Upload . with huggingface_hub
Browse files- README.md +236 -0
- config.json +208 -0
- model.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sklearn
|
3 |
+
tags:
|
4 |
+
- sklearn
|
5 |
+
- skops
|
6 |
+
- tabular-regression
|
7 |
+
model_format: pickle
|
8 |
+
model_file: model.pkl
|
9 |
+
widget:
|
10 |
+
structuredData:
|
11 |
+
Fedu:
|
12 |
+
- 3
|
13 |
+
- 3
|
14 |
+
- 3
|
15 |
+
Fjob:
|
16 |
+
- other
|
17 |
+
- other
|
18 |
+
- services
|
19 |
+
G1:
|
20 |
+
- 12
|
21 |
+
- 13
|
22 |
+
- 8
|
23 |
+
G2:
|
24 |
+
- 13
|
25 |
+
- 14
|
26 |
+
- 7
|
27 |
+
G3:
|
28 |
+
- 12
|
29 |
+
- 14
|
30 |
+
- 0
|
31 |
+
Medu:
|
32 |
+
- 3
|
33 |
+
- 2
|
34 |
+
- 1
|
35 |
+
Mjob:
|
36 |
+
- services
|
37 |
+
- other
|
38 |
+
- at_home
|
39 |
+
Pstatus:
|
40 |
+
- T
|
41 |
+
- T
|
42 |
+
- T
|
43 |
+
Walc:
|
44 |
+
- 2
|
45 |
+
- 1
|
46 |
+
- 1
|
47 |
+
absences:
|
48 |
+
- 2
|
49 |
+
- 0
|
50 |
+
- 0
|
51 |
+
activities:
|
52 |
+
- 'yes'
|
53 |
+
- 'no'
|
54 |
+
- 'yes'
|
55 |
+
address:
|
56 |
+
- U
|
57 |
+
- U
|
58 |
+
- U
|
59 |
+
age:
|
60 |
+
- 16
|
61 |
+
- 16
|
62 |
+
- 16
|
63 |
+
failures:
|
64 |
+
- 0
|
65 |
+
- 0
|
66 |
+
- 3
|
67 |
+
famrel:
|
68 |
+
- 4
|
69 |
+
- 5
|
70 |
+
- 4
|
71 |
+
famsize:
|
72 |
+
- GT3
|
73 |
+
- GT3
|
74 |
+
- GT3
|
75 |
+
famsup:
|
76 |
+
- 'no'
|
77 |
+
- 'no'
|
78 |
+
- 'no'
|
79 |
+
freetime:
|
80 |
+
- 2
|
81 |
+
- 3
|
82 |
+
- 3
|
83 |
+
goout:
|
84 |
+
- 3
|
85 |
+
- 3
|
86 |
+
- 5
|
87 |
+
guardian:
|
88 |
+
- mother
|
89 |
+
- father
|
90 |
+
- mother
|
91 |
+
health:
|
92 |
+
- 3
|
93 |
+
- 3
|
94 |
+
- 3
|
95 |
+
higher:
|
96 |
+
- 'yes'
|
97 |
+
- 'yes'
|
98 |
+
- 'yes'
|
99 |
+
internet:
|
100 |
+
- 'yes'
|
101 |
+
- 'yes'
|
102 |
+
- 'yes'
|
103 |
+
nursery:
|
104 |
+
- 'yes'
|
105 |
+
- 'yes'
|
106 |
+
- 'no'
|
107 |
+
paid:
|
108 |
+
- 'yes'
|
109 |
+
- 'no'
|
110 |
+
- 'no'
|
111 |
+
reason:
|
112 |
+
- home
|
113 |
+
- home
|
114 |
+
- home
|
115 |
+
romantic:
|
116 |
+
- 'yes'
|
117 |
+
- 'no'
|
118 |
+
- 'yes'
|
119 |
+
school:
|
120 |
+
- GP
|
121 |
+
- GP
|
122 |
+
- GP
|
123 |
+
schoolsup:
|
124 |
+
- 'no'
|
125 |
+
- 'no'
|
126 |
+
- 'no'
|
127 |
+
sex:
|
128 |
+
- M
|
129 |
+
- M
|
130 |
+
- F
|
131 |
+
studytime:
|
132 |
+
- 2
|
133 |
+
- 1
|
134 |
+
- 2
|
135 |
+
traveltime:
|
136 |
+
- 1
|
137 |
+
- 2
|
138 |
+
- 1
|
139 |
+
---
|
140 |
+
|
141 |
+
# Model description
|
142 |
+
|
143 |
+
[More Information Needed]
|
144 |
+
|
145 |
+
## Intended uses & limitations
|
146 |
+
|
147 |
+
[More Information Needed]
|
148 |
+
|
149 |
+
## Training Procedure
|
150 |
+
|
151 |
+
### Hyperparameters
|
152 |
+
|
153 |
+
The model is trained with below hyperparameters.
