
shared.state.begin()
|
34 |
+
progress.start_task(id_task)
|
35 |
+
|
36 |
+
try:
|
37 |
+
res = func(*args, **kwargs)
|
38 |
+
finally:
|
39 |
+
progress.finish_task(id_task)
|
40 |
+
|
41 |
+
shared.state.end()
|
42 |
+
|
43 |
+
return res
|
44 |
+
|
45 |
+
return wrap_gradio_call(f, extra_outputs=extra_outputs, add_stats=True)
|
46 |
+
|
47 |
+
|
48 |
+
def wrap_gradio_call(func, extra_outputs=None, add_stats=False):
|
49 |
+
def f(*args, extra_outputs_array=extra_outputs, **kwargs):
|
50 |
+
run_memmon = shared.opts.memmon_poll_rate > 0 and not shared.mem_mon.disabled and add_stats
|
51 |
+
if run_memmon:
|
52 |
+
shared.mem_mon.monitor()
|
53 |
+
t = time.perf_counter()
|
54 |
+
|
55 |
+
try:
|
56 |
+
res = list(func(*args, **kwargs))
|
57 |
+
except Exception as e:
|
58 |
+
# When printing out our debug argument list, do not print out more than a MB of text
|
59 |
+
max_debug_str_len = 131072 # (1024*1024)/8
|
60 |
+
|
61 |
+
print("Error completing request", file=sys.stderr)
|
62 |
+
argStr = f"Arguments: {str(args)} {str(kwargs)}"
|
63 |
+
print(argStr[:max_debug_str_len], file=sys.stderr)
|
64 |
+
if len(argStr) > max_debug_str_len:
|
65 |
+
print(f"(Argument list truncated at {max_debug_str_len}/{len(argStr)} characters)", file=sys.stderr)
|
66 |
+
|
67 |
+
print(traceback.format_exc(), file=sys.stderr)
|
68 |
+
|
69 |
+
shared.state.job = ""
|
70 |
+
shared.state.job_count = 0
|
71 |
+
|
72 |
+
if extra_outputs_array is None:
|
73 |
+
extra_outputs_array = [None, '']
|
74 |
+
|
75 |
+
res = extra_outputs_array + [f"<div class='error'>{html.escape(type(e).__name__+': '+str(e))}</div>"]
|
76 |
+
|
77 |
+
shared.state.skipped = False
|
78 |
+
shared.state.interrupted = False
|
79 |
+
shared.state.job_count = 0
|
80 |
+
|
81 |
+
if not add_stats:
|
82 |
+
return tuple(res)
|
83 |
+
|
84 |
+
elapsed = time.perf_counter() - t
|
85 |
+
elapsed_m = int(elapsed // 60)
|
86 |
+
elapsed_s = elapsed % 60
|
87 |
+
elapsed_text = f"{elapsed_s:.2f}s"
|
88 |
+
if elapsed_m > 0:
|
89 |
+
elapsed_text = f"{elapsed_m}m "+elapsed_text
|
90 |
+
|
91 |
+
if run_memmon:
|
92 |
+
mem_stats = {k: -(v//-(1024*1024)) for k, v in shared.mem_mon.stop().items()}
|
93 |
+
active_peak = mem_stats['active_peak']
|
94 |
+
reserved_peak = mem_stats['reserved_peak']
|
95 |
+
sys_peak = mem_stats['system_peak']
|
96 |
+
sys_total = mem_stats['total']
|
97 |
+
sys_pct = round(sys_peak/max(sys_total, 1) * 100, 2)
|
98 |
+
|
99 |
+
vram_html = f"<p class='vram'>Torch active/reserved: {active_peak}/{reserved_peak} MiB, <wbr>Sys VRAM: {sys_peak}/{sys_total} MiB ({sys_pct}%)</p>"
|
100 |
+
else:
|
101 |
+
vram_html = ''
|
102 |
+
|
103 |
+
# last item is always HTML
|
104 |
+
res[-1] += f"<div class='performance'><p class='time'>Time taken: <wbr>{elapsed_text}</p>{vram_html}</div>"
|
105 |
+
|
106 |
+
return tuple(res)
|
107 |
+
|
108 |
+
return f
|
109 |
+
|
modules/codeformer/codeformer_arch.py
ADDED
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# this file is copied from CodeFormer repository. Please see comment in modules/codeformer_model.py
|
2 |
+
|
3 |
+
import math
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from torch import nn, Tensor
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from typing import Optional, List
|
9 |
+
|
10 |
+
from modules.codeformer.vqgan_arch import *
|
11 |
+
from basicsr.utils import get_root_logger
|
12 |
+
from basicsr.utils.registry import ARCH_REGISTRY
|
13 |
+
|
14 |
+
def calc_mean_std(feat, eps=1e-5):
|
15 |
+
"""Calculate mean and std for adaptive_instance_normalization.
|
16 |
+
|
17 |
+
Args:
|
18 |
+
feat (Tensor): 4D tensor.
|
19 |
+
eps (float): A small value added to the variance to avoid
|
20 |
+
divide-by-zero. Default: 1e-5.
|
21 |
+
"""
|
22 |
+
size = feat.size()
|
23 |
+
assert len(size) == 4, 'The input feature should be 4D tensor.'
|
24 |
+
b, c = size[:2]
|
25 |
+
feat_var = feat.view(b, c, -1).var(dim=2) + eps
|
26 |
+
feat_std = feat_var.sqrt().view(b, c, 1, 1)
|
27 |
+
feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1)
|
28 |
+
return feat_mean, feat_std
|
29 |
+
|
30 |
+
|
31 |
+
def adaptive_instance_normalization(content_feat, style_feat):
|
32 |
+
"""Adaptive instance normalization.
|
33 |
+
|
34 |
+
Adjust the reference features to have the similar color and illuminations
|
35 |
+
as those in the degradate features.
|
36 |
+
|
37 |
+
Args:
|
38 |
+
content_feat (Tensor): The reference feature.
|
39 |
+
style_feat (Tensor): The degradate features.
|
40 |
+
"""
|
41 |
+
size = content_feat.size()
|
42 |
+
style_mean, style_std = calc_mean_std(style_feat)
|
43 |
+
content_mean, content_std = calc_mean_std(content_feat)
|
44 |
+
normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size)
|
45 |
+
return normalized_feat * style_std.expand(size) + style_mean.expand(size)
|
46 |
+
|
47 |
+
|
48 |
+
class PositionEmbeddingSine(nn.Module):
|
49 |
+
"""
|
50 |
+
This is a more standard version of the position embedding, very similar to the one
|
51 |
+
used by the Attention is all you need paper, generalized to work on images.
|
52 |
+
"""
|
53 |
+
|
54 |
+
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
|
55 |
+
super().__init__()
|
56 |
+
self.num_pos_feats = num_pos_feats
|
57 |
+
self.temperature = temperature
|
58 |
+
self.normalize = normalize
|
59 |
+
if scale is not None and normalize is False:
|
60 |
+
raise ValueError("normalize should be True if scale is passed")
|
61 |
+
if scale is None:
|
62 |
+
scale = 2 * math.pi
|
63 |
+
self.scale = scale
|
64 |
+
|
65 |
+
def forward(self, x, mask=None):
|
66 |
+
if mask is None:
|
67 |
+
mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool)
|
68 |
+
not_mask = ~mask
|
69 |
+
y_embed = not_mask.cumsum(1, dtype=torch.float32)
|
70 |
+
x_embed = not_mask.cumsum(2, dtype=torch.float32)
|
71 |
+
if self.normalize:
|
72 |
+
eps = 1e-6
|
73 |
+
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
|
74 |
+
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
|
75 |
+
|
76 |
+
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
77 |
+
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
|
78 |
+
|
79 |
+
pos_x = x_embed[:, :, :, None] / dim_t
|
80 |
+
pos_y = y_embed[:, :, :, None] / dim_t
|
81 |
+
pos_x = torch.stack(
|
82 |
+
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
|
83 |
+
).flatten(3)
|
84 |
+
pos_y = torch.stack(
|
85 |
+
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
|
86 |
+
).flatten(3)
|
87 |
+
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
88 |
+
return pos
|
89 |
+
|
90 |
+
def _get_activation_fn(activation):
|
91 |
+
"""Return an activation function given a string"""
|
92 |
+
if activation == "relu":
|
93 |
+
return F.relu
|
94 |
+
if activation == "gelu":
|
95 |
+
return F.gelu
|
96 |
+
if activation == "glu":
|
97 |
+
return F.glu
|
98 |
+
raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
|
99 |
+
|
100 |
+
|
101 |
+
class TransformerSALayer(nn.Module):
|
102 |
+
def __init__(self, embed_dim, nhead=8, dim_mlp=2048, dropout=0.0, activation="gelu"):
|
103 |
+
super().__init__()
|
104 |
+
self.self_attn = nn.MultiheadAttention(embed_dim, nhead, dropout=dropout)
|
105 |
+
# Implementation of Feedforward model - MLP
|
106 |
+
self.linear1 = nn.Linear(embed_dim, dim_mlp)
|
107 |
+
self.dropout = nn.Dropout(dropout)
|
108 |
+
self.linear2 = nn.Linear(dim_mlp, embed_dim)
|
109 |
+
|
110 |
+
self.norm1 = nn.LayerNorm(embed_dim)
|
111 |
+
self.norm2 = nn.LayerNorm(embed_dim)
|
112 |
+
self.dropout1 = nn.Dropout(dropout)
|
113 |
+
self.dropout2 = nn.Dropout(dropout)
|
114 |
+
|
115 |
+
self.activation = _get_activation_fn(activation)
|
116 |
+
|
117 |
+
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
118 |
+
return tensor if pos is None else tensor + pos
|
119 |
+
|
120 |
+
def forward(self, tgt,
|
121 |
+
tgt_mask: Optional[Tensor] = None,
|
122 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
123 |
+
query_pos: Optional[Tensor] = None):
|
124 |
+
|
125 |
+
# self attention
|
126 |
+
tgt2 = self.norm1(tgt)
|
127 |
+
q = k = self.with_pos_embed(tgt2, query_pos)
|
128 |
+
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
|
129 |
+
key_padding_mask=tgt_key_padding_mask)[0]
|
130 |
+
tgt = tgt + self.dropout1(tgt2)
|
131 |
+
|
132 |
+
# ffn
|
133 |
+
tgt2 = self.norm2(tgt)
|
134 |
+
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
|
135 |
+
tgt = tgt + self.dropout2(tgt2)
|
136 |
+
return tgt
|
137 |
+
|
138 |
+
class Fuse_sft_block(nn.Module):
|
139 |
+
def __init__(self, in_ch, out_ch):
|
140 |
+
super().__init__()
|
141 |
+
self.encode_enc = ResBlock(2*in_ch, out_ch)
|
142 |
+
|
143 |
+
self.scale = nn.Sequential(
|
144 |
+
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
|
145 |
+
nn.LeakyReLU(0.2, True),
|
146 |
+
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1))
|
147 |
+
|
148 |
+
self.shift = nn.Sequential(
|
149 |
+
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
|
150 |
+
nn.LeakyReLU(0.2, True),
|
151 |
+
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1))
|
152 |
+
|
153 |
+
def forward(self, enc_feat, dec_feat, w=1):
|
154 |
+
enc_feat = self.encode_enc(torch.cat([enc_feat, dec_feat], dim=1))
|
155 |
+
scale = self.scale(enc_feat)
|
156 |
+
shift = self.shift(enc_feat)
|
157 |
+
residual = w * (dec_feat * scale + shift)
|
158 |
+
out = dec_feat + residual
|
159 |
+
return out
|
160 |
+
|
161 |
+
|
162 |
+
@ARCH_REGISTRY.register()
|
163 |
+
class CodeFormer(VQAutoEncoder):
|
164 |
+
def __init__(self, dim_embd=512, n_head=8, n_layers=9,
|
165 |
+
codebook_size=1024, latent_size=256,
|
166 |
+
connect_list=['32', '64', '128', '256'],
|
167 |
+
