Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1844.18 +/- 134.97
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e15e46789135baa7d04be8b0644b09c050407f5c3727458d09f304213848b737
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f568250e670>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f568250e700>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f568250e790>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f568250e820>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f568250e8b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f568250e940>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f568250e9d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f568250ea60>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f568250eaf0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f568250eb80>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f568250ec10>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f568250eca0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f568250cb10>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1676748911519270815,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABgQKD9YvKo9yisAP6pehj+Iq+K/dUwfwEms+r0ETcS+1viCPlDfIb+X8jk/qZYuwFtK5L6S1/4/wvLOveIriL9q06S/Nyt9P/THED/sbh6/xA2ePuQ95T/YuAw/K3MqQDRXir9aMgDAbZ3/v96yjb+7+jk/8e2UP6XABL6tk28/BY0IP/WaVb4duSK/9VHovuq6Mju+tSvAenQOvhuYNkCyGE8/Wyr+vvh9Pz9q/aq+V5GHP5KTib9U+4g+BSTCvsW1H79PK6c8VkHEP4weqL80V4q/WjIAwG2d/79RQGc/kXfpPjAldD/wa5Q9ACPAPuPt8j73lwe/gcQzvonC779gxJ29s324P5QPtD9FgCpAHFeav3UGkb8HIlm6MvjFv7IzHj8MkC2/pKuRPits+z4oiR+/9K5sPG/RmD4iTDbANFeKv3Kb/z5cMQA/3rKNv92VHz/1y3A+R3buPkLGsj9cURc/uqQgwIdNFDy9qLq/kX1OP8SrjUDZIRs/bGc2QJT+rb8RJjM+BaPwvoTjBMCrNTY+LyosPubO7D6s7L4/g0LrvgB+iz9pCXS/fnWBwDRXir9aMgDAXDEAP96yjb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA83xK3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAkLKVPQAAAADXXO2/AAAAAERhzr0AAAAAGZvoPwAAAABIOoq9AAAAAGVw/T8AAAAAtH0GPgAAAACYF/q/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN14gtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBoOTT0AAAAA6nTevwAAAAAyZxG+AAAAALXh7j8AAAAAvyP9PAAAAAAyQvM/AAAAAPRmT70AAAAABkDqvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK667LYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDDbvE9AAAAAFw5678AAAAAaqQ0uwAAAAAJ9u4/AAAAAHkFwr0AAAAA7ID1PwAAAADiq649