|
154 |
+
|
155 |
+
<details>
|
156 |
+
<summary> Click to expand </summary>
|
157 |
+
|
158 |
+
| Hyperparameter | Value |
|
159 |
+
|---------------------------------------|------------------------------------------------------|
|
160 |
+
| memory | |
|
161 |
+
| steps | [('onehotencoder', OneHotEncoder(handle_unknown='ignore', sparse=False)), ('xgbregressor', XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=1,<br /> colsample_bynode=1, colsample_bytree=1, enable_categorical=False,<br /> gamma=0, gpu_id=-1, importance_type=None,<br /> interaction_constraints='', learning_rate=0.300000012,<br /> max_delta_step=0, max_depth=5, min_child_weight=1, missing=nan,<br /> monotone_constraints='()', n_estimators=100, n_jobs=8,<br /> num_parallel_tree=1, predictor='auto', random_state=0, reg_alpha=0,<br /> reg_lambda=1, scale_pos_weight=1, subsample=1, tree_method='exact',<br /> validate_parameters=1, verbosity=None))] |
|
162 |
+
| verbose | False |
|
163 |
+
| onehotencoder | OneHotEncoder(handle_unknown='ignore', sparse=False) |
|
164 |
+
| xgbregressor | XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=1,<br /> colsample_bynode=1, colsample_bytree=1, enable_categorical=False,<br /> gamma=0, gpu_id=-1, importance_type=None,<br /> interaction_constraints='', learning_rate=0.300000012,<br /> max_delta_step=0, max_depth=5, min_child_weight=1, missing=nan,<br /> monotone_constraints='()', n_estimators=100, n_jobs=8,<br /> num_parallel_tree=1, predictor='auto', random_state=0, reg_alpha=0,<br /> reg_lambda=1, scale_pos_weight=1, subsample=1, tree_method='exact',<br /> validate_parameters=1, verbosity=None) |
|
165 |
+
| onehotencoder__categories | auto |
|
166 |
+
| onehotencoder__drop | |
|
167 |
+
| onehotencoder__dtype | <class 'numpy.float64'> |
|
168 |
+
| onehotencoder__handle_unknown | ignore |
|
169 |
+
| onehotencoder__max_categories | |
|
170 |
+
| onehotencoder__min_frequency | |
|
171 |
+
| onehotencoder__sparse | False |
|
172 |
+
| xgbregressor__objective | reg:squarederror |
|
173 |
+
| xgbregressor__base_score | 0.5 |
|
174 |
+
| xgbregressor__booster | gbtree |
|
175 |
+
| xgbregressor__colsample_bylevel | 1 |
|
176 |
+
| xgbregressor__colsample_bynode | 1 |
|
177 |
+
| xgbregressor__colsample_bytree | 1 |
|
178 |
+
| xgbregressor__enable_categorical | False |
|
179 |
+
| xgbregressor__gamma | 0 |
|
180 |
+
| xgbregressor__gpu_id | -1 |
|
181 |
+
| xgbregressor__importance_type | |
|
182 |
+
| xgbregressor__interaction_constraints | |
|
183 |
+
| xgbregressor__learning_rate | 0.300000012 |
|
184 |
+
| xgbregressor__max_delta_step | 0 |
|
185 |
+
| xgbregressor__max_depth | 5 |
|
186 |
+
| xgbregressor__min_child_weight | 1 |
|
187 |
+
| xgbregressor__missing | nan |
|
188 |
+
| xgbregressor__monotone_constraints | () |
|
189 |
+
| xgbregressor__n_estimators | 100 |
|
190 |
+
| xgbregressor__n_jobs | 8 |
|
191 |
+
| xgbregressor__num_parallel_tree | 1 |
|
192 |
+
| xgbregressor__predictor | auto |
|
193 |
+
| xgbregressor__random_state | 0 |
|
194 |
+
| xgbregressor__reg_alpha | 0 |
|
195 |
+
| xgbregressor__reg_lambda | 1 |
|
196 |
+
| xgbregressor__scale_pos_weight | 1 |
|
197 |
+
| xgbregressor__subsample | 1 |
|
198 |
+
| xgbregressor__tree_method | exact |
|
199 |
+
| xgbregressor__validate_parameters | 1 |
|
200 |
+
| xgbregressor__verbosity | |
|
201 |
+
|
202 |
+
</details>
|
203 |
+
|
204 |
+
### Model Plot
|
205 |
+
|
206 |
+
The model plot is below.
|
207 |
+
|
208 |
+
<style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('onehotencoder',OneHotEncoder(handle_unknown='ignore', sparse=False)),('xgbregressor',XGBRegressor(base_score=0.5, booster='gbtree',colsample_bylevel=1, colsample_bynode=1,colsample_bytree=1, enable_categorical=False,gamma=0, gpu_id=-1, importance_type=None,interaction_constraints='',learning_rate=0.300000012, max_delta_step=0,max_depth=5, min_child_weight=1, missing=nan,monotone_constraints='()', n_estimators=100,n_jobs=8, num_parallel_tree=1, predictor='auto',random_state=0, reg_alpha=0, reg_lambda=1,scale_pos_weight=1, subsample=1,tree_method='exact', validate_parameters=1,verbosity=None))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" ><label for="sk-estimator-id-1" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[('onehotencoder',OneHotEncoder(handle_unknown='ignore', sparse=False)),('xgbregressor',XGBRegressor(base_score=0.5, booster='gbtree',colsample_bylevel=1, colsample_bynode=1,colsample_bytree=1, enable_categorical=False,gamma=0, gpu_id=-1, importance_type=None,interaction_constraints='',learning_rate=0.300000012, max_delta_step=0,max_depth=5, min_child_weight=1, missing=nan,monotone_constraints='()', n_estimators=100,n_jobs=8, num_parallel_tree=1, predictor='auto',random_state=0, reg_alpha=0, reg_lambda=1,scale_pos_weight=1, subsample=1,tree_method='exact', validate_parameters=1,verbosity=None))])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" ><label for="sk-estimator-id-2" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder(handle_unknown='ignore', sparse=False)</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" ><label for="sk-estimator-id-3" class="sk-toggleable__label sk-toggleable__label-arrow">XGBRegressor</label><div class="sk-toggleable__content"><pre>XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=1,colsample_bynode=1, colsample_bytree=1, enable_categorical=False,gamma=0, gpu_id=-1, importance_type=None,interaction_constraints='', learning_rate=0.300000012,max_delta_step=0, max_depth=5, min_child_weight=1, missing=nan,monotone_constraints='()', n_estimators=100, n_jobs=8,num_parallel_tree=1, predictor='auto', random_state=0, reg_alpha=0,reg_lambda=1, scale_pos_weight=1, subsample=1, tree_method='exact',validate_parameters=1, verbosity=None)</pre></div></div></div></div></div></div></div>
|
209 |
+
|
210 |
+
## Evaluation Results
|
211 |
+
|
212 |
+
[More Information Needed]
|
213 |
+
|
214 |
+
# How to Get Started with the Model
|
215 |
+
|
216 |
+
[More Information Needed]
|
217 |
+
|
218 |
+
# Model Card Authors
|
219 |
+
|
220 |
+
This model card is written by following authors:
|
221 |
+
|
222 |
+
[More Information Needed]
|
223 |
+
|
224 |
+
# Model Card Contact
|
225 |
+
|
226 |
+
You can contact the model card authors through following channels:
|
227 |
+
[More Information Needed]
|
228 |
+
|
229 |
+
# Citation
|
230 |
+
|
231 |
+
Below you can find information related to citation.
|
232 |
+
|
233 |
+
**BibTeX:**
|
234 |
+
```
|
235 |
+
[More Information Needed]
|
236 |
+
```
|
config.json
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"sklearn": {
|
3 |
+
"columns": [
|
4 |
+
"school",
|
5 |
+
"sex",
|
6 |
+
"age",
|
7 |
+
"address",
|
8 |
+
"famsize",
|
9 |
+
"Pstatus",
|
10 |
+
"Medu",
|
11 |
+
"Fedu",
|
12 |
+
"Mjob",
|
13 |
+
"Fjob",
|
14 |