fix_modules=['quantize','generator']):
|
168 |
+
super(CodeFormer, self).__init__(512, 64, [1, 2, 2, 4, 4, 8], 'nearest',2, [16], codebook_size)
|
169 |
+
|
170 |
+
if fix_modules is not None:
|
171 |
+
for module in fix_modules:
|
172 |
+
for param in getattr(self, module).parameters():
|
173 |
+
param.requires_grad = False
|
174 |
+
|
175 |
+
self.connect_list = connect_list
|
176 |
+
self.n_layers = n_layers
|
177 |
+
self.dim_embd = dim_embd
|
178 |
+
self.dim_mlp = dim_embd*2
|
179 |
+
|
180 |
+
self.position_emb = nn.Parameter(torch.zeros(latent_size, self.dim_embd))
|
181 |
+
self.feat_emb = nn.Linear(256, self.dim_embd)
|
182 |
+
|
183 |
+
# transformer
|
184 |
+
self.ft_layers = nn.Sequential(*[TransformerSALayer(embed_dim=dim_embd, nhead=n_head, dim_mlp=self.dim_mlp, dropout=0.0)
|
185 |
+
for _ in range(self.n_layers)])
|
186 |
+
|
187 |
+
# logits_predict head
|
188 |
+
self.idx_pred_layer = nn.Sequential(
|
189 |
+
nn.LayerNorm(dim_embd),
|
190 |
+
nn.Linear(dim_embd, codebook_size, bias=False))
|
191 |
+
|
192 |
+
self.channels = {
|
193 |
+
'16': 512,
|
194 |
+
'32': 256,
|
195 |
+
'64': 256,
|
196 |
+
'128': 128,
|
197 |
+
'256': 128,
|
198 |
+
'512': 64,
|
199 |
+
}
|
200 |
+
|
201 |
+
# after second residual block for > 16, before attn layer for ==16
|
202 |
+
self.fuse_encoder_block = {'512':2, '256':5, '128':8, '64':11, '32':14, '16':18}
|
203 |
+
# after first residual block for > 16, before attn layer for ==16
|
204 |
+
self.fuse_generator_block = {'16':6, '32': 9, '64':12, '128':15, '256':18, '512':21}
|
205 |
+
|
206 |
+
# fuse_convs_dict
|
207 |
+
self.fuse_convs_dict = nn.ModuleDict()
|
208 |
+
for f_size in self.connect_list:
|
209 |
+
in_ch = self.channels[f_size]
|
210 |
+
self.fuse_convs_dict[f_size] = Fuse_sft_block(in_ch, in_ch)
|
211 |
+
|
212 |
+
def _init_weights(self, module):
|
213 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
214 |
+
module.weight.data.normal_(mean=0.0, std=0.02)
|
215 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
216 |
+
module.bias.data.zero_()
|
217 |
+
elif isinstance(module, nn.LayerNorm):
|
218 |
+
module.bias.data.zero_()
|
219 |
+
module.weight.data.fill_(1.0)
|
220 |
+
|
221 |
+
def forward(self, x, w=0, detach_16=True, code_only=False, adain=False):
|
222 |
+
# ################### Encoder #####################
|
223 |
+
enc_feat_dict = {}
|
224 |
+
out_list = [self.fuse_encoder_block[f_size] for f_size in self.connect_list]
|
225 |
+
for i, block in enumerate(self.encoder.blocks):
|
226 |
+
x = block(x)
|
227 |
+
if i in out_list:
|
228 |
+
enc_feat_dict[str(x.shape[-1])] = x.clone()
|
229 |
+
|
230 |
+
lq_feat = x
|
231 |
+
# ################# Transformer ###################
|
232 |
+
# quant_feat, codebook_loss, quant_stats = self.quantize(lq_feat)
|
233 |
+
pos_emb = self.position_emb.unsqueeze(1).repeat(1,x.shape[0],1)
|
234 |
+
# BCHW -> BC(HW) -> (HW)BC
|
235 |
+
feat_emb = self.feat_emb(lq_feat.flatten(2).permute(2,0,1))
|
236 |
+
query_emb = feat_emb
|
237 |
+
# Transformer encoder
|
238 |
+
for layer in self.ft_layers:
|
239 |
+
query_emb = layer(query_emb, query_pos=pos_emb)
|
240 |
+
|
241 |
+
# output logits
|
242 |
+
logits = self.idx_pred_layer(query_emb) # (hw)bn
|
243 |
+
logits = logits.permute(1,0,2) # (hw)bn -> b(hw)n
|
244 |
+
|
245 |
+
if code_only: # for training stage II
|
246 |
+
# logits doesn't need softmax before cross_entropy loss
|
247 |
+
return logits, lq_feat
|
248 |
+
|
249 |
+
# ################# Quantization ###################
|
250 |
+
# if self.training:
|
251 |
+
# quant_feat = torch.einsum('btn,nc->btc', [soft_one_hot, self.quantize.embedding.weight])
|
252 |
+
# # b(hw)c -> bc(hw) -> bchw
|
253 |
+
# quant_feat = quant_feat.permute(0,2,1).view(lq_feat.shape)
|
254 |
+
# ------------
|
255 |
+
soft_one_hot = F.softmax(logits, dim=2)
|
256 |
+
_, top_idx = torch.topk(soft_one_hot, 1, dim=2)
|
257 |
+
quant_feat = self.quantize.get_codebook_feat(top_idx, shape=[x.shape[0],16,16,256])
|
258 |
+
# preserve gradients
|
259 |
+
# quant_feat = lq_feat + (quant_feat - lq_feat).detach()
|
260 |
+
|
261 |
+
if detach_16:
|
262 |
+
quant_feat = quant_feat.detach() # for training stage III
|
263 |
+
if adain:
|
264 |
+
quant_feat = adaptive_instance_normalization(quant_feat, lq_feat)
|
265 |
+
|
266 |
+
# ################## Generator ####################
|
267 |
+
x = quant_feat
|
268 |
+
fuse_list = [self.fuse_generator_block[f_size] for f_size in self.connect_list]
|
269 |
+
|
270 |
+
for i, block in enumerate(self.generator.blocks):
|
271 |
+
x = block(x)
|
272 |
+
if i in fuse_list: # fuse after i-th block
|
273 |
+
f_size = str(x.shape[-1])
|
274 |
+
if w>0:
|
275 |
+
x = self.fuse_convs_dict[f_size](enc_feat_dict[f_size].detach(), x, w)
|
276 |
+
out = x
|
277 |
+
# logits doesn't need softmax before cross_entropy loss
|
278 |
+
return out, logits, lq_feat
|
modules/codeformer/vqgan_arch.py
ADDED
@@ -0,0 +1,437 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# this file is copied from CodeFormer repository. Please see comment in modules/codeformer_model.py
|
2 |
+
|
3 |
+
'''
|
4 |
+
VQGAN code, adapted from the original created by the Unleashing Transformers authors:
|
5 |
+
https://github.com/samb-t/unleashing-transformers/blob/master/models/vqgan.py
|
6 |
+
|
7 |
+
'''
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
import copy
|
13 |
+
from basicsr.utils import get_root_logger
|
14 |
+
from basicsr.utils.registry import ARCH_REGISTRY
|
15 |
+
|
16 |
+
def normalize(in_channels):
|
17 |
+
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
18 |
+
|
19 |
+
|
20 |
+
@torch.jit.script
|
21 |
+
def swish(x):
|
22 |
+
return x*torch.sigmoid(x)
|
23 |
+
|
24 |
+
|
25 |
+
# Define VQVAE classes
|
26 |
+
class VectorQuantizer(nn.Module):
|
27 |
+
def __init__(self, codebook_size, emb_dim, beta):
|
28 |
+
super(VectorQuantizer, self).__init__()
|
29 |
+
self.codebook_size = codebook_size # number of embeddings
|
30 |
+
self.emb_dim = emb_dim # dimension of embedding
|
31 |
+
self.beta = beta # commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2
|
32 |
+
self.embedding = nn.Embedding(self.codebook_size, self.emb_dim)
|
33 |
+
self.embedding.weight.data.uniform_(-1.0 / self.codebook_size, 1.0 / self.codebook_size)
|
34 |
+
|
35 |
+
def forward(self, z):
|
36 |
+
# reshape z -> (batch, height, width, channel) and flatten
|
37 |
+
z = z.permute(0, 2, 3, 1).contiguous()
|
38 |
+
z_flattened = z.view(-1, self.emb_dim)
|
39 |
+
|
40 |
+
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
|
41 |
+
d = (z_flattened ** 2).sum(dim=1, keepdim=True) + (self.embedding.weight**2).sum(1) - \
|
42 |
+
2 * torch.matmul(z_flattened, self.embedding.weight.t())
|
43 |
+
|
44 |
+
mean_distance = torch.mean(d)
|
45 |
+
# find closest encodings
|
46 |
+
# min_encoding_indices = torch.argmin(d, dim=1).unsqueeze(1)
|
47 |
+
min_encoding_scores, min_encoding_indices = torch.topk(d, 1, dim=1, largest=False)
|
48 |
+
# [0-1], higher score, higher confidence
|
49 |
+
min_encoding_scores = torch.exp(-min_encoding_scores/10)
|
50 |
+
|
51 |
+
min_encodings = torch.zeros(min_encoding_indices.shape[0], self.codebook_size).to(z)
|
52 |
+
min_encodings.scatter_(1, min_encoding_indices, 1)
|
53 |
+
|
54 |
+
# get quantized latent vectors
|
55 |
+
z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape)
|
56 |
+
# compute loss for embedding
|
57 |
+
loss = torch.mean((z_q.detach()-z)**2) + self.beta * torch.mean((z_q - z.detach()) ** 2)
|
58 |
+
# preserve gradients
|
59 |
+
z_q = z + (z_q - z).detach()
|
60 |
+
|
61 |
+
# perplexity
|
62 |
+
e_mean = torch.mean(min_encodings, dim=0)
|
63 |
+
perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10)))
|
64 |
+
# reshape back to match original input shape
|
65 |
+
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
66 |
+
|
67 |
+
return z_q, loss, {
|
68 |
+
"perplexity": perplexity,
|
69 |
+
"min_encodings": min_encodings,
|
70 |
+
"min_encoding_indices": min_encoding_indices,
|
71 |
+
"min_encoding_scores": min_encoding_scores,
|
72 |
+
"mean_distance": mean_distance
|
73 |
+
}
|
74 |
+
|
75 |
+
def get_codebook_feat(self, indices, shape):
|
76 |
+
# input indices: batch*token_num -> (batch*token_num)*1
|
77 |
+
# shape: batch, height, width, channel
|
78 |
+
indices = indices.view(-1,1)
|
79 |
+
min_encodings = torch.zeros(indices.shape[0], self.codebook_size).to(indices)
|
80 |
+
min_encodings.scatter_(1, indices, 1)
|
81 |
+
# get quantized latent vectors
|
82 |
+
z_q = torch.matmul(min_encodings.float(), self.embedding.weight)
|
83 |
+
|
84 |
+
if shape is not None: # reshape back to match original input shape
|
85 |
+
z_q = z_q.view(shape).permute(0, 3, 1, 2).contiguous()
|
86 |
+
|
87 |
+
return z_q
|
88 |
+
|
89 |
+
|
90 |
+
class GumbelQuantizer(nn.Module):
|
91 |
+
def __init__(self, codebook_size, emb_dim, num_hiddens, straight_through=False, kl_weight=5e-4, temp_init=1.0):
|
92 |
+
super().__init__()
|
93 |
+
self.codebook_size = codebook_size # number of embeddings
|
94 |
+
self.emb_dim = emb_dim # dimension of embedding
|
95 |
+
self.straight_through = straight_through
|
96 |
+
self.temperature = temp_init
|
97 |
+
self.kl_weight = kl_weight
|
98 |
+
self.proj = nn.Conv2d(num_hiddens, codebook_size, 1) # projects last encoder layer to quantized logits
|
99 |
+
self.embed = nn.Embedding(codebook_size, emb_dim)
|
100 |
+
|
101 |
+
def forward(self, z):
|
102 |
+
hard = self.straight_through if self.training else True
|
103 |
+
|
104 |
+
logits = self.proj(z)
|
105 |
+
|
106 |
+
soft_one_hot = F.gumbel_softmax(logits, tau=self.temperature, dim=1, hard=hard)
|
107 |
+
|
108 |
+