AAAAACnw2b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADpy421AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA7o9ROAAAAAA6mfu/AAAAADemtjwAAAAAR57dPwAAAABG67y8AAAAAB0K7T8AAAAAWuE6PQAAAADvBPa/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJyK7DBMzuaMAWyUTegDjAF0lEdAtVFXw/gR9XV9lChoBkdAnJdD28IzFmgHTegDaAhHQLVSpg7HQyB1fZQoaAZHQI57/3UQTVVoB03oA2gIR0C1U/AWnCO4dX2UKGgGR0CZU+HpKSPmaAdN6ANoCEdAtVexet0V8HV9lChoBkdAm7q99lVcU2gHTegDaAhHQLValOBDohZ1fZQoaAZHQJ2TPbfxc3VoB03oA2gIR0C1W+oPTXrddX2UKGgGR0CgA3u8TSLJaAdN6ANoCEdAtV0n3IuGsXV9lChoBkdAm3R/iHZbp2gHTegDaAhHQLVfib961LJ1fZQoaAZHQJuMA2NvOyFoB03oA2gIR0C1YWRigCfZdX2UKGgGR0CfharvsqrjaAdN6ANoCEdAtWKzCYTkAHV9lChoBkdAn4aXyd4FA2gHTegDaAhHQLVj64n4O+Z1fZQoaAZHQJ8aSiCaqjtoB03oA2gIR0C1Z5EQTVUddX2UKGgGR0CXmbi22G7BaAdN6ANoCEdAtWqa3F1jiHV9lChoBkdAmAgpmAbyY2gHTegDaAhHQLVr4B5ooNN1fZQoaAZHQJt4peKKpDNoB03oA2gIR0C1bRz2zv7WdX2UKGgGR0CfMKndO6/ZaAdN6ANoCEdAtW+A5FPSD3V9lChoBkdAl+pzByjpLWgHTegDaAhHQLVxZbQTmGN1fZQoaAZHQJuHBFG5MDhoB03oA2gIR0C1crgla8pTdX2UKGgGR0CU5v8iOeasaAdN6ANoCEdAtXP1UaQ3gnV9lChoBkdAhDP89Oh0yWgHTegDaAhHQLV3ZwJPZZl1fZQoaAZHQI9ivUSZjQRoB03oA2gIR0C1erFclgMMdX2UKGgGR0CRKW9sabWmaAdN6ANoCEdAtXwgfRu0kXV9lChoBkdAgW2ivPkaM2gHTegDaAhHQLV9XGhEjPh1fZQoaAZHQJpdqqYJE6VoB03oA2gIR0C1f9FUhmoSdX2UKGgGR0CAnDMzuWrwaAdN6ANoCEdAtYHcGbCrLnV9lChoBkdAmi2PyPMjeWgHTegDaAhHQLWDIogFHJ91fZQoaAZHQHoJsuez2OBoB03oA2gIR0C1hFfzvqkedX2UKGgGR0CdM6HARChOaAdN6ANoCEdAtYfTUI9kjHV9lChoBkdAnMbnscABDGgHTegDaAhHQLWK7mZ3LV51fZQoaAZHQJqytGYrrgRoB03oA2gIR0C1jG59iMHbdX2UKGgGR0CbkfB5X2dvaAdN6ANoCEdAtY2n+l0o0HV9lChoBkdAnBJ+0LMLW2gHTegDaAhHQLWQDwqiGnJ1fZQoaAZHQJO/1MZgogFoB03oA2gIR0C1kfxAB1cMdX2UKGgGR0Ccl80Y0l7daAdN6ANoCEdAtZM+rXDm83V9lChoBkdAnqpkTHsC1mgHTegDaAhHQLWUfhAGB4F1fZQoaAZHQJ2Yc99tuUFoB03oA2gIR0C1l71jRUm2dX2UKGgGR0CYGDvo/zJ7aAdN6ANoCEdAtZreGahHsnV9lChoBkdAnYP1vybx3GgHTegDaAhHQLWccF2V3Ux1fZQoaAZHQJ0pe7NB4UxoB03oA2gIR0C1naY91U2ldX2UKGgGR0CeSajLSuyNaAdN6ANoCEdAtaALW6K+BnV9lChoBkdAlw+bkjopx2gHTegDaAhHQLWh8KeCkGl1fZQoaAZHQJwL6Xu3MINoB03oA2gIR0C1ozc2NvOydX2UKGgGR0Cc9Ay+pOvdaAdN6ANoCEdAtaRwGZ/kNnV9lChoBkdAnWY1XNke62gHTegDaAhHQLWngCRwIdF1fZQoaAZHQJxJfH3lCC1oB03oA2gIR0C1qqOZof0VdX2UKGgGR0Capo5Fw1iwaAdN6ANoCEdAtaxzaBZpz3V9lChoBkdAmoN+O4oZymgHTegDaAhHQLWtr1OTJQt1fZQoaAZHQJpT0C9ytFNoB03oA2gIR0C1sCCqEOAidX2UKGgGR0CcTQLzf779aAdN6ANoCEdAtbICLXL/0nV9lChoBkdAmYRAE2YOUmgHTegDaAhHQLWzVVX3