+
"reason",
|
15 |
+
"guardian",
|
16 |
+
"traveltime",
|
17 |
+
"studytime",
|
18 |
+
"failures",
|
19 |
+
"schoolsup",
|
20 |
+
"famsup",
|
21 |
+
"paid",
|
22 |
+
"activities",
|
23 |
+
"nursery",
|
24 |
+
"higher",
|
25 |
+
"internet",
|
26 |
+
"romantic",
|
27 |
+
"famrel",
|
28 |
+
"freetime",
|
29 |
+
"goout",
|
30 |
+
"Walc",
|
31 |
+
"health",
|
32 |
+
"absences",
|
33 |
+
"G1",
|
34 |
+
"G2",
|
35 |
+
"G3"
|
36 |
+
],
|
37 |
+
"environment": [
|
38 |
+
"scikit-learn=1.1.2, xgboost=1.5.2"
|
39 |
+
],
|
40 |
+
"example_input": {
|
41 |
+
"Fedu": [
|
42 |
+
3,
|
43 |
+
3,
|
44 |
+
3
|
45 |
+
],
|
46 |
+
"Fjob": [
|
47 |
+
"other",
|
48 |
+
"other",
|
49 |
+
"services"
|
50 |
+
],
|
51 |
+
"G1": [
|
52 |
+
12,
|
53 |
+
13,
|
54 |
+
8
|
55 |
+
],
|
56 |
+
"G2": [
|
57 |
+
13,
|
58 |
+
14,
|
59 |
+
7
|
60 |
+
],
|
61 |
+
"G3": [
|
62 |
+
12,
|
63 |
+
14,
|
64 |
+
0
|
65 |
+
],
|
66 |
+
"Medu": [
|
67 |
+
3,
|
68 |
+
2,
|
69 |
+
1
|
70 |
+
],
|
71 |
+
"Mjob": [
|
72 |
+
"services",
|
73 |
+
"other",
|
74 |
+
"at_home"
|
75 |
+
],
|
76 |
+
"Pstatus": [
|
77 |
+
"T",
|
78 |
+
"T",
|
79 |
+
"T"
|
80 |
+
],
|
81 |
+
"Walc": [
|
82 |
+
2,
|
83 |
+
1,
|
84 |
+
1
|
85 |
+
],
|
86 |
+
"absences": [
|
87 |
+
2,
|
88 |
+
0,
|
89 |
+
0
|
90 |
+
],
|
91 |
+
"activities": [
|
92 |
+
"yes",
|
93 |
+
"no",
|
94 |
+
"yes"
|
95 |
+
],
|
96 |
+
"address": [
|
97 |
+
"U",
|
98 |
+
"U",
|
99 |
+
"U"
|
100 |
+
],
|
101 |
+
"age": [
|
102 |
+
16,
|
103 |
+
16,
|
104 |
+
16
|
105 |
+
],
|
106 |
+
"failures": [
|
107 |
+
0,
|
108 |
+
0,
|
109 |
+
3
|
110 |
+
],
|
111 |
+
"famrel": [
|
112 |
+
4,
|
113 |
+
5,
|
114 |
+
4
|
115 |
+
],
|
116 |
+
"famsize": [
|
117 |
+
"GT3",
|
118 |
+
"GT3",
|
119 |
+
"GT3"
|
120 |
+
],
|
121 |
+
"famsup": [
|
122 |
+
"no",
|
123 |
+
"no",
|
124 |
+
"no"
|
125 |
+
],
|
126 |
+
"freetime": [
|
127 |
+
2,
|
128 |
+
3,
|
129 |
+
3
|
130 |
+
],
|
131 |
+
"goout": [
|
132 |
+
3,
|
133 |
+
3,
|
134 |
+
5
|
135 |
+
],
|
136 |
+
"guardian": [
|
137 |
+
"mother",
|
138 |
+
"father",
|
139 |
+
"mother"
|
140 |
+
],
|
141 |
+
"health": [
|
142 |
+
3,
|
143 |
+
3,
|
144 |
+
3
|
145 |
+
],
|
146 |
+
"higher": [
|
147 |
+
"yes",
|
148 |
+
"yes",
|
149 |
+
"yes"
|
150 |
+
],
|
151 |
+
"internet": [
|
152 |
+
"yes",
|
153 |
+
"yes",
|
154 |
+
"yes"
|
155 |
+
],
|
156 |
+
"nursery": [
|
157 |
+
"yes",
|
158 |
+
"yes",
|
159 |
+
"no"
|
160 |
+
],
|
161 |
+
"paid": [
|
162 |
+
"yes",
|
163 |
+
"no",
|
164 |
+
"no"
|
165 |
+
],
|
166 |
+
"reason": [
|
167 |
+
"home",
|
168 |
+
"home",
|
169 |
+
"home"
|
170 |
+
],
|
171 |
+
"romantic": [
|
172 |
+
"yes",
|
173 |
+
"no",
|
174 |
+
"yes"
|
175 |
+
],
|
176 |
+
"school": [
|
177 |
+
"GP",
|
178 |
+
"GP",
|
179 |
+
"GP"
|
180 |
+
],
|
181 |
+
"schoolsup": [
|
182 |
+
"no",
|
183 |
+
"no",
|
184 |
+
"no"
|
185 |
+
],
|
186 |
+
"sex": [
|
187 |
+
"M",
|
188 |
+
"M",
|
189 |
+
"F"
|
190 |
+
],
|
191 |
+
"studytime": [
|
192 |
+
2,
|
193 |
+
1,
|
194 |
+
2
|
195 |
+
],
|
196 |
+
"traveltime": [
|
197 |
+
1,
|
198 |
+
2,
|
199 |
+
1
|
200 |
+
]
|
201 |
+
},
|
202 |
+
"model": {
|
203 |
+
"file": "model.pkl"
|
204 |
+
},
|
205 |
+
"model_format": "pickle",
|
206 |
+
"task": "tabular-regression"
|
207 |
+
}
|
208 |
+
}
|
model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e3fd2d9124da96af9c5bb19e0ae8a90b8c47016b490de4b460cb357f79119815
|
3 |
+
size 219144
|