z_q = torch.einsum("b n h w, n d -> b d h w", soft_one_hot, self.embed.weight)
|
109 |
+
|
110 |
+
# + kl divergence to the prior loss
|
111 |
+
qy = F.softmax(logits, dim=1)
|
112 |
+
diff = self.kl_weight * torch.sum(qy * torch.log(qy * self.codebook_size + 1e-10), dim=1).mean()
|
113 |
+
min_encoding_indices = soft_one_hot.argmax(dim=1)
|
114 |
+
|
115 |
+
return z_q, diff, {
|
116 |
+
"min_encoding_indices": min_encoding_indices
|
117 |
+
}
|
118 |
+
|
119 |
+
|
120 |
+
class Downsample(nn.Module):
|
121 |
+
def __init__(self, in_channels):
|
122 |
+
super().__init__()
|
123 |
+
self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
|
124 |
+
|
125 |
+
def forward(self, x):
|
126 |
+
pad = (0, 1, 0, 1)
|
127 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
128 |
+
x = self.conv(x)
|
129 |
+
return x
|
130 |
+
|
131 |
+
|
132 |
+
class Upsample(nn.Module):
|
133 |
+
def __init__(self, in_channels):
|
134 |
+
super().__init__()
|
135 |
+
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
|
136 |
+
|
137 |
+
def forward(self, x):
|
138 |
+
x = F.interpolate(x, scale_factor=2.0, mode="nearest")
|
139 |
+
x = self.conv(x)
|
140 |
+
|
141 |
+
return x
|
142 |
+
|
143 |
+
|
144 |
+
class ResBlock(nn.Module):
|
145 |
+
def __init__(self, in_channels, out_channels=None):
|
146 |
+
super(ResBlock, self).__init__()
|
147 |
+
self.in_channels = in_channels
|
148 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
149 |
+
self.norm1 = normalize(in_channels)
|
150 |
+
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
151 |
+
self.norm2 = normalize(out_channels)
|
152 |
+
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
153 |
+
if self.in_channels != self.out_channels:
|
154 |
+
self.conv_out = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
155 |
+
|
156 |
+
def forward(self, x_in):
|
157 |
+
x = x_in
|
158 |
+
x = self.norm1(x)
|
159 |
+
x = swish(x)
|
160 |
+
x = self.conv1(x)
|
161 |
+
x = self.norm2(x)
|
162 |
+
x = swish(x)
|
163 |
+
x = self.conv2(x)
|
164 |
+
if self.in_channels != self.out_channels:
|
165 |
+
x_in = self.conv_out(x_in)
|
166 |
+
|
167 |
+
return x + x_in
|
168 |
+
|
169 |
+
|
170 |
+
class AttnBlock(nn.Module):
|
171 |
+
def __init__(self, in_channels):
|
172 |
+
super().__init__()
|
173 |
+
self.in_channels = in_channels
|
174 |
+
|
175 |
+
self.norm = normalize(in_channels)
|
176 |
+
self.q = torch.nn.Conv2d(
|
177 |
+
in_channels,
|
178 |
+
in_channels,
|
179 |
+
kernel_size=1,
|
180 |
+
stride=1,
|
181 |
+
padding=0
|
182 |
+
)
|
183 |
+
self.k = torch.nn.Conv2d(
|
184 |
+
in_channels,
|
185 |
+
in_channels,
|
186 |
+
kernel_size=1,
|
187 |
+
stride=1,
|
188 |
+
padding=0
|
189 |
+
)
|
190 |
+
self.v = torch.nn.Conv2d(
|
191 |
+
in_channels,
|
192 |
+
in_channels,
|
193 |
+
kernel_size=1,
|
194 |
+
stride=1,
|
195 |
+
padding=0
|
196 |
+
)
|
197 |
+
self.proj_out = torch.nn.Conv2d(
|
198 |
+
in_channels,
|
199 |
+
in_channels,
|
200 |
+
kernel_size=1,
|
201 |
+
stride=1,
|
202 |
+
padding=0
|
203 |
+
)
|
204 |
+
|
205 |
+
def forward(self, x):
|
206 |
+
h_ = x
|
207 |
+
h_ = self.norm(h_)
|
208 |
+
q = self.q(h_)
|
209 |
+
k = self.k(h_)
|
210 |
+
v = self.v(h_)
|
211 |
+
|
212 |
+
# compute attention
|
213 |
+
b, c, h, w = q.shape
|
214 |
+
q = q.reshape(b, c, h*w)
|
215 |
+
q = q.permute(0, 2, 1)
|
216 |
+
k = k.reshape(b, c, h*w)
|
217 |
+
w_ = torch.bmm(q, k)
|
218 |
+
w_ = w_ * (int(c)**(-0.5))
|
219 |
+
w_ = F.softmax(w_, dim=2)
|
220 |
+
|
221 |
+
# attend to values
|
222 |
+
v = v.reshape(b, c, h*w)
|
223 |
+
w_ = w_.permute(0, 2, 1)
|
224 |
+
h_ = torch.bmm(v, w_)
|
225 |
+
h_ = h_.reshape(b, c, h, w)
|
226 |
+
|
227 |
+
h_ = self.proj_out(h_)
|
228 |
+
|
229 |
+
return x+h_
|
230 |
+
|
231 |
+
|
232 |
+
class Encoder(nn.Module):
|
233 |
+
def __init__(self, in_channels, nf, emb_dim, ch_mult, num_res_blocks, resolution, attn_resolutions):
|
234 |
+
super().__init__()
|
235 |
+
self.nf = nf
|
236 |
+
self.num_resolutions = len(ch_mult)
|
237 |
+
self.num_res_blocks = num_res_blocks
|
238 |
+
self.resolution = resolution
|
239 |
+
self.attn_resolutions = attn_resolutions
|
240 |
+
|
241 |
+
curr_res = self.resolution
|
242 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
243 |
+
|
244 |
+
blocks = []
|
245 |
+
# initial convultion
|
246 |
+
blocks.append(nn.Conv2d(in_channels, nf, kernel_size=3, stride=1, padding=1))
|
247 |
+
|
248 |
+
# residual and downsampling blocks, with attention on smaller res (16x16)
|
249 |
+
for i in range(self.num_resolutions):
|
250 |
+
block_in_ch = nf * in_ch_mult[i]
|
251 |
+
block_out_ch = nf * ch_mult[i]
|
252 |
+
for _ in range(self.num_res_blocks):
|
253 |
+
blocks.append(ResBlock(block_in_ch, block_out_ch))
|
254 |
+
block_in_ch = block_out_ch
|
255 |
+
if curr_res in attn_resolutions:
|
256 |
+
blocks.append(AttnBlock(block_in_ch))
|
257 |
+
|
258 |
+
if i != self.num_resolutions - 1:
|
259 |
+
blocks.append(Downsample(block_in_ch))
|
260 |
+
curr_res = curr_res // 2
|
261 |
+
|
262 |
+
# non-local attention block
|
263 |
+
blocks.append(ResBlock(block_in_ch, block_in_ch))
|
264 |
+
blocks.append(AttnBlock(block_in_ch))
|
265 |
+
blocks.append(ResBlock(block_in_ch, block_in_ch))
|
266 |
+
|
267 |
+
# normalise and convert to latent size
|
268 |
+
blocks.append(normalize(block_in_ch))
|
269 |
+
blocks.append(nn.Conv2d(block_in_ch, emb_dim, kernel_size=3, stride=1, padding=1))
|
270 |
+
self.blocks = nn.ModuleList(blocks)
|
271 |
+
|
272 |
+
def forward(self, x):
|
273 |
+
for block in self.blocks:
|
274 |
+
x = block(x)
|
275 |
+
|
276 |
+
return x
|
277 |
+
|
278 |
+
|
279 |
+
class Generator(nn.Module):
|
280 |
+
def __init__(self, nf, emb_dim, ch_mult, res_blocks, img_size, attn_resolutions):
|
281 |
+
super().__init__()
|
282 |
+
self.nf = nf
|
283 |
+
self.ch_mult = ch_mult
|
284 |
+
self.num_resolutions = len(self.ch_mult)
|
285 |
+
self.num_res_blocks = res_blocks
|
286 |
+
self.resolution = img_size
|
287 |
+
self.attn_resolutions = attn_resolutions
|
288 |
+
self.in_channels = emb_dim
|
289 |
+
self.out_channels = 3
|
290 |
+
block_in_ch = self.nf * self.ch_mult[-1]
|
291 |
+
curr_res = self.resolution // 2 ** (self.num_resolutions-1)
|
292 |
+
|
293 |
+
blocks = []
|
294 |
+
# initial conv
|
295 |
+
blocks.append(nn.Conv2d(self.in_channels, block_in_ch, kernel_size=3, stride=1, padding=1))
|
296 |
+
|
297 |
+
# non-local attention block
|
298 |
+
blocks.append(ResBlock(block_in_ch, block_in_ch))
|
299 |
+
blocks.append(AttnBlock(block_in_ch))
|
300 |
+
blocks.append(ResBlock(block_in_ch, block_in_ch))
|
301 |
+
|
302 |
+
for i in reversed(range(self.num_resolutions)):
|
303 |
+
block_out_ch = self.nf * self.ch_mult[i]
|
304 |
+
|
305 |
+
for _ in range(self.num_res_blocks):
|
306 |
+
blocks.append(ResBlock(block_in_ch, block_out_ch))
|
307 |
+
block_in_ch = block_out_ch
|
308 |
+
|
309 |
+
if curr_res in self.attn_resolutions:
|
310 |
+
blocks.append(AttnBlock(block_in_ch))
|
311 |
+
|
312 |
+
if i != 0:
|
313 |
+
blocks.append(Upsample(block_in_ch))
|
314 |
+
curr_res = curr_res * 2
|
315 |
+
|
316 |
+
blocks.append(normalize(block_in_ch))
|
317 |
+
blocks.append(nn.Conv2d(block_in_ch, self.out_channels, kernel_size=3, stride=1, padding=1))
|
318 |
+
|
319 |
+
self.blocks = nn.ModuleList(blocks)
|
320 |
+
|
321 |
+
|
322 |
+
def forward(self, x):
|
323 |
+
for block in self.blocks:
|
324 |
+
x = block(x)
|
325 |
+
|
326 |
+
return x
|
327 |
+
|
328 |
+
|
329 |
+
@ARCH_REGISTRY.register()
|
330 |
+
class VQAutoEncoder(nn.Module):
|
331 |
+
def __init__(self, img_size, nf, ch_mult, quantizer="nearest", res_blocks=2, attn_resolutions=[16], codebook_size=1024, emb_dim=256,
|
332 |
+
beta=0.25, gumbel_straight_through=False, gumbel_kl_weight=1e-8, model_path=None):
|
333 |
+
super().__init__()
|
334 |
+
logger = get_root_logger()
|
335 |
+
self.in_channels = 3
|
336 |
+
self.nf = nf
|
337 |
+
self.n_blocks = res_blocks
|
338 |
+
self.codebook_size = codebook_size
|
339 |
+
self.embed_dim = emb_dim
|
340 |
+
self.ch_mult = ch_mult
|
341 |
+
self.resolution = img_size
|
342 |
+
self.attn_resolutions = attn_resolutions
|
343 |
+
self.quantizer_type = quantizer
|
344 |
+
self.encoder = Encoder(
|
345 |
+
self.in_channels,
|
346 |
+
self.nf,
|
347 |
+
self.embed_dim,
|
348 |
+
self.ch_mult,
|
349 |
+
self.n_blocks,
|
350 |
+
self.resolution,
|
351 |
+
self.attn_resolutions
|
352 |
+
)
|
353 |
+
if self.quantizer_type == "nearest":
|
354 |
+
self.beta = beta #0.25
|
355 |
+
self.quantize = VectorQuantizer(self.codebook_size, self.embed_dim, self.beta)
|
356 |
+
elif self.quantizer_type == "gumbel":
|
357 |
+
self.gumbel_num_hiddens = emb_dim
|
358 |
+
self.straight_through = gumbel_straight_through
|
359 |
+
self.kl_weight = gumbel_kl_weight
|
360 |
+
self.quantize = GumbelQuantizer(
|
361 |
+
self.codebook_size,
|
362 |
+
self.embed_dim,
|
363 |
+
self.gumbel_num_hiddens,
|
364 |
+
self.straight_through,
|
365 |
+
self.kl_weight
|
366 |
+
)
|
367 |
+
self.generator = Generator(
|
368 |
+
self.nf,
|
369 |
+
self.embed_dim,
|
370 |
+
self.ch_mult,
|
371 |
+
self.n_blocks,
|
372 |
+
self.resolution,
|
373 |
+
self.attn_resolutions
|
374 |
+
)
|
375 |
+
|
376 |
+
if model_path is not None:
|
377 |
+
chkpt = torch.load(model_path, map_location='cpu')
|
378 |
+
if 'params_ema' in chkpt:
|
379 |
+
self.load_state_dict(torch.load(model_path, map_location='cpu')['params_ema'])
|
380 |
+
logger.info(f'vqgan is loaded from: {model_path} [params_ema]')
|
381 |
+
elif 'params' in chkpt:
|
382 |
+
self.load_state_dict(torch.load(model_path, map_location='cpu')['params'])
|
383 |
+
logger.info(f'vqgan is loaded from: {model_path} [params]')
|
384 |
+
else:
|
385 |
+
raise ValueError('Wrong params!')
