menoua commited on
Commit
759371c
1 Parent(s): a6c1d61

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1844.18 +/- 134.97
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e15e46789135baa7d04be8b0644b09c050407f5c3727458d09f304213848b737
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f568250e670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f568250e700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f568250e790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f568250e820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f568250e8b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f568250e940>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f568250e9d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f568250ea60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f568250eaf0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f568250eb80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f568250ec10>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f568250eca0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f568250cb10>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1676748911519270815,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABgQKD9YvKo9yisAP6pehj+Iq+K/dUwfwEms+r0ETcS+1viCPlDfIb+X8jk/qZYuwFtK5L6S1/4/wvLOveIriL9q06S/Nyt9P/THED/sbh6/xA2ePuQ95T/YuAw/K3MqQDRXir9aMgDAbZ3/v96yjb+7+jk/8e2UP6XABL6tk28/BY0IP/WaVb4duSK/9VHovuq6Mju+tSvAenQOvhuYNkCyGE8/Wyr+vvh9Pz9q/aq+V5GHP5KTib9U+4g+BSTCvsW1H79PK6c8VkHEP4weqL80V4q/WjIAwG2d/79RQGc/kXfpPjAldD/wa5Q9ACPAPuPt8j73lwe/gcQzvonC779gxJ29s324P5QPtD9FgCpAHFeav3UGkb8HIlm6MvjFv7IzHj8MkC2/pKuRPits+z4oiR+/9K5sPG/RmD4iTDbANFeKv3Kb/z5cMQA/3rKNv92VHz/1y3A+R3buPkLGsj9cURc/uqQgwIdNFDy9qLq/kX1OP8SrjUDZIRs/bGc2QJT+rb8RJjM+BaPwvoTjBMCrNTY+LyosPubO7D6s7L4/g0LrvgB+iz9pCXS/fnWBwDRXir9aMgDAXDEAP96yjb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA83xK3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAkLKVPQAAAADXXO2/AAAAAERhzr0AAAAAGZvoPwAAAABIOoq9AAAAAGVw/T8AAAAAtH0GPgAAAACYF/q/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN14gtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBoOTT0AAAAA6nTevwAAAAAyZxG+AAAAALXh7j8AAAAAvyP9PAAAAAAyQvM/AAAAAPRmT70AAAAABkDqvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK667LYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDDbvE9AAAAAFw5678AAAAAaqQ0uwAAAAAJ9u4/AAAAAHkFwr0AAAAA7ID1PwAAAADiq649AAAAACnw2b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADpy421AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA7o9ROAAAAAA6mfu/AAAAADemtjwAAAAAR57dPwAAAABG67y8AAAAAB0K7T8AAAAAWuE6PQAAAADvBPa/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJyK7DBMzuaMAWyUTegDjAF0lEdAtVFXw/gR9XV9lChoBkdAnJdD28IzFmgHTegDaAhHQLVSpg7HQyB1fZQoaAZHQI57/3UQTVVoB03oA2gIR0C1U/AWnCO4dX2UKGgGR0CZU+HpKSPmaAdN6ANoCEdAtVexet0V8HV9lChoBkdAm7q99lVcU2gHTegDaAhHQLValOBDohZ1fZQoaAZHQJ2TPbfxc3VoB03oA2gIR0C1W+oPTXrddX2UKGgGR0CgA3u8TSLJaAdN6ANoCEdAtV0n3IuGsXV9lChoBkdAm3R/iHZbp2gHTegDaAhHQLVfib961LJ1fZQoaAZHQJuMA2NvOyFoB03oA2gIR0C1YWRigCfZdX2UKGgGR0CfharvsqrjaAdN6ANoCEdAtWKzCYTkAHV9lChoBkdAn4aXyd4FA2gHTegDaAhHQLVj64n4O+Z1fZQoaAZHQJ8aSiCaqjtoB03oA2gIR0C1Z5EQTVUddX2UKGgGR0CXmbi22G7BaAdN6ANoCEdAtWqa3F1jiHV9lChoBkdAmAgpmAbyY2gHTegDaAhHQLVr4B5ooNN1fZQoaAZHQJt4peKKpDNoB03oA2gIR0C1bRz2zv7WdX2UKGgGR0CfMKndO6/ZaAdN6ANoCEdAtW+A5FPSD3V9lChoBkdAl+pzByjpLWgHTegDaAhHQLVxZbQTmGN1fZQoaAZHQJuHBFG5MDhoB03oA2gIR0C1crgla8pTdX2UKGgGR0CU5v8iOeasaAdN6ANoCEdAtXP1UaQ3gnV9lChoBkdAhDP89Oh0yWgHTegDaAhHQLV3ZwJPZZl1fZQoaAZHQI9ivUSZjQRoB03oA2gIR0C1erFclgMMdX2UKGgGR0CRKW9sabWmaAdN6ANoCEdAtXwgfRu0kXV9lChoBkdAgW2ivPkaM2gHTegDaAhHQLV9XGhEjPh1fZQoaAZHQJpdqqYJE6VoB03oA2gIR0C1f9FUhmoSdX2UKGgGR0CAnDMzuWrwaAdN6ANoCEdAtYHcGbCrLnV9lChoBkdAmi2PyPMjeWgHTegDaAhHQLWDIogFHJ91fZQoaAZHQHoJsuez2OBoB03oA2gIR0C1hFfzvqkedX2UKGgGR0CdM6HARChOaAdN6ANoCEdAtYfTUI9kjHV9lChoBkdAnMbnscABDGgHTegDaAhHQLWK7mZ3LV51fZQoaAZHQJqytGYrrgRoB03oA2gIR0C1jG59iMHbdX2UKGgGR0CbkfB5X2dvaAdN6ANoCEdAtY2n+l0o0HV9lChoBkdAnBJ+0LMLW2gHTegDaAhHQLWQDwqiGnJ1fZQoaAZHQJO/1MZgogFoB03oA2gIR0C1kfxAB1cMdX2UKGgGR0Ccl80Y0l7daAdN6ANoCEdAtZM+rXDm83V9lChoBkdAnqpkTHsC1mgHTegDaAhHQLWUfhAGB4F1fZQoaAZHQJ2Yc99tuUFoB03oA2gIR0C1l71jRUm2dX2UKGgGR0CYGDvo/zJ7aAdN6ANoCEdAtZreGahHsnV9lChoBkdAnYP1vybx3GgHTegDaAhHQLWccF2V3Ux1fZQoaAZHQJ0pe7NB4UxoB03oA2gIR0C1naY91U2ldX2UKGgGR0CeSajLSuyNaAdN6ANoCEdAtaALW6K+BnV9lChoBkdAlw+bkjopx2gHTegDaAhHQLWh8KeCkGl1fZQoaAZHQJwL6Xu3MINoB03oA2gIR0C1ozc2NvOydX2UKGgGR0Cc9Ay+pOvdaAdN6ANoCEdAtaRwGZ/kNnV9lChoBkdAnWY1XNke62gHTegDaAhHQLWngCRwIdF1fZQoaAZHQJxJfH3lCC1oB03oA2gIR0C1qqOZof0VdX2UKGgGR0Capo5Fw1iwaAdN6ANoCEdAtaxzaBZpz3V9lChoBkdAmoN+O4oZymgHTegDaAhHQLWtr1OTJQt1fZQoaAZHQJpT0C9ytFNoB03oA2gIR0C1sCCqEOAidX2UKGgGR0CcTