ppo-LunarLander-v2 / config.json
messerb5467's picture
messerb5467/PPO-2
9541ea5
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd0068f3370>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd0068f3400>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd0068f3490>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd0068f3520>", "_build": "<function ActorCriticPolicy._build at 0x7fd0068f35b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd0068f3640>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd0068f36d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd0068f3760>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd0068f37f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd0068f3880>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd0068f3910>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd0068f39a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd0068f5f80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683993694094196273, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOacyb16PJo/jVWAvvIaAL9C9A6+wNtZvAAAAAAAAAAAGrBpvbh2k7lkQpE5tw2RNJ7Ow7p+56i4AACAPwAAgD/mIqa9dWguP1aEljxxiYi+ibJfvaIicj0AAAAAAAAAANPajb54SvM+EQYuPtCwvr5Csqi9d0sAPAAAAAAAAAAAZoD3PaqrXT7mmle+NOd4voRmDzyFDOS9AAAAAAAAAAAzkoa8rt2KukZhhbvkoaM42TnKupczrzkAAIA/AAAAAOaurr0cE4s+LYFrPuRUxb5j5ao93VzPPQAAAAAAAAAAM7tYPDgcubsEA4i8iVhmO17ACD3uVGK8AACAPwAAgD8AJdI8pmeoP6VY5D3Uxuy+5OYDPQBS9z0AAAAAAAAAADq7RD5wRu0+7fVmvuX9l75N52U9XlQ2vQAAAAAAAAAA5hhCvdH6BD9q4J897XyvvlSYD7wu4hI9AAAAAAAAAACTY0a+HBHPPl0xoT4gIbe+w0AxvOJ4pj0AAAAAAAAAALPQDz2kNzk+a4g3vsq5Fb5xXzy9EvaFPAAAAAAAAAAAZk6Su48qCrr67C8zU4M5L02uhDvOQNSzAACAPwAAgD/aade99uwouv7cfjj19a0zziZHu9hPlbcAAIA/AAAAAIBKLb1IF6O6QNIvs0SRNy/dLIi4roPIMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVFgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHMqYFNcnmeMAWyUS+6MAXSUR0CRBsUz9CNTdX2UKGgGR0ByEQxubZvlaAdNPAFoCEdAkQbkipvP1XV9lChoBkdAbv+FDfFaS2gHTe4CaAhHQJEHYETxoZh1fZQoaAZHQHGEv+n62v1oB00FAWgIR0CRB5nh86V/dX2UKGgGR0BgoMNc4YJmaAdN6ANoCEdAkQf4/Vy3kXV9lChoBkdAcKqFpfx+a2gHS/toCEdAkQheNgjQiXV9lChoBkdAbe0cHWz4UWgHTQABaAhHQJEJTIKc/dJ1fZQoaAZHQHAD9Fz+3phoB0v1aAhHQJEJnBUJfIF1fZQoaAZHQHIgvyCnP3VoB0v/aAhHQJELwZWJaaF1fZQoaAZHQHB/qErXlKdoB00yAWgIR0CRC89uxbB5dX2UKGgGR0BvK6J2t+1CaAdL92gIR0CRDKV9F4LUdX2UKGgGR0ByGVh3JPqLaAdL9mgIR0CRDN4Pf8/EdX2UKGgGR0BzANjhDPWyaAdNGgFoCEdAkQzmbG3nZHV9lChoBkdAcWJCMglniGgHTREBaAhHQJEPIOlO45N1fZQoaAZHQGyjdhiLEUFoB0v0aAhHQJEPTqiXY151fZQoaAZHQG7EDjJdSl5oB00xAWgIR0CREK/1QIlddX2UKGgGR0ByJstapxWDaAdNPgFoCEdAkRFSYLLIP3V9lChoBkdAcdpfQrtmc2gHS/1oCEdAkRGLmhdt23V9lChoBkdAbl9KnNxEOWgHTSUBaAhHQJERkswtapx1fZQoaAZHQHKqKkuYhMdoB00vAWgIR0CREp9uxbB5dX2UKGgGR0BvJ90knkT6aAdL5WgIR0CRExJNj9XLdX2UKGgGR0BvXXJ1aGHpaAdL8mgIR0CREyEJ0GNadX2UKGgGR0By49VNpM6BaAdNOgFoCEdAkRNsEvCdjHV9lChoBkdAcyG5iVjZtmgHTSwBaAhHQJET+QPqcEx1fZQoaAZHQHHZXO8kD6poB0voaAhHQJEVYeo1k2B1fZQoaAZHQHAAuBYmsvJoB0vyaAhHQJEW4o/iYLN1fZQoaAZHQHEWtnf2saNoB00MAWgIR0CRFwHWBjFydX2UKGgGR0Bwp3Kr7wazaAdNBQFoCEdAkRe0se4kNXV9lChoBkdAcdT5a/yoXWgHTSwBaAhHQJEZPnvDxb11fZQoaAZHQG/72Tot+ThoB0vtaAhHQJEZSZmZmZp1fZQoaAZHQHDjmdVea8ZoB0vvaAhHQJEa9c+qzZ91fZQoaAZHQHKc+RxLkCFoB0v0aAhHQJEcOQ5myxB1fZQoaAZHQHE4NrftQbdoB0vvaAhHQJEdWK3uuzR1fZQoaAZHQHD7T3/Pw/hoB01DAWgIR0CRHWU7jkuIdX2UKGgGR0Bw/yaG5+YuaAdNFgFoCEdAkR2vx2B8QnV9lChoBkdAbOFMdLg4wWgHTSYBaAhHQJEezDziCJ51fZQoaAZHQHFoR/mT1TRoB0v9aAhHQJEfAL3K0Up1fZQoaAZHQHIG9Vmz0H1oB00IAWgIR0CRH+AtWdVedX2UKGgGR0BwvVVIZqEfaAdNJQFoCEdAkSAAoCuEEnV9lChoBkdAcdVHR1HOKWgHTSYBaAhHQJEgEIt16mh1fZQoaAZHQG+P3BpHqeNoB00gAWgIR0CRIYevpyIYdX2UKGgGR0Byclotcv/SaAdL/mgIR0CRIZ6nBLwndX2UKGgGR0ByesoE0SAZaAdNBwFoCEdAkSHFtsN2DHV9lChoBkdAcBEGlhw2l2gHS+loCEdAkSJmVu76HnV9lChoBkdAckGsqrilzmgHS/BoCEdAkSKW9pRGdHV9lChoBkdAbkOzAN5MUWgHTRUBaAhHQJEzHi6xxDN1fZQoaAZHQHNHnGff4ypoB0v+aAhHQJE0XUqhDgJ1fZQoaAZHQHLDlANXo1VoB0vvaAhHQJE1fXL/0d11fZQoaAZHQHJEjKT0QK9oB0v/aAhHQJE1yNm16Vt1fZQoaAZHQHDYkiILw4NoB00bAWgIR0CRNfir1dxAdX2UKGgGR0Bwl2i48U22aAdL+mgIR0CRNneoUBXCdX2UKGgGR0Bw27vH93r2aAdNKgFoCEdAkTcTZUT+N3V9lChoBkdAbQhxTbWVeWgHS/toCEdAkTdwaR6ni3V9lChoBkdAbcmqn3ta6mgHS/9oCEdAkTetDMNc4nV9lChoBkdAcQOjCpFTemgHS/xoCEdAkTepAY51eXV9lChoBkdAcn2a1Cw8n2gHTSABaAhHQJE3wzHjp9t1fZQoaAZHQHCBjRtxdY5oB0vlaAhHQJE4ZSGahHt1fZQoaAZHQHEWYYWLxZxoB0vuaAhHQJE4tYDDCP91fZQoaAZHQHAeroB7u2JoB0vraAhHQJE5pNdqtYB1fZQoaAZHQHK8zst03fhoB00kAWgIR0CROlLJCBwudX2UKGgGR0By+zgsK9f1aAdNDQFoCEdAkTqELlV94XV9lChoBkdAcS10r9VFQWgHTUMBaAhHQJE78a72+PB1fZQoaAZHQHFB0dV/+bVoB0v9aAhHQJE8wCnxaxJ1fZQoaAZHQG6XMenyd4FoB0v2aAhHQJE9CEug6EJ1fZQoaAZHQHBit7KJVKhoB0vWaAhHQJE+Fu5z5oJ1fZQoaAZHQHE50aQ3gk1oB00NAWgIR0CRPp7hNucddX2UKGgGR0Bxl+AJ9iMHaAdL8mgIR0CRPtP0I1LrdX2UKGgGR0BxV95prULEaAdNNgFoCEdAkT8/xUedTnV9lChoBkdActjydFvyb2gHTQEBaAhHQJE/mk8A7xN1fZQoaAZHQG6pVSOzY29oB0veaAhHQJE/zho/Rmd1fZQoaAZHQHCn1gMMI/toB00vAWgIR0CRQGcu8K5TdX2UKGgGR0BxOWThYNiIaAdL7mgIR0CRQi/MW43FdX2UKGgGR0ByUERJ2+wlaAdNPQFoCEdAkUJo8p1A7nV9lChoBkdAcKczHCGetmgHTRsBaAhHQJFC0Xdj5Kx1fZQoaAZHQHFbM5fdAPdoB0vpaAhHQJFDsYP5HmR1fZQoaAZHQHLDpaq0dBBoB000AWgIR0CRRJjwx33YdX2UKGgGR0Bw/C08eS0TaAdL72gIR0CRRm+DOC5FdX2UKGgGR0BupiBmPHT7aAdL4WgIR0CRRpGi5/b1dX2UKGgGR0Bu/9uYQarFaAdNAgFoCEdAkUaxU70WdnV9lChoBkdAcJE7LMcIaGgHTTUBaAhHQJFHUuFpPAR1fZQoaAZHQHEZfysjmjloB000AWgIR0CRR7nfVI7OdX2UKGgGR0Bvd7H2h7E6aAdL+2gIR0CRSGEYwZfldX2UKGgGR0BuoQcNpdrwaAdNHAFoCEdAkUji+HrQgXV9lChoBkdAcKvb7CSA6WgHS/VoCEdAkUlaDkELY3V9lChoBkdAcDaPNmlImWgHTRwBaAhHQJFKLXkHUtt1fZQoaAZHQG/YldTo+wFoB02oAmgIR0CRSw92HLzPdX2UKGgGR0BwCxGrjo6kaAdNCQFoCEdAkUyv3rUsnXV9lChoBkdAbZ7Lkjopx2gHTRsBaAhHQJFNuTGHYYl1fZQoaAZHQG5ir08NhE1oB00RAWgIR0CRTeB+4LCvdX2UKGgGR0Byj4Kc/dIoaAdL9WgIR0CRTeeVs1sMdX2UKGgGR0BvkKGlANXpaAdL9mgIR0CRUVseXAuadX2UKGgGR0BxyRcAzYVZaAdNLQFoCEdAkVGBplBhQXV9lChoBkdAbxak5ZKWcGgHS+5oCEdAkVJb74zrNXV9lChoBkdAcz3k0aZQYWgHTQUBaAhHQJFTQWuX/o91fZQoaAZHQHLcGbCrLhdoB00cAWgIR0CRU4ZR8+ibdX2UKGgGR0Bx4XJiiItUaAdL72gIR0CRU537UG3XdX2UKGgGR0BxJkkQf6oEaAdL6GgIR0CRU8Fa0QbudX2UKGgGR0BxD43juKGdaAdNIwFoCEdAkVP6zAvcrXV9lChoBkdAclwOearmyWgHTRkBaAhHQJFW8Ahje9B1fZQoaAZHQHDv0VnEl3RoB00VAWgIR0CRV8KeTV2BdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}