|
386 |
+
|
387 |
+
|
388 |
+
def forward(self, x):
|
389 |
+
x = self.encoder(x)
|
390 |
+
quant, codebook_loss, quant_stats = self.quantize(x)
|
391 |
+
x = self.generator(quant)
|
392 |
+
return x, codebook_loss, quant_stats
|
393 |
+
|
394 |
+
|
395 |
+
|
396 |
+
# patch based discriminator
|
397 |
+
@ARCH_REGISTRY.register()
|
398 |
+
class VQGANDiscriminator(nn.Module):
|
399 |
+
def __init__(self, nc=3, ndf=64, n_layers=4, model_path=None):
|
400 |
+
super().__init__()
|
401 |
+
|
402 |
+
layers = [nn.Conv2d(nc, ndf, kernel_size=4, stride=2, padding=1), nn.LeakyReLU(0.2, True)]
|
403 |
+
ndf_mult = 1
|
404 |
+
ndf_mult_prev = 1
|
405 |
+
for n in range(1, n_layers): # gradually increase the number of filters
|
406 |
+
ndf_mult_prev = ndf_mult
|
407 |
+
ndf_mult = min(2 ** n, 8)
|
408 |
+
layers += [
|
409 |
+
nn.Conv2d(ndf * ndf_mult_prev, ndf * ndf_mult, kernel_size=4, stride=2, padding=1, bias=False),
|
410 |
+
nn.BatchNorm2d(ndf * ndf_mult),
|
411 |
+
nn.LeakyReLU(0.2, True)
|
412 |
+
]
|
413 |
+
|
414 |
+
ndf_mult_prev = ndf_mult
|
415 |
+
ndf_mult = min(2 ** n_layers, 8)
|
416 |
+
|
417 |
+
layers += [
|
418 |
+
nn.Conv2d(ndf * ndf_mult_prev, ndf * ndf_mult, kernel_size=4, stride=1, padding=1, bias=False),
|
419 |
+
nn.BatchNorm2d(ndf * ndf_mult),
|
420 |
+
nn.LeakyReLU(0.2, True)
|
421 |
+
]
|
422 |
+
|
423 |
+
layers += [
|
424 |
+
nn.Conv2d(ndf * ndf_mult, 1, kernel_size=4, stride=1, padding=1)] # output 1 channel prediction map
|
425 |
+
self.main = nn.Sequential(*layers)
|
426 |
+
|
427 |
+
if model_path is not None:
|
428 |
+
chkpt = torch.load(model_path, map_location='cpu')
|
429 |
+
if 'params_d' in chkpt:
|
430 |
+
self.load_state_dict(torch.load(model_path, map_location='cpu')['params_d'])
|
431 |
+
elif 'params' in chkpt:
|
432 |
+
self.load_state_dict(torch.load(model_path, map_location='cpu')['params'])
|
433 |
+
else:
|
434 |
+
raise ValueError('Wrong params!')
|
435 |
+
|
436 |
+
def forward(self, x):
|
437 |
+
return self.main(x)
|
modules/codeformer_model.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import traceback
|
4 |
+
|
5 |
+
import cv2
|
6 |
+
import torch
|
7 |
+
|
8 |
+
import modules.face_restoration
|
9 |
+
import modules.shared
|
10 |
+
from modules import shared, devices, modelloader
|
11 |
+
from modules.paths import models_path
|
12 |
+
|
13 |
+
# codeformer people made a choice to include modified basicsr library to their project which makes
|
14 |
+
# it utterly impossible to use it alongside with other libraries that also use basicsr, like GFPGAN.
|
15 |
+
# I am making a choice to include some files from codeformer to work around this issue.
|
16 |
+
model_dir = "Codeformer"
|
17 |
+
model_path = os.path.join(models_path, model_dir)
|
18 |
+
model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth'
|
19 |
+
|
20 |
+
have_codeformer = False
|
21 |
+
codeformer = None
|
22 |
+
|
23 |
+
|
24 |
+
def setup_model(dirname):
|
25 |
+
global model_path
|
26 |
+
if not os.path.exists(model_path):
|
27 |
+
os.makedirs(model_path)
|
28 |
+
|
29 |
+
path = modules.paths.paths.get("CodeFormer", None)
|
30 |
+
if path is None:
|
31 |
+
return
|
32 |
+
|
33 |
+
try:
|
34 |
+
from torchvision.transforms.functional import normalize
|
35 |
+
from modules.codeformer.codeformer_arch import CodeFormer
|
36 |
+
from basicsr.utils.download_util import load_file_from_url
|
37 |
+
from basicsr.utils import imwrite, img2tensor, tensor2img
|
38 |
+
from facelib.utils.face_restoration_helper import FaceRestoreHelper
|
39 |
+
from facelib.detection.retinaface import retinaface
|
40 |
+
from modules.shared import cmd_opts
|
41 |
+
|
42 |
+
net_class = CodeFormer
|
43 |
+
|
44 |
+
class FaceRestorerCodeFormer(modules.face_restoration.FaceRestoration):
|
45 |
+
def name(self):
|
46 |
+
return "CodeFormer"
|
47 |
+
|
48 |
+
def __init__(self, dirname):
|
49 |
+
self.net = None
|
50 |
+
self.face_helper = None
|
51 |
+
self.cmd_dir = dirname
|
52 |
+
|
53 |
+
def create_models(self):
|
54 |
+
|
55 |
+
if self.net is not None and self.face_helper is not None:
|
56 |
+
self.net.to(devices.device_codeformer)
|
57 |
+
return self.net, self.face_helper
|
58 |
+
model_paths = modelloader.load_models(model_path, model_url, self.cmd_dir, download_name='codeformer-v0.1.0.pth')
|
59 |
+
if len(model_paths) != 0:
|
60 |
+
ckpt_path = model_paths[0]
|
61 |
+
else:
|
62 |
+
print("Unable to load codeformer model.")
|
63 |
+
return None, None
|
64 |
+
net = net_class(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9, connect_list=['32', '64', '128', '256']).to(devices.device_codeformer)
|
65 |
+
checkpoint = torch.load(ckpt_path)['params_ema']
|
66 |
+
net.load_state_dict(checkpoint)
|
67 |
+
net.eval()
|
68 |
+
|
69 |
+
if hasattr(retinaface, 'device'):
|
70 |
+
retinaface.device = devices.device_codeformer
|
71 |
+
face_helper = FaceRestoreHelper(1, face_size=512, crop_ratio=(1, 1), det_model='retinaface_resnet50', save_ext='png', use_parse=True, device=devices.device_codeformer)
|
72 |
+
|
73 |
+
self.net = net
|
74 |
+
self.face_helper = face_helper
|
75 |
+
|
76 |
+
return net, face_helper
|
77 |
+
|
78 |
+
def send_model_to(self, device):
|
79 |
+
self.net.to(device)
|
80 |
+
self.face_helper.face_det.to(device)
|
81 |
+
self.face_helper.face_parse.to(device)
|
82 |
+
|
83 |
+
def restore(self, np_image, w=None):
|
84 |
+
np_image = np_image[:, :, ::-1]
|
85 |
+
|
86 |
+
original_resolution = np_image.shape[0:2]
|
87 |
+
|
88 |
+
self.create_models()
|
89 |
+
if self.net is None or self.face_helper is None:
|
90 |
+
return np_image
|
91 |
+
|
92 |
+
self.send_model_to(devices.device_codeformer)
|
93 |
+
|
94 |
+
self.face_helper.clean_all()
|
95 |
+
self.face_helper.read_image(np_image)
|
96 |
+
self.face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5)
|
97 |
+
self.face_helper.align_warp_face()
|
98 |
+
|
99 |
+
for idx, cropped_face in enumerate(self.face_helper.cropped_faces):
|
100 |
+
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
|
101 |
+
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
|
102 |
+
cropped_face_t = cropped_face_t.unsqueeze(0).to(devices.device_codeformer)
|
103 |
+
|
104 |
+
try:
|
105 |
+
with torch.no_grad():
|
106 |
+
output = self.net(cropped_face_t, w=w if w is not None else shared.opts.code_former_weight, adain=True)[0]
|
107 |
+
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
|
108 |
+
del output
|
109 |
+
torch.cuda.empty_cache()
|
110 |
+
except Exception as error:
|
111 |
+
print(f'\tFailed inference for CodeFormer: {error}', file=sys.stderr)
|
112 |
+
restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1))
|
113 |
+
|
114 |
+
restored_face = restored_face.astype('uint8')
|
115 |
+
self.face_helper.add_restored_face(restored_face)
|
116 |
+
|
117 |
+
self.face_helper.get_inverse_affine(None)
|
118 |
+
|
119 |
+
restored_img = self.face_helper.paste_faces_to_input_image()
|
120 |
+
restored_img = restored_img[:, :, ::-1]
|
121 |
+
|
122 |
+
if original_resolution != restored_img.shape[0:2]:
|
123 |
+
restored_img = cv2.resize(restored_img, (0, 0), fx=original_resolution[1]/restored_img.shape[1], fy=original_resolution[0]/restored_img.shape[0], interpolation=cv2.INTER_LINEAR)
|
124 |
+
|
125 |
+
self.face_helper.clean_all()
|
126 |
+
|
127 |
+
if shared.opts.face_restoration_unload:
|
128 |
+
self.send_model_to(devices.cpu)
|
129 |
+
|
130 |
+
return restored_img
|
131 |
+
|
132 |
+
global have_codeformer
|
133 |
+
have_codeformer = True
|
134 |
+
|
135 |
+
global codeformer
|
136 |
+
codeformer = FaceRestorerCodeFormer(dirname)
|
137 |
+
shared.face_restorers.append(codeformer)
|
138 |
+
|
139 |
+
except Exception:
|
140 |
+
print("Error setting up CodeFormer:", file=sys.stderr)
|
141 |
+
print(traceback.format_exc(), file=sys.stderr)
|
142 |
+
|
143 |
+
# sys.path = stored_sys_path
|
modules/deepbooru.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from PIL import Image
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
from modules import modelloader, paths, deepbooru_model, devices, images, shared
|
9 |
+
|
10 |
+
re_special = re.compile(r'([\\()])')
|
11 |
+
|
12 |
+
|
13 |
+
class DeepDanbooru:
|
14 |
+
def __init__(self):
|
15 |
+
self.model = None
|
16 |
+
|
17 |
+
def load(self):
|
18 |
+
if self.model is not None:
|
19 |
+
return
|
20 |
+
|
21 |
+
files = modelloader.load_models(
|
22 |
+
model_path=os.path.join(paths.models_path, "torch_deepdanbooru"),
|
23 |
+
model_url='https://github.com/AUTOMATIC1111/TorchDeepDanbooru/releases/download/v1/model-resnet_custom_v3.pt',
|
24 |
+
ext_filter=[".pt"],
|
25 |
+
download_name='model-resnet_custom_v3.pt',
|
26 |
+
)
|
27 |
+
|
28 |
+
self.model = deepbooru_model.DeepDanbooruModel()
|
29 |
+
self.model.load_state_dict(torch.load(files[0], map_location="cpu"))
|
30 |
+
|
31 |
+
self.model.eval()
|
32 |
+
self.model.to(devices.cpu, devices.dtype)
|
33 |
+
|
34 |
+
def start(self):
|
35 |
+
self.load()
|
36 |
+
self.model.to(devices.device)
|
37 |
+
|
38 |
+
def stop(self):
|
39 |
+
if not shared.opts.interrogate_keep_models_in_memory:
|
40 |
+
self.model.to(devices.cpu)
|
41 |
+
devices.torch_gc()
|
42 |
+
|
43 |
+
def tag(self, pil_image):
|
44 |