g1p1fZQoaAZHQJ5ANyjpLVZoB03oA2gIR0C1tIoRVZLadX2UKGgGR0CXUkZMcp9aaAdN6ANoCEdAtbd+xB3RonV9lChoBkdAmn0o0hvBJ2gHTegDaAhHQLW6iTH80k51fZQoaAZHQJPhIVj7Q9loB03oA2gIR0C1vIZNj9XLdX2UKGgGR0CaxmqwhW5paAdN6ANoCEdAtb2+9i+cpnV9lChoBkdAm587WAf+0mgHTegDaAhHQLXAHP2wmmd1fZQoaAZHQJXP2ziS7oVoB03oA2gIR0C1wgH668QJdX2UKGgGR0CccZ8+iaiLaAdN6ANoCEdAtcNLTUiIL3V9lChoBkdAnCRETHsC1mgHTegDaAhHQLXEhhCMPz51fZQoaAZHQJWmaWrwOONoB03oA2gIR0C1xz7vPToddX2UKGgGR0CfMSWj4593aAdN6ANoCEdAtcpBwJgLJHV9lChoBkdAnRib+YMOPWgHTegDaAhHQLXMW7WNFSd1fZQoaAZHQJwcpESdvsJoB03oA2gIR0C1zbpKzzErdX2UKGgGR0CbQqjpLVWkaAdN6ANoCEdAtdAkSXdCV3V9lChoBkdAmiFyG8EmpmgHTegDaAhHQLXSDL1mJ3x1fZQoaAZHQI+0W5hBqsVoB03oA2gIR0C102VPBSDRdX2UKGgGR0CYJA+WGATaaAdN6ANoCEdAtdSj5FgDzXV9lChoBkdAjNrSqlxffGgHTegDaAhHQLXXUcAzYVZ1fZQoaAZHQIv6wyKvV3FoB03oA2gIR0C12mmszVMFdX2UKGgGR0CMWulXzUZvaAdN6ANoCEdAtdyaNBF/hHV9lChoBkdAg5phTn7pFGgHTegDaAhHQLXeCnfVI7N1fZQoaAZHQIr9jLlmvntoB03oA2gIR0C14IUu6ErYdX2UKGgGR0CHSk/Yao/BaAdN6ANoCEdAteKGCOFQEnV9lChoBkdAhndJA2Q4j2gHTegDaAhHQLXj3ISUTtd1fZQoaAZHQIer+zD4xlBoB03oA2gIR0C15RqbKA8TdX2UKGgGR0CFiTsdkrf+aAdN6ANoCEdAtefyqsEJSnV9lChoBkdAgPj01qFh5WgHTegDaAhHQLXq/GhEjPh1fZQoaAZHQIsPMBbOeJ5oB03oA2gIR0C17SZUo8ZDdX2UKGgGR0ByTLzErGzbaAdN6ANoCEdAte54hib2DnV9lChoBkdAdKLWldkauWgHTegDaAhHQLXw8BAOav11fZQoaAZHQHt9yEYfnwJoB03oA2gIR0C18udn5BTodX2UKGgGR0B4/9bJOnEVaAdN6ANoCEdAtfQ6zByjpXV9lChoBkdAgaC6WPcSG2gHTegDaAhHQLX1hh2nsLR1fZQoaAZHQH7bWEGqxTtoB03oA2gIR0C1+HI5tFa0dX2UKGgGR0BR+3jIaLn+aAdN6ANoCEdAtfuURtgrpnV9lChoBkdAgIkU34sVcmgHTegDaAhHQLX9sz5oGpx1fZQoaAZHQIrgvf2saKloB03oA2gIR0C1/usTBZZCdX2UKGgGR0CRrbZ00WM1aAdN6ANoCEdAtgFN0MgEEHV9lChoBkdAlYrIgA6uGWgHTegDaAhHQLYDNUMG5c11fZQoaAZHQJpJTeYUnG9oB03oA2gIR0C2BHyMglnidX2UKGgGR0CWwxYUnG83aAdN6ANoCEdAtgWx7XxvvXV9lChoBkdAm92yZSeiBWgHTegDaAhHQLYIVJAt4A11fZQoaAZHQJER4T8HfMxoB03oA2gIR0C2C0wGwA2idX2UKGgGR0CdHY3aSLZSaAdN6ANoCEdAtg1kFxGUfXV9lChoBkdAhGOzF2mpEWgHTegDaAhHQLYO3KbrkbR1fZQoaAZHQJoYdW1c+q1oB03oA2gIR0C2EVfPC2tudX2UKGgGR0CbFPJuEVWTaAdN6ANoCEdAthNGkl/pdXV9lChoBkdAk0eSBoVVP2gHTegDaAhHQLYUjjhUBGR1fZQoaAZHQJbcsQwsXi1oB03oA2gIR0C2Fb8jRlYmdX2UKGgGR0CWo28+iaiLaAdN6ANoCEdAthg6zY287XVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2fb46562f0a6c4e42ee62e69be2e9bc2616a3c2a8e323cccb2f743e56d839195
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cbde509616f63a6dbbd9dcd6ea1829812e3cc4a8a75c5725e4c9364378534769
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f568250e670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f568250e700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f568250e790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f568250e820>", "_build": "<function ActorCriticPolicy._build at 0x7f568250e8b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f568250e940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f568250e9d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f568250ea60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f568250eaf0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f568250eb80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f568250ec10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f568250eca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f568250cb10>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676748911519270815, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABgQKD9YvKo9yisAP6pehj+Iq+K/dUwfwEms+r0ETcS+1viCPlDfIb+X8jk/qZYuwFtK5L6S1/4/wvLOveIriL9q06S/Nyt9P/THED/sbh6/xA2ePuQ95T/YuAw/K3MqQDRXir9aMgDAbZ3/v96yjb+7+jk/8e2UP6XABL6tk28/BY0IP/WaVb4duSK/9VHovuq6Mju+tSvAenQOvhuYNkCyGE8/Wyr+vvh9Pz9q/aq+V5GHP5KTib9U+4g+BSTCvsW1H79PK6c8VkHEP4weqL80V4q/WjIAwG2d/79RQGc/kXfpPjAldD/wa5Q9ACPAPuPt8j73lwe/gcQzvonC779gxJ29s324P5QPtD9FgCpAHFeav3UGkb8HIlm6MvjFv7IzHj8MkC2/pKuRPits+z4oiR+/9K5sPG/RmD4iTDbANFeKv3Kb/z5cMQA/3rKNv92VHz/1y3A+R3buPkLGsj9cURc/uqQgwIdNFDy9qLq/kX1OP8SrjUDZIRs/bGc2QJT+rb8RJjM+BaPwvoTjBMCrNTY+LyosPubO7D6s7L4/g0LrvgB+iz9pCXS/fnWBwDRXir9aMgDAXDEAP96yjb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA83xK3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAkLKVPQAAAADXXO2/AAAAAERhzr0AAAAAGZvoPwAAAABIOoq9AAAAAGVw/T8AAAAAtH0GPgAAAACYF/q/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN14gtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBoOTT0AAAAA6nTevwAAAAAyZxG+AAAAALXh7j8AAAAAvyP9PAAAAAAyQvM/AAAAAPRmT70AAAAABkDqvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK667LYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDDbvE9AAAAAFw5678AAAAAaqQ0uwAAAAAJ9u4/AAAAAHkFwr0AAAAA7ID1PwAAAADiq649AAAAACnw2b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADpy421AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA7o9ROAAAAAA6mfu/AAAAADemtjwAAAAAR57dPwAAAABG67y8AAAAAB0K7T8AAAAAWuE6PQAAAADvBPa/