huseinzol05 commited on
Commit
fbafa6e
·
1 Parent(s): 4f59648

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +43 -0
README.md ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: ms
3
+ ---
4
+
5
+ # t5-small-bahasa-cased
6
+
7
+ Pretrained T5 small on both standard and local language model for Malay.
8
+
9
+ ## Pretraining Corpus
10
+
11
+ `t5-small-bahasa-cased` model was pretrained on multiple tasks. Below is list of tasks we trained on,
12
+
13
+ 1. Language masking task on bahasa news, bahasa Wikipedia, bahasa Academia.edu, bahasa parliament and translated The Pile.
14
+ 2. News title prediction on bahasa news.
15
+ 3. Next sentence prediction on bahasa news, bahasa Wikipedia, bahasa Academia.edu, bahasa parliament and translated The Pile.
16
+ 4. Translated QA Natural.
17
+ 5. Text Similarity task on translated SNLI and translated MNLI.
18
+ 6. EN-MS translation.
19
+ 7. MS-EN translation.
20
+ 8. Abstractive Summarization.
21
+ 9. Knowledge Graph triples generation.
22
+ 10. Paraphrase.
23
+ 11. Social media normalization.
24
+ 12. Noisy EN-MS translation.
25
+ 13. Noisy MS-EN translation.
26
+
27
+ Preparing steps can reproduce at https://github.com/huseinzol05/malaya/tree/master/pretrained-model/t5/prepare
28
+
29
+ ## Pretraining details
30
+
31
+ - This model was trained using Google T5 repository https://github.com/google-research/text-to-text-transfer-transformer, on v3-8 TPU.
32
+ - All steps can reproduce from here, https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/t5
33
+
34
+ ## Supported prefix
35
+
36
+ 1. `soalan: {string}`, trained using Natural QA.
37
+ 2. `ringkasan: {string}`, for abstractive summarization.
38
+ 3. `tajuk: {string}`, for abstractive title.
39
+ 4. `parafrasa: {string}`, for abstractive paraphrase.
40
+ 5. `terjemah Inggeris ke Melayu: {string}`, for EN-MS translation.
41
+ 6. `terjemah Melayu ke Inggeris: {string}`, for MS-EN translation.
42
+ 7. `grafik pengetahuan: {string}`, for MS text to EN Knowledge Graph triples format.
43
+ 8. `ayat1: {string1} ayat2: {string2}`, semantic similarity.