+
self.start()
|
45 |
+
res = self.tag_multi(pil_image)
|
46 |
+
self.stop()
|
47 |
+
|
48 |
+
return res
|
49 |
+
|
50 |
+
def tag_multi(self, pil_image, force_disable_ranks=False):
|
51 |
+
threshold = shared.opts.interrogate_deepbooru_score_threshold
|
52 |
+
use_spaces = shared.opts.deepbooru_use_spaces
|
53 |
+
use_escape = shared.opts.deepbooru_escape
|
54 |
+
alpha_sort = shared.opts.deepbooru_sort_alpha
|
55 |
+
include_ranks = shared.opts.interrogate_return_ranks and not force_disable_ranks
|
56 |
+
|
57 |
+
pic = images.resize_image(2, pil_image.convert("RGB"), 512, 512)
|
58 |
+
a = np.expand_dims(np.array(pic, dtype=np.float32), 0) / 255
|
59 |
+
|
60 |
+
with torch.no_grad(), devices.autocast():
|
61 |
+
x = torch.from_numpy(a).to(devices.device)
|
62 |
+
y = self.model(x)[0].detach().cpu().numpy()
|
63 |
+
|
64 |
+
probability_dict = {}
|
65 |
+
|
66 |
+
for tag, probability in zip(self.model.tags, y):
|
67 |
+
if probability < threshold:
|
68 |
+
continue
|
69 |
+
|
70 |
+
if tag.startswith("rating:"):
|
71 |
+
continue
|
72 |
+
|
73 |
+
probability_dict[tag] = probability
|
74 |
+
|
75 |
+
if alpha_sort:
|
76 |
+
tags = sorted(probability_dict)
|
77 |
+
else:
|
78 |
+
tags = [tag for tag, _ in sorted(probability_dict.items(), key=lambda x: -x[1])]
|
79 |
+
|
80 |
+
res = []
|
81 |
+
|
82 |
+
filtertags = set([x.strip().replace(' ', '_') for x in shared.opts.deepbooru_filter_tags.split(",")])
|
83 |
+
|
84 |
+
for tag in [x for x in tags if x not in filtertags]:
|
85 |
+
probability = probability_dict[tag]
|
86 |
+
tag_outformat = tag
|
87 |
+
if use_spaces:
|
88 |
+
tag_outformat = tag_outformat.replace('_', ' ')
|
89 |
+
if use_escape:
|
90 |
+
tag_outformat = re.sub(re_special, r'\\\1', tag_outformat)
|
91 |
+
if include_ranks:
|
92 |
+
tag_outformat = f"({tag_outformat}:{probability:.3f})"
|
93 |
+
|
94 |
+
res.append(tag_outformat)
|
95 |
+
|
96 |
+
return ", ".join(res)
|
97 |
+
|
98 |
+
|
99 |
+
model = DeepDanbooru()
|
modules/deepbooru_model.py
ADDED
@@ -0,0 +1,678 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
from modules import devices
|
6 |
+
|
7 |
+
# see https://github.com/AUTOMATIC1111/TorchDeepDanbooru for more
|
8 |
+
|
9 |
+
|
10 |
+
class DeepDanbooruModel(nn.Module):
|
11 |
+
def __init__(self):
|
12 |
+
super(DeepDanbooruModel, self).__init__()
|
13 |
+
|
14 |
+
self.tags = []
|
15 |
+
|
16 |
+
self.n_Conv_0 = nn.Conv2d(kernel_size=(7, 7), in_channels=3, out_channels=64, stride=(2, 2))
|
17 |
+
self.n_MaxPool_0 = nn.MaxPool2d(kernel_size=(3, 3), stride=(2, 2))
|
18 |
+
self.n_Conv_1 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
|
19 |
+
self.n_Conv_2 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=64)
|
20 |
+
self.n_Conv_3 = nn.Conv2d(kernel_size=(3, 3), in_channels=64, out_channels=64)
|
21 |
+
self.n_Conv_4 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
|
22 |
+
self.n_Conv_5 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=64)
|
23 |
+
self.n_Conv_6 = nn.Conv2d(kernel_size=(3, 3), in_channels=64, out_channels=64)
|
24 |
+
self.n_Conv_7 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
|
25 |
+
self.n_Conv_8 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=64)
|
26 |
+
self.n_Conv_9 = nn.Conv2d(kernel_size=(3, 3), in_channels=64, out_channels=64)
|
27 |
+
self.n_Conv_10 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
|
28 |
+
self.n_Conv_11 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=512, stride=(2, 2))
|
29 |
+
self.n_Conv_12 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=128)
|
30 |
+
self.n_Conv_13 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128, stride=(2, 2))
|
31 |
+
self.n_Conv_14 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
|
32 |
+
self.n_Conv_15 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
|
33 |
+
self.n_Conv_16 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
|
34 |
+
self.n_Conv_17 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
|
35 |
+
self.n_Conv_18 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
|
36 |
+
self.n_Conv_19 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
|
37 |
+
self.n_Conv_20 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
|
38 |
+
self.n_Conv_21 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
|
39 |
+
self.n_Conv_22 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
|
40 |
+
self.n_Conv_23 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
|
41 |
+
self.n_Conv_24 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
|
42 |
+
self.n_Conv_25 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
|
43 |
+
self.n_Conv_26 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
|
44 |
+
self.n_Conv_27 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
|
45 |
+
self.n_Conv_28 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
|
46 |
+
self.n_Conv_29 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
|
47 |
+
self.n_Conv_30 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
|
48 |
+
self.n_Conv_31 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
|
49 |
+
self.n_Conv_32 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
|
50 |
+
self.n_Conv_33 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
|
51 |
+
self.n_Conv_34 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
|
52 |
+
self.n_Conv_35 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
|
53 |
+
self.n_Conv_36 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=1024, stride=(2, 2))
|
54 |
+
self.n_Conv_37 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=256)
|
55 |
+
self.n_Conv_38 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256, stride=(2, 2))
|
56 |
+
self.n_Conv_39 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
57 |
+
self.n_Conv_40 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
58 |
+
self.n_Conv_41 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
59 |
+
self.n_Conv_42 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
60 |
+
self.n_Conv_43 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
61 |
+
self.n_Conv_44 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
62 |
+
self.n_Conv_45 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
63 |
+
self.n_Conv_46 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
64 |
+
self.n_Conv_47 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
65 |
+
self.n_Conv_48 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
66 |
+
self.n_Conv_49 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
67 |
+
self.n_Conv_50 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
68 |
+
self.n_Conv_51 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
69 |
+
self.n_Conv_52 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
70 |
+
self.n_Conv_53 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
71 |
+
self.n_Conv_54 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
72 |
+
self.n_Conv_55 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
73 |
+
self.n_Conv_56 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
74 |
+
self.n_Conv_57 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
75 |
+
self.n_Conv_58 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
76 |
+
self.n_Conv_59 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
77 |
+
self.n_Conv_60 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
78 |
+
self.n_Conv_61 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
79 |
+
self.n_Conv_62 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
80 |
+
self.n_Conv_63 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
81 |
+
self.n_Conv_64 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
82 |
+
self.n_Conv_65 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
83 |
+
self.n_Conv_66 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
84 |
+
self.n_Conv_67 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
85 |
+
self.n_Conv_68 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
86 |
+
self.n_Conv_69 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
87 |
+
self.n_Conv_70 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
88 |
+
self.n_Conv_71 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
89 |
+
self.n_Conv_72 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
90 |
+
self.n_Conv_73 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
91 |
+
self.n_Conv_74 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
92 |
+
self.n_Conv_75 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
93 |
+
self.n_Conv_76 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
94 |
+
self.n_Conv_77 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
95 |
+
self.n_Conv_78 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
96 |
+
self.n_Conv_79 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
97 |
+
self.n_Conv_80 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
98 |
+
self.n_Conv_81 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
99 |
+
self.n_Conv_82 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
100 |
+
self.n_Conv_83 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
101 |
+
self.n_Conv_84 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
102 |
+