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJyK7DBMzuaMAWyUTegDjAF0lEdAtVFXw/gR9XV9lChoBkdAnJdD28IzFmgHTegDaAhHQLVSpg7HQyB1fZQoaAZHQI57/3UQTVVoB03oA2gIR0C1U/AWnCO4dX2UKGgGR0CZU+HpKSPmaAdN6ANoCEdAtVexet0V8HV9lChoBkdAm7q99lVcU2gHTegDaAhHQLValOBDohZ1fZQoaAZHQJ2TPbfxc3VoB03oA2gIR0C1W+oPTXrddX2UKGgGR0CgA3u8TSLJaAdN6ANoCEdAtV0n3IuGsXV9lChoBkdAm3R/iHZbp2gHTegDaAhHQLVfib961LJ1fZQoaAZHQJuMA2NvOyFoB03oA2gIR0C1YWRigCfZdX2UKGgGR0CfharvsqrjaAdN6ANoCEdAtWKzCYTkAHV9lChoBkdAn4aXyd4FA2gHTegDaAhHQLVj64n4O+Z1fZQoaAZHQJ8aSiCaqjtoB03oA2gIR0C1Z5EQTVUddX2UKGgGR0CXmbi22G7BaAdN6ANoCEdAtWqa3F1jiHV9lChoBkdAmAgpmAbyY2gHTegDaAhHQLVr4B5ooNN1fZQoaAZHQJt4peKKpDNoB03oA2gIR0C1bRz2zv7WdX2UKGgGR0CfMKndO6/ZaAdN6ANoCEdAtW+A5FPSD3V9lChoBkdAl+pzByjpLWgHTegDaAhHQLVxZbQTmGN1fZQoaAZHQJuHBFG5MDhoB03oA2gIR0C1crgla8pTdX2UKGgGR0CU5v8iOeasaAdN6ANoCEdAtXP1UaQ3gnV9lChoBkdAhDP89Oh0yWgHTegDaAhHQLV3ZwJPZZl1fZQoaAZHQI9ivUSZjQRoB03oA2gIR0C1erFclgMMdX2UKGgGR0CRKW9sabWmaAdN6ANoCEdAtXwgfRu0kXV9lChoBkdAgW2ivPkaM2gHTegDaAhHQLV9XGhEjPh1fZQoaAZHQJpdqqYJE6VoB03oA2gIR0C1f9FUhmoSdX2UKGgGR0CAnDMzuWrwaAdN6ANoCEdAtYHcGbCrLnV9lChoBkdAmi2PyPMjeWgHTegDaAhHQLWDIogFHJ91fZQoaAZHQHoJsuez2OBoB03oA2gIR0C1hFfzvqkedX2UKGgGR0CdM6HARChOaAdN6ANoCEdAtYfTUI9kjHV9lChoBkdAnMbnscABDGgHTegDaAhHQLWK7mZ3LV51fZQoaAZHQJqytGYrrgRoB03oA2gIR0C1jG59iMHbdX2UKGgGR0CbkfB5X2dvaAdN6ANoCEdAtY2n+l0o0HV9lChoBkdAnBJ+0LMLW2gHTegDaAhHQLWQDwqiGnJ1fZQoaAZHQJO/1MZgogFoB03oA2gIR0C1kfxAB1cMdX2UKGgGR0Ccl80Y0l7daAdN6ANoCEdAtZM+rXDm83V9lChoBkdAnqpkTHsC1mgHTegDaAhHQLWUfhAGB4F1fZQoaAZHQJ2Yc99tuUFoB03oA2gIR0C1l71jRUm2dX2UKGgGR0CYGDvo/zJ7aAdN6ANoCEdAtZreGahHsnV9lChoBkdAnYP1vybx3GgHTegDaAhHQLWccF2V3Ux1fZQoaAZHQJ0pe7NB4UxoB03oA2gIR0C1naY91U2ldX2UKGgGR0CeSajLSuyNaAdN6ANoCEdAtaALW6K+BnV9lChoBkdAlw+bkjopx2gHTegDaAhHQLWh8KeCkGl1fZQoaAZHQJwL6Xu3MINoB03oA2gIR0C1ozc2NvOydX2UKGgGR0Cc9Ay+pOvdaAdN6ANoCEdAtaRwGZ/kNnV9lChoBkdAnWY1XNke62gHTegDaAhHQLWngCRwIdF1fZQoaAZHQJxJfH3lCC1oB03oA2gIR0C1qqOZof0VdX2UKGgGR0Capo5Fw1iwaAdN6ANoCEdAtaxzaBZpz3V9lChoBkdAmoN+O4oZymgHTegDaAhHQLWtr1OTJQt1fZQoaAZHQJpT0C9ytFNoB03oA2gIR0C1sCCqEOAidX2UKGgGR0CcTQLzf779aAdN6ANoCEdAtbICLXL/0nV9lChoBkdAmYRAE2YOUmgHTegDaAhHQLWzVVX3g1p1fZQoaAZHQJ5ANyjpLVZoB03oA2gIR0C1tIoRVZLadX2UKGgGR0CXUkZMcp9aaAdN6ANoCEdAtbd+xB3RonV9lChoBkdAmn0o0hvBJ2gHTegDaAhHQLW6iTH80k51fZQoaAZHQJPhIVj7Q9loB03oA2gIR0C1vIZNj9XLdX2UKGgGR0CaxmqwhW5paAdN6ANoCEdAtb2+9i+cpnV9lChoBkdAm587WAf+0mgHTegDaAhHQLXAHP2wmmd1fZQoaAZHQJXP2ziS7oVoB03oA2gIR0C1wgH668QJdX2UKGgGR0CccZ8+iaiLaAdN6ANoCEdAtcNLTUiIL3V9lChoBkdAnCRETHsC1mgHTegDaAhHQLXEhhCMPz51fZQoaAZHQJWmaWrwOONoB03oA2gIR0C1xz7vPToddX2UKGgGR0CfMSWj4593aAdN6ANoCEdAtcpBwJgLJHV9lChoBkdAnRib+YMOPWgHTegDaAhHQLXMW7WNFSd1fZQoaAZHQJwcpESdvsJoB03oA2gIR0C1zbpKzzErdX2UKGgGR0CbQqjpLVWkaAdN6ANoCEdAtdAkSXdCV3V9lChoBkdAmiFyG8EmpmgHTegDaAhHQLXSDL1mJ3x1fZQoaAZHQI+0W5hBqsVoB03oA2gIR0C102VPBSDRdX2UKGgGR0CYJA+WGATaaAdN6ANoCEdAtdSj5FgDzXV9lChoBkdAjNrSqlxffGgHTegDaAhHQLXXUcAzYVZ1fZQoaAZHQIv6wyKvV3FoB03oA2gIR0C12mmszVMFdX2UKGgGR0CMWulXzUZvaAdN6ANoCEdAtdyaNBF/hHV9lChoBkdAg5phTn7pFGgHTegDaAhHQLXeCnfVI7N1fZQoaAZHQIr9jLlmvntoB03oA2gIR0C14IUu6ErYdX2UKGgGR0CHSk/Yao/BaAdN6ANoCEdAteKGCOFQEnV9lChoBkdAhndJA2Q4j2gHTegDaAhHQLXj3ISUTtd1fZQoaAZHQIer+zD4xlBoB03oA2gIR0C15RqbKA8TdX2UKGgGR0CFiTsdkrf+aAdN6ANoCEdAtefyqsEJSnV9lChoBkdAgPj01qFh5WgHTegDaAhHQLXq/GhEjPh1fZQoaAZHQIsPMBbOeJ5oB03oA2gIR0C17SZUo8ZDdX2UKGgGR0ByTLzErGzbaAdN6ANoCEdAte54hib2DnV9lChoBkdAdKLWldkauWgHTegDaAhHQLXw8BAOav11fZQoaAZHQHt9yEYfnwJoB03oA2gIR0C18udn5BTodX2UKGgGR0B4/9bJOnEVaAdN6ANoCEdAtfQ6zByjpXV9lChoBkdAgaC6WPcSG2gHTegDaAhHQLX1hh2nsLR1fZQoaAZHQH7bWEGqxTtoB03oA2gIR0C1+HI5tFa0dX2UKGgGR0BR+3jIaLn+aAdN6ANoCEdAtfuURtgrpnV9lChoBkdAgIkU34sVcmgHTegDaAhHQLX9sz5oGpx1fZQoaAZHQIrgvf2saKloB03oA2gIR0C1/usTBZZCdX2UKGgGR0CRrbZ00WM1aAdN6ANoCEdAtgFN0MgEEHV9lChoBkdAlYrIgA6uGWgHTegDaAhHQLYDNUMG5c11fZQoaAZHQJpJTeYUnG9oB03oA2gIR0C2BHyMglnidX2UKGgGR0CWwxYUnG83aAdN6ANoCEdAtgWx7XxvvXV9lChoBkdAm92yZSeiBWgHTegDaAhHQLYIVJAt4A11fZQoaAZHQJER4T8HfMxoB03oA2gIR0C2C0wGwA2idX2UKGgGR0CdHY3aSLZSaAdN6ANoCEdAtg1kFxGUfXV9lChoBkdAhGOzF2mpEWgHTegDaAhHQLYO3KbrkbR1fZQoaAZHQJoYdW1c+q1oB03oA2gIR0C2EVfPC2tudX2UKGgGR0CbFPJuEVWTaAdN6ANoCEdAthNGkl/pdXV9lChoBkdAk0eSBoVVP2gHTegDaAhHQLYUjjhUBGR1fZQoaAZHQJbcsQwsXi1oB03oA2gIR0C2Fb8jRlYmdX2UKGgGR0CWo28+iaiLaAdN6ANoCEdAthg6zY287XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:770681e0f6b8d62f26c7b5a04a578170e7c3f2d0e9550ecc414430a4566afeef
|
3 |
+
size 1140738
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1844.176864848408, "std_reward": 134.9717557529008, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-18T21:42:15.901824"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:423fe448d3bad07246cc3efcde4d0f0cf831c089080f41c4f13c7067556f298f
|
3 |
+
size 2136
|