self.n_Conv_85 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
103 |
+
self.n_Conv_86 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
104 |
+
self.n_Conv_87 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
105 |
+
self.n_Conv_88 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
106 |
+
self.n_Conv_89 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
107 |
+
self.n_Conv_90 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
108 |
+
self.n_Conv_91 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
109 |
+
self.n_Conv_92 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
110 |
+
self.n_Conv_93 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
111 |
+
self.n_Conv_94 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
112 |
+
self.n_Conv_95 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
113 |
+
self.n_Conv_96 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
114 |
+
self.n_Conv_97 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
115 |
+
self.n_Conv_98 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256, stride=(2, 2))
|
116 |
+
self.n_Conv_99 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
117 |
+
self.n_Conv_100 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=1024, stride=(2, 2))
|
118 |
+
self.n_Conv_101 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
119 |
+
self.n_Conv_102 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
120 |
+
self.n_Conv_103 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
121 |
+
self.n_Conv_104 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
122 |
+
self.n_Conv_105 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
123 |
+
self.n_Conv_106 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
124 |
+
self.n_Conv_107 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
125 |
+
self.n_Conv_108 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
126 |
+
self.n_Conv_109 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
127 |
+
self.n_Conv_110 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
128 |
+
self.n_Conv_111 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
129 |
+
self.n_Conv_112 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
130 |
+
self.n_Conv_113 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
131 |
+
self.n_Conv_114 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
132 |
+
self.n_Conv_115 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
133 |
+
self.n_Conv_116 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
134 |
+
self.n_Conv_117 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
135 |
+
self.n_Conv_118 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
136 |
+
self.n_Conv_119 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
137 |
+
self.n_Conv_120 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
138 |
+
self.n_Conv_121 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
139 |
+
self.n_Conv_122 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
140 |
+
self.n_Conv_123 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
141 |
+
self.n_Conv_124 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
142 |
+
self.n_Conv_125 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
143 |
+
self.n_Conv_126 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
144 |
+
self.n_Conv_127 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
145 |
+
self.n_Conv_128 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
146 |
+
self.n_Conv_129 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
147 |
+
self.n_Conv_130 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
148 |
+
self.n_Conv_131 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
149 |
+
self.n_Conv_132 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
150 |
+
self.n_Conv_133 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
151 |
+
self.n_Conv_134 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
152 |
+
self.n_Conv_135 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
153 |
+
self.n_Conv_136 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
154 |
+
self.n_Conv_137 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
155 |
+
self.n_Conv_138 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
156 |
+
self.n_Conv_139 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
157 |
+
self.n_Conv_140 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
158 |
+
self.n_Conv_141 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
159 |
+
self.n_Conv_142 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
160 |
+
self.n_Conv_143 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
161 |
+
self.n_Conv_144 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
162 |
+
self.n_Conv_145 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
163 |
+
self.n_Conv_146 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
164 |
+
self.n_Conv_147 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
165 |
+
self.n_Conv_148 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
166 |
+
self.n_Conv_149 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
167 |
+
self.n_Conv_150 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
168 |
+
self.n_Conv_151 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
169 |
+
self.n_Conv_152 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
170 |
+
self.n_Conv_153 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
171 |
+
self.n_Conv_154 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
172 |
+
self.n_Conv_155 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
173 |
+
self.n_Conv_156 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
174 |
+
self.n_Conv_157 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
175 |
+
self.n_Conv_158 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=2048, stride=(2, 2))
|
176 |
+
self.n_Conv_159 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=512)
|
177 |
+
self.n_Conv_160 = nn.Conv2d(kernel_size=(3, 3), in_channels=512, out_channels=512, stride=(2, 2))
|
178 |
+
self.n_Conv_161 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=2048)
|
179 |
+
self.n_Conv_162 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=512)
|
180 |
+
self.n_Conv_163 = nn.Conv2d(kernel_size=(3, 3), in_channels=512, out_channels=512)
|
181 |
+
self.n_Conv_164 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=2048)
|
182 |
+
self.n_Conv_165 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=512)
|
183 |
+
self.n_Conv_166 = nn.Conv2d(kernel_size=(3, 3), in_channels=512, out_channels=512)
|
184 |
+
self.n_Conv_167 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=2048)
|
185 |
+
self.n_Conv_168 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=4096, stride=(2, 2))
|
186 |
+
self.n_Conv_169 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=1024)
|
187 |
+
self.n_Conv_170 = nn.Conv2d(kernel_size=(3, 3), in_channels=1024, out_channels=1024, stride=(2, 2))
|
188 |
+
self.n_Conv_171 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=4096)
|
189 |
+
self.n_Conv_172 = nn.Conv2d(kernel_size=(1, 1), in_channels=4096, out_channels=1024)
|
190 |
+
self.n_Conv_173 = nn.Conv2d(kernel_size=(3, 3), in_channels=1024, out_channels=1024)
|
191 |
+
self.n_Conv_174 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=4096)
|
192 |
+
self.n_Conv_175 = nn.Conv2d(kernel_size=(1, 1), in_channels=4096, out_channels=1024)
|
193 |
+
self.n_Conv_176 = nn.Conv2d(kernel_size=(3, 3), in_channels=1024, out_channels=1024)
|
194 |
+
self.n_Conv_177 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=4096)
|
195 |
+
self.n_Conv_178 = nn.Conv2d(kernel_size=(1, 1), in_channels=4096, out_channels=9176, bias=False)
|
196 |
+
|
197 |
+
def forward(self, *inputs):
|
198 |
+
t_358, = inputs
|
199 |
+
t_359 = t_358.permute(*[0, 3, 1, 2])
|
200 |
+
t_359_padded = F.pad(t_359, [2, 3, 2, 3], value=0)
|
201 |
+
t_360 = self.n_Conv_0(t_359_padded.to(self.n_Conv_0.bias.dtype) if devices.unet_needs_upcast else t_359_padded)
|
202 |
+
t_361 = F.relu(t_360)
|
203 |
+
t_361 = F.pad(t_361, [0, 1, 0, 1], value=float('-inf'))
|
204 |
+
t_362 = self.n_MaxPool_0(t_361)
|
205 |
+
t_363 = self.n_Conv_1(t_362)
|
206 |
+
t_364 = self.n_Conv_2(t_362)
|
207 |
+
t_365 = F.relu(t_364)
|
208 |
+
t_365_padded = F.pad(t_365, [1, 1, 1, 1], value=0)
|
209 |
+
t_366 = self.n_Conv_3(t_365_padded)
|
210 |
+
t_367 = F.relu(t_366)
|
211 |
+
t_368 = self.n_Conv_4(t_367)
|
212 |
+
t_369 = torch.add(t_368, t_363)
|
213 |
+
t_370 = F.relu(t_369)
|
214 |
+
t_371 = self.n_Conv_5(t_370)
|
215 |
+
t_372 = F.relu(t_371)
|
216 |
+
t_372_padded = F.pad(t_372, [1, 1, 1, 1], value=0)
|
217 |
+
t_373 = self.n_Conv_6(t_372_padded)
|
218 |
+
t_374 = F.relu(t_373)
|
219 |
+
t_375 = self.n_Conv_7(t_374)
|
220 |
+
t_376 = torch.add(t_375, t_370)
|
221 |
+
t_377 = F.relu(t_376)
|
222 |
+
t_378 = self.n_Conv_8(t_377)
|
223 |
+
t_379 = F.relu(t_378)
|
224 |
+
t_379_padded = F.pad(t_379, [1, 1, 1, 1], value=0)
|
225 |
+
t_380 = self.n_Conv_9(t_379_padded)
|
226 |
+
t_381 = F.relu(t_380)
|
227 |
+
t_382 = self.n_Conv_10(t_381)
|
228 |
+
t_383 = torch.add(t_382, t_377)
|
229 |
+
t_384 = F.relu(t_383)
|
230 |
+
t_385 = self.n_Conv_11(t_384)
|
231 |
+
t_386 = self.n_Conv_12(t_384)
|
232 |
+
t_387 = F.relu(t_386)
|
233 |
+
t_387_padded = F.pad(t_387, [0, 1, 0, 1], value=0)
|
234 |
+
t_388 = self.n_Conv_13(t_387_padded)
|
235 |
+
t_389 = F.relu(t_388)
|
236 |
+
t_390 = self.n_Conv_14(t_389)
|
237 |
+
t_391 = torch.add(t_390, t_385)
|
238 |
+
t_392 = F.relu(t_391)
|
239 |
+
t_393 = self.n_Conv_15(t_392)
|
240 |
+
t_394 = F.relu(t_393)
|
241 |
+
t_394_padded = F.pad(t_394, [1, 1, 1, 1], value=0)
|
242 |
+
t_395 = self.n_Conv_16(t_394_padded)
|
243 |
+
t_396 = F.relu(t_395)
|
244 |
+
t_397 = self.n_Conv_17(t_396)
|
245 |
+
t_398 = torch.add(t_397, t_392)
|
246 |
+
t_399 = F.relu(t_398)
|
247 |
+
t_400 = self.n_Conv_18(t_399)
|
248 |
+
t_401 = F.relu(t_400)
|
249 |
+
t_401_padded = F.pad(t_401, [1, 1, 1, 1], value=0)
|
250 |
+
t_402 = self.n_Conv_19(t_401_padded)
|
251 |
+
t_403 = F.relu(t_402)
|
252 |
+
t_404 = self.n_Conv_20(t_403)
|
253 |
+
t_405 = torch.add(t_404, t_399)
|
254 |
+
t_406 = F.relu(t_405)
|
255 |
+
t_407 = self.n_Conv_21(t_406)
|
256 |
+
t_408 = F.relu(t_407)
|
257 |
+
t_408_padded = F.pad(t_408, [1, 1, 1, 1], value=0)
|
258 |
+
t_409 = self.n_Conv_22(t_408_padded)
|
259 |
+
t_410 = F.relu(t_409)
|
260 |
+
t_411 = self.n_Conv_23(t_410)
|
261 |
+
t_412 = torch.add(t_411, t_406)
|
262 |
+
t_413 = F.relu(t_412)
|
263 |
+
t_414 = self.n_Conv_24(t_413)
|
264 |
+
t_415 = F.relu(t_414)
|
265 |
+
t_415_padded = F.pad(t_415, [1, 1, 1, 1], value=0)
|
266 |
+
t_416 = self.n_Conv_25(t_415_padded)
|
267 |
+
t_417 = F.relu(t_416)
|
268 |
+
t_418 = self.n_Conv_26(t_417)
|
269 |
+
t_419 = torch.add(t_418, t_413)
|
270 |
+
t_420 = F.relu(t_419)
|
271 |
+
t_421 = self.n_Conv_27(t_420)
|
272 |
+
t_422 = F.relu(t_421)
|
273 |
+
t_422_padded = F.pad(t_422, [1, 1, 1, 1], value=0)
|
274 |
+
t_423 = self.n_Conv_28(t_422_padded)
|
275 |
+
t_424 = F.relu(t_423)
|
276 |
+
t_425 = self.n_Conv_29(t_424)
|
277 |
+
t_426 = torch.add(t_425, t_420)
|
278 |
+
t_427 = F.relu(t_426)
|
279 |
+
t_428 = self.n_Conv_30(t_427)
|
280 |
+
t_429 = F.relu(t_428)
|
281 |
+
t_429_padded = F.pad(t_429, [1, 1, 1, 1], value=0)
|
282 |
+
t_430 = self.n_Conv_31(t_429_padded)
|
283 |
+
t_431 = F.relu(t_430)
|
284 |
+
t_432 = self.n_Conv_32(t_431)
|
285 |
+
t_433 = torch.add(t_432, t_427)
|
286 |
+
t_434 = F.relu(t_433)
|
287 |
+
t_435 = self.n_Conv_33(t_434)
|
288 |
+
t_436 = F.relu(t_435)
|
289 |
+
t_436_padded = F.pad(t_436, [1, 1, 1, 1], value=0)
|
290 |
+
t_437 = self.n_Conv_34(t_436_padded)
|
291 |
+
t_438 = F.relu(t_437)
|
292 |
+
t_439 = self.n_Conv_35(t_438)
|
293 |
+
t_440 = torch.add(t_439, t_434)
|
294 |
+
t_441 = F.relu(t_440)
|
295 |
+
t_442 = self.n_Conv_36(t_441)
|
296 |
+
t_443 = self.n_Conv_37(t_441)
|
297 |
+
t_444 = F.relu(t_443)
|
298 |
+
t_444_padded = F.pad(t_444, [0, 1, 0, 1], value=0)
|
299 |
+
t_445 = self.n_Conv_38(t_444_padded)
|
300 |
+
t_446 = F.relu(t_445)
|
301 |
+
t_447 = self.n_Conv_39(t_446)
|
302 |
+
t_448 = torch.add(t_447, t_442)
|
303 |
+
t_449 = F.relu(t_448)
|
304 |
+
t_450 = self.n_Conv_40(t_449)
|
305 |
+
t_451 = F.relu(t_450)
|
306 |
+
t_451_padded = F.pad(t_451, [1, 1, 1, 1], value=0)
|
307 |
+
t_452 = self.n_Conv_41(t_451_padded)
|
308 |
+
t_453 = F.relu(t_452)
|
309 |
+
t_454 = self.n_Conv_42(t_453)
|
310 |
+
t_455 = torch.add(t_454, t_449)
|
311 |
+
t_456 = F.relu(t_455)
|
312 |
+
t_457 = self.n_Conv_43(t_456)
|
313 |
+
t_458 = F.relu(t_457)
|
314 |
+
t_458_padded = F.pad(t_458, [1, 1, 1, 1], value=0)
|
315 |
+
t_459 = self.n_Conv_44(t_458_padded)
|
316 |
+
t_460 = F.relu(t_459)
|
317 |
+
t_461 = self.n_Conv_45(t_460)
|
318 |
+
t_462 = torch.add(t_461, t_456)
|
319 |
+
t_463 = F.relu(t_462)
|
320 |
+
t_464 = self.n_Conv_46(t_463)
|
321 |
+
t_465 = F.relu(t_464)
|
322 |
+
t_465_padded = F.pad(t_465, [1, 1, 1, 1], value=0)
|
323 |
+
t_466 = self.n_Conv_47(t_465_padded)
|
324 |
+
t_467 = F.relu(t_466)
|
325 |
+
t_468 = self.n_Conv_48(t_467)
|
326 |
+
t_469 = torch.add(t_468, t_463)
|
327 |
+
t_470 = F.relu(t_469)
|
328 |
+
t_471 = self.n_Conv_49(t_470)
|
329 |
+
t_472 = F.relu(t_471)
|
330 |
+
t_472_padded = F.pad(t_472, [1, 1, 1, 1], value=0)
|
331 |
+
t_473 = self.n_Conv_50(t_472_padded)
|
332 |
+
t_474 = F.relu(t_473)
|
333 |
+
t_475 = self.n_Conv_51(t_474)
|
334 |
+
t_476 = torch.add(t_475, t_470)
|
335 |
+
t_477 = F.relu(t_476)
|
336 |
+
t_478 = self.n_Conv_52(t_477)
|
337 |
+
t_479 = F.relu(t_478)
|
338 |
+
t_479_padded = F.pad(t_479, [1, 1, 1, 1], value=0)
|
339 |
+
t_480 = self.n_Conv_53(t_479_padded)
|
340 |
+
t_481 = F.relu(t_480)
|
341 |
+
t_482 = self.n_Conv_54(t_481)
|
342 |
+
t_483 = torch.add(t_482, t_477)
|
343 |
+
t_484 = F.relu(t_483)
|
344 |
+
t_485 = self.n_Conv_55(t_484)
|
345 |
+
t_486 = F.relu(t_485)
|
346 |
+
t_486_padded = F.pad(t_486, [1, 1, 1, 1], value=0)
|
347 |
+
t_487 = self.n_Conv_56(t_486_padded)
|
348 |
+
t_488 = F.relu(t_487)
|
349 |
+
t_489 = self.n_Conv_57(t_488)
|
350 |
+
t_490 = torch.add(t_489, t_484)
|
351 |
+
t_491 = F.relu(t_490)
|
352 |
+
t_492 = self.n_Conv_58(t_491)
|
353 |
+
t_493 = F.relu(t_492)
|
354 |
+
t_493_padded = F.pad(t_493, [1, 1, 1, 1], value=0)
|
355 |
+
t_494 = self.n_Conv_59(t_493_padded)
|
356 |
+
t_495 = F.relu(t_494)
|
357 |
+
t_496 = self.n_Conv_60(t_495)
|
358 |
+
t_497 = torch.add(t_496, t_491)
|
359 |
+
t_498 = F.relu(t_497)
|
360 |
+
t_499 = self.n_Conv_61(t_498)
|
361 |
+
t_500 = F.relu(t_499)
|
362 |
+
t_500_padded = F.pad(t_500, [1, 1, 1, 1], value=0)
|
363 |
+
t_501 = self.n_Conv_62(t_500_padded)
|
364 |
+
t_502 = F.relu(t_501)
|
365 |
+
t_503 = self.n_Conv_63(t_502)
|
366 |
+
t_504 = torch.add(t_503, t_498)
|
367 |
+
t_505 = F.relu(t_504)
|
368 |
+
t_506 = self.n_Conv_64(t_505)
|
369 |
+
t_507 = F.relu(t_506)
|
370 |
+
t_507_padded = F.pad(t_507, [1, 1, 1, 1], value=0)
|
371 |
+
t_508 = self.n_Conv_65(t_507_padded)
|
372 |
+
t_509 = F.relu(t_508)
|
373 |
+
t_510 = self.n_Conv_66(t_509)
|
374 |
+
t_511 = torch.add(t_510, t_505)
|
375 |
+
t_512 = F.relu(t_511)
|
376 |
+
t_513 = self.n_Conv_67(t_512)
|
377 |
+
t_514 = F.relu(t_513)
|
378 |
+
t_514_padded = F.pad(t_514, [1, 1, 1, 1], value=0)
|
379 |
+
t_515 = self.n_Conv_68(t_514_padded)
|
380 |
+
t_516 = F.relu(t_515)
|
381 |
+
t_517 = self.n_Conv_69(t_516)
|
382 |
+
t_518 = torch.add(t_517, t_512)
|
383 |
+
t_519 = F.relu(t_518)
|
384 |
+
t_520 = self.n_Conv_70(t_519)
|
385 |
+
t_521 = F.relu(t_520)
|
386 |
+
t_521_padded = F.pad(t_521, [1, 1, 1, 1], value=0)
|
387 |
+
t_522 = self.n_Conv_71(t_521_padded)
|
388 |
+
t_523 = F.relu(t_522)
|
389 |
+
t_524 = self.n_Conv_72(t_523)
|
390 |
+
t_525 = torch.add(t_524, t_519)
|
391 |
+
t_526 = F.relu(t_525)
|
392 |
+
t_527 = self.n_Conv_73(t_526)
|
393 |
+
t_528 = F.relu(t_527)
|
394 |
+
t_528_padded = F.pad(t_528, [1, 1, 1, 1], value=0)
|
395 |
+
t_529 = self.n_Conv_74(t_528_padded)
|
396 |
+
t_530 = F.relu(t_529)
|
397 |
+
t_531 = self.n_Conv_75(t_530)
|
398 |
+
t_532 = torch.add(t_531, t_526)
|
399 |
+
t_533 = F.relu(t_532)
|
400 |
+
t_534 = self.n_Conv_76(t_533)
|
401 |
+
t_535 = F.relu(t_534)
|
402 |
+
t_535_padded = F.pad(t_535, [1, 1, 1, 1], value=0)
|
403 |
+
t_536 = self.n_Conv_77(t_535_padded)
|
404 |
+
t_537 = F.relu(t_536)
|
405 |
+
t_538 = self.n_Conv_78(t_537)
|
406 |
+
t_539 = torch.add(t_538, t_533)
|
407 |
+
t_540 = F.relu(t_539)
|
408 |
+
t_541 = self.n_Conv_79(t_540)
|
409 |
+
t_542 = F.relu(t_541)
|
410 |
+
t_542_padded = F.pad(t_542, [1, 1, 1, 1], value=0)
|
411 |
+
t_543 = self.n_Conv_80(t_542_padded)
|
412 |
+
t_544 = F.relu(t_543)
|
413 |
+
t_545 = self.n_Conv_81(t_544)
|
414 |
+
t_546 = torch.add(t_545, t_540)
|
415 |
+
t_547 = F.relu(t_546)
|
416 |
+
t_548 = self.n_Conv_82(t_547)
|
417 |
+
t_549 = F.relu(t_548)
|
418 |
+
t_549_padded = F.pad(t_549, [1, 1, 1, 1], value=0)
|
419 |
+
t_550 = self.n_Conv_83(t_549_padded)
|
420 |
+
t_551 = F.relu(t_550)
|
421 |
+
t_552 = self.n_Conv_84(t_551)
|
422 |
+
t_553 = torch.add(t_552, t_547)
|
423 |
+
t_554 = F.relu(t_553)
|
424 |
+
t_555 = self.n_Conv_85(t_554)
|
425 |
+
t_556 = F.relu(t_555)
|
426 |
+
t_556_padded = F.pad(t_556, [1, 1, 1, 1], value=0)
|
427 |
+
t_557 = self.n_Conv_86(t_556_padded)
|
428 |
+
t_558 = F.relu(t_557)
|
429 |
+
t_559 = self.n_Conv_87(t_558)
|
430 |
+
t_560 = torch.add(t_559, t_554)
|
431 |
+
t_561 = F.relu(t_560)
|
432 |
+
t_562 = self.n_Conv_88(t_561)
|
433 |
+
t_563 = F.relu(t_562)
|
434 |
+
t_563_padded = F.pad(t_563, [1, 1, 1, 1], value=0)
|
435 |
+
t_564 = self.n_Conv_89(t_563_padded)
|
436 |
+
t_565 = F.relu(t_564)
|
437 |
+
t_566 = self.n_Conv_90(t_565)
|
438 |
+
t_567 = torch.add(t_566, t_561)
|
439 |
+
t_568 = F.relu(t_567)
|
440 |
+
t_569 = self.n_Conv_91(t_568)
|
441 |
+
t_570 = F.relu(t_569)
|
442 |
+
t_570_padded = F.pad(t_570, [1, 1, 1, 1], value=0)
|
443 |
+
t_571 = self.n_Conv_92(t_570_padded)
|
444 |
+
t_572 = F.relu(t_571)
|
445 |
+
t_573 = self.n_Conv_93(t_572)
|
446 |
+
t_574 = torch.add(t_573, t_568)
|
447 |
+
t_575 = F.relu(t_574)
|
448 |
+
t_576 = self.n_Conv_94(t_575)
|
449 |
+
t_577 = F.relu(t_576)
|
450 |
+
t_577_padded = F.pad(t_577, [1, 1, 1, 1], value=0)
|
451 |
+
t_578 = self.n_Conv_95(t_577_padded)
|
452 |
+
t_579 = F.relu(t_578)
|
453 |
+
t_580 = self.n_Conv_96(t_579)
|
454 |
+
t_581 = torch.add(t_580, t_575)
|
455 |
+
t_582 = F.relu(t_581)
|
456 |
+
t_583 = self.n_Conv_97(t_582)
|
457 |
+
t_584 = F.relu(t_583)
|
458 |
+
t_584_padded = F.pad(t_584, [0, 1, 0, 1], value=0)
|
459 |
+
t_585 = self.n_Conv_98(t_584_padded)
|
460 |
+
t_586 = F.relu(t_585)
|
461 |
+
t_587 = self.n_Conv_99(t_586)
|
462 |
+
t_588 = self.n_Conv_100(t_582)
|
463 |
+
t_589 = torch.add(t_587, t_588)
|
464 |
+
t_590 = F.relu(t_589)
|
465 |
+
t_591 = self.n_Conv_101(t_590)
|
466 |
+
t_592 = F.relu(t_591)
|
467 |
+
t_592_padded = F.pad(t_592, [1, 1, 1, 1], value=0)
|
468 |
+
t_593 = self.n_Conv_102(t_592_padded)
|
469 |
+
t_594 = F.relu(t_593)
|
470 |
+
t_595 = self.n_Conv_103(t_594)
|
471 |
+
t_596 = torch.add(t_595, t_590)
|
472 |
+
t_597 = F.relu(t_596)
|
473 |
+
t_598 = self.n_Conv_104(t_597)
|
474 |
+
t_599 = F.relu(t_598)
|
475 |
+
t_599_padded = F.pad(t_599, [1, 1, 1, 1], value=0)
|
476 |
+
t_600 = self.n_Conv_105(t_599_padded)
|
477 |
+
t_601 = F.relu(t_600)
|
478 |
+
t_602 = self.n_Conv_106(t_601)
|
479 |
+
t_603 = torch.add(t_602, t_597)
|
480 |
+
t_604 = F.relu(t_603)
|
481 |
+
t_605 = self.n_Conv_107(t_604)
|
482 |
+
t_606 = F.relu(t_605)
|
483 |
+
t_606_padded = F.pad(t_606, [1, 1, 1, 1], value=0)
|
484 |
+
t_607 = self.n_Conv_108(t_606_padded)
|
485 |
+
t_608 = F.relu(t_607)
|
486 |
+
t_609 = self.n_Conv_109(t_608)
|
487 |
+
t_610 = torch.add(t_609, t_604)
|
488 |
+
t_611 = F.relu(t_610)
|
489 |
+
t_612 = self.n_Conv_110(t_611)
|
490 |
+
t_613 = F.relu(t_612)
|
491 |
+
t_613_padded = F.pad(t_613, [1, 1, 1, 1], value=0)
|
492 |
+
t_614 = self.n_Conv_111(t_613_padded)
|
493 |
+
t_615 = F.relu(t_614)
|
494 |
+
t_616 = self.n_Conv_112(t_615)
|
495 |
+
t_617 = torch.add(t_616, t_611)
|
496 |
+
t_618 = F.relu(t_617)
|
497 |
+
t_619 = self.n_Conv_113(t_618)
|
498 |
+
t_620 = F.relu(t_619)
|
499 |
+
t_620_padded = F.pad(t_620, [1, 1, 1, 1], value=0)
|
500 |
+
t_621 = self.n_Conv_114(t_620_padded)
|
501 |
+
t_622 = F.relu(t_621)
|
502 |
+
t_623 = self.n_Conv_115(t_622)
|
503 |
+
t_624 = torch.add(t_623, t_618)
|
504 |
+
t_625 = F.relu(t_624)
|
505 |
+
t_626 = self.n_Conv_116(t_625)
|
506 |
+
t_627 = F.relu(t_626)
|
507 |
+
t_627_padded = F.pad(t_627, [1, 1, 1, 1], value=0)
|
508 |
+
t_628 = self.n_Conv_117(t_627_padded)
|
509 |
+
t_629 = F.relu(t_628)
|
510 |
+
t_630 = self.n_Conv_118(t_629)
|
511 |
+
t_631 = torch.add(t_630, t_625)
|
512 |
+
t_632 = F.relu(t_631)
|
513 |
+
t_633 = self.n_Conv_119(t_632)
|
514 |
+
t_634 = F.relu(t_633)
|
515 |
+
t_634_padded = F.pad(t_634, [1, 1, 1, 1], value=0)
|
516 |
+
t_635 = self.n_Conv_120(t_634_padded)
|
517 |
+
t_636 = F.relu(t_635)
|
518 |
+
t_637 = self.n_Conv_121(t_636)
|
519 |
+
t_638 = torch.add(t_637, t_632)
|
520 |
+
t_639 = F.relu(t_638)
|
521 |
+
t_640 = self.n_Conv_122(t_639)
|
522 |
+
t_641 = F.relu(t_640)
|
523 |
+
t_641_padded = F.pad(t_641, [1, 1, 1, 1], value=0)
|
524 |
+
t_642 = self.n_Conv_123(t_641_padded)
|
525 |
+
t_643 = F.relu(t_642)
|
526 |
+
t_644 = self.n_Conv_124(t_643)
|
527 |
+
t_645 = torch.add(t_644, t_639)
|
528 |
+
t_646 = F.relu(t_645)
|
529 |
+
t_647 = self.n_Conv_125(t_646)
|
530 |
+
t_648 = F.relu(t_647)
|
531 |
+
t_648_padded = F.pad(t_648, [1, 1, 1, 1], value=0)
|
532 |
+
t_649 = self.n_Conv_126(t_648_padded)
|
533 |
+
t_650 = F.relu(t_649)
|
534 |
+
t_651 = self.n_Conv_127(t_650)
|
535 |
+
t_652 = torch.add(t_651, t_646)
|
536 |
+
t_653 = F.relu(t_652)
|
537 |
+
t_654 = self.n_Conv_128(t_653)
|
538 |
+
t_655 = F.relu(t_654)
|
539 |
+
t_655_padded = F.pad(t_655, [1, 1, 1, 1], value=0)
|
540 |
+
t_656 = self.n_Conv_129(t_655_padded)
|
541 |
+
t_657 = F.relu(t_656)
|
542 |
+
t_658 = self.n_Conv_130(t_657)
|
543 |
+
t_659 = torch.add(t_658, t_653)
|
544 |
+
t_660 = F.relu(t_659)
|
545 |
+
t_661 = self.n_Conv_131(t_660)
|
546 |
+
t_662 = F.relu(t_661)
|
547 |
+
t_662_padded = F.pad(t_662, [1, 1, 1, 1], value=0)
|
548 |
+
t_663 = self.n_Conv_132(t_662_padded)
|
549 |
+
t_664 = F.relu(t_663)
|
550 |
+
t_665 = self.n_Conv_133(t_664)
|
551 |
+
t_666 = torch.add(t_665, t_660)
|
552 |
+
t_667 = F.relu(t_666)
|
553 |
+
t_668 = self.n_Conv_134(t_667)
|
554 |
+
t_669 = F.relu(t_668)
|
555 |
+
t_669_padded = F.pad(t_669, [1, 1, 1, 1], value=0)
|
556 |
+
t_670 = self.n_Conv_135(t_669_padded)
|
557 |
+
t_671 = F.relu(t_670)
|
558 |
+
t_672 = self.n_Conv_136(t_671)
|
559 |
+
t_673 = torch.add(t_672, t_667)
|
560 |
+
t_674 = F.relu(t_673)
|
561 |
+
t_675 = self.n_Conv_137(t_674)
|
562 |
+
t_676 = F.relu(t_675)
|
563 |
+
t_676_padded = F.pad(t_676, [1, 1, 1, 1], value=0)
|
564 |
+
t_677 = self.n_Conv_138(t_676_padded)
|
565 |
+
t_678 = F.relu(t_677)
|
566 |
+
t_679 = self.n_Conv_139(t_678)
|
567 |
+
t_680 = torch.add(t_679, t_674)
|
568 |
+
t_681 = F.relu(t_680)
|
569 |
+
t_682 = self.n_Conv_140(t_681)
|
570 |
+
t_683 = F.relu(t_682)
|
571 |
+
t_683_padded = F.pad(t_683, [1, 1, 1, 1], value=0)
|
572 |
+
t_684 = self.n_Conv_141(t_683_padded)
|
573 |
+
t_685 = F.relu(t_684)
|
574 |
+
t_686 = self.n_Conv_142(t_685)
|
575 |
+
t_687 = torch.add(t_686, t_681)
|
576 |
+
t_688 = F.relu(t_687)
|
577 |
+
t_689 = self.n_Conv_143(t_688)
|
578 |
+
t_690 = F.relu(t_689)
|
579 |
+
t_690_padded = F.pad(t_690, [1, 1, 1, 1], value=0)
|
580 |
+
t_691 = self.n_Conv_144(t_690_padded)
|
581 |
+
t_692 = F.relu(t_691)
|
582 |
+
t_693 = self.n_Conv_145(t_692)
|
583 |
+
t_694 = torch.add(t_693, t_688)
|
584 |
+
t_695 = F.relu(t_694)
|
585 |
+
t_696 = self.n_Conv_146(t_695)
|
586 |
+
t_697 = F.relu(t_696)
|
587 |
+
t_697_padded = F.pad(t_697, [1, 1, 1, 1], value=0)
|
588 |
+
t_698 = self.n_Conv_147(t_697_padded)
|
589 |
+
t_699 = F.relu(t_698)
|
590 |
+
t_700 = self.n_Conv_148(t_699)
|
591 |
+
t_701 = torch.add(t_700, t_695)
|
592 |
+
t_702 = F.relu(t_701)
|
593 |
+
t_703 = self.n_Conv_149(t_702)
|
594 |
+
t_704 = F.relu(t_703)
|
595 |
+
t_704_padded = F.pad(t_704, [1, 1, 1, 1], value=0)
|
596 |
+
t_705 = self.n_Conv_150(t_704_padded)
|
597 |
+
t_706 = F.relu(t_705)
|
598 |
+
t_707 = self.n_Conv_151(t_706)
|
599 |
+
t_708 = torch.add(t_707, t_702)
|
600 |
+
t_709 = F.relu(t_708)
|
601 |
+
t_710 = self.n_Conv_152(t_709)
|
602 |
+
t_711 = F.relu(t_710)
|
603 |
+
t_711_padded = F.pad(t_711, [1, 1, 1, 1], value=0)
|
604 |
+
t_712 = self.n_Conv_153(t_711_padded)
|
605 |
+
t_713 = F.relu(t_712)
|
606 |
+
t_714 = self.n_Conv_154(t_713)
|
607 |
+
t_715 = torch.add(t_714, t_709)
|
608 |
+
t_716 = F.relu(t_715)
|
609 |
+
t_717 = self.n_Conv_155(t_716)
|
610 |
+
t_718 = F.relu(t_717)
|
611 |
+
t_718_padded = F.pad(t_718, [1, 1, 1, 1], value=0)
|
612 |
+
t_719 = self.n_Conv_156(t_718_padded)
|
613 |
+
t_720 = F.relu(t_719)
|
614 |
+
t_721 = self.n_Conv_157(t_720)
|
615 |
+
t_722 = torch.add(t_721, t_716)
|
616 |
+
t_723 = F.relu(t_722)
|
617 |
+
t_724 = self.n_Conv_158(t_723)
|
618 |
+
t_725 = self.n_Conv_159(t_723)
|
619 |
+
t_726 = F.relu(t_725)
|
620 |
+
t_726_padded = F.pad(t_726, [0, 1, 0, 1], value=0)
|
621 |
+
t_727 = self.n_Conv_160(t_726_padded)
|
622 |
+
t_728 = F.relu(t_727)
|
623 |
+
t_729 = self.n_Conv_161(t_728)
|
624 |
+
t_730 = torch.add(t_729, t_724)
|
625 |
+
t_731 = F.relu(t_730)
|
626 |
+
t_732 = self.n_Conv_162(t_731)
|
627 |
+
t_733 = F.relu(t_732)
|
628 |
+
t_733_padded = F.pad(t_733, [1, 1, 1, 1], value=0)
|
629 |
+
t_734 = self.n_Conv_163(t_733_padded)
|
630 |
+
t_735 = F.relu(t_734)
|
631 |
+
t_736 = self.n_Conv_164(t_735)
|
632 |
+
t_737 = torch.add(t_736, t_731)
|
633 |
+
t_738 = F.relu(t_737)
|
634 |
+
t_739 = self.n_Conv_165(t_738)
|
635 |
+
t_740 = F.relu(t_739)
|
636 |
+
t_740_padded = F.pad(t_740, [1, 1, 1, 1], value=0)
|
637 |
+
t_741 = self.n_Conv_166(t_740_padded)
|
638 |
+
t_742 = F.relu(t_741)
|
639 |
+
t_743 = self.n_Conv_167(t_742)
|
640 |
+
t_744 = torch.add(t_743, t_738)
|
641 |
+
t_745 = F.relu(t_744)
|
642 |
+
t_746 = self.n_Conv_168(t_745)
|
643 |
+
t_747 = self.n_Conv_169(t_745)
|
644 |
+
t_748 = F.relu(t_747)
|
645 |
+
t_748_padded = F.pad(t_748, [0, 1, 0, 1], value=0)
|
646 |
+
t_749 = self.n_Conv_170(t_748_padded)
|
647 |
+
t_750 = F.relu(t_749)
|
648 |
+
t_751 = self.n_Conv_171(t_750)
|
649 |
+
t_752 = torch.add(t_751, t_746)
|
650 |
+
t_753 = F.relu(t_752)
|
651 |
+
t_754 = self.n_Conv_172(t_753)
|
652 |
+
t_755 = F.relu(t_754)
|
653 |
+
t_755_padded = F.pad(t_755, [1, 1, 1, 1], value=0)
|
654 |
+
t_756 = self.n_Conv_173(t_755_padded)
|
655 |
+
t_757 = F.relu(t_756)
|
656 |
+
t_758 = self.n_Conv_174(t_757)
|
657 |
+
t_759 = torch.add(t_758, t_753)
|
658 |
+
t_760 = F.relu(t_759)
|
659 |
+
t_761 = self.n_Conv_175(t_760)
|
660 |
+
t_762 = F.relu(t_761)
|
661 |
+
t_762_padded = F.pad(t_762, [1, 1, 1, 1], value=0)
|
662 |
+
t_763 = self.n_Conv_176(t_762_padded)
|
663 |
+
t_764 = F.relu(t_763)
|
664 |
+
t_765 = self.n_Conv_177(t_764)
|
665 |
+
t_766 = torch.add(t_765, t_760)
|
666 |
+
t_767 = F.relu(t_766)
|
667 |
+
t_768 = self.n_Conv_178(t_767)
|
668 |
+
t_769 = F.avg_pool2d(t_768, kernel_size=t_768.shape[-2:])
|
669 |
+
t_770 = torch.squeeze(t_769, 3)
|
670 |
+
t_770 = torch.squeeze(t_770, 2)
|
671 |
+
t_771 = torch.sigmoid(t_770)
|
672 |
+
return t_771
|
673 |
+
|
674 |
+
def load_state_dict(self, state_dict, **kwargs):
|
675 |
+
self.tags = state_dict.get('tags', [])
|
676 |
+
|
677 |
+
super(DeepDanbooruModel, self).load_state_dict({k: v for k, v in state_dict.items() if k != 'tags'})
|
678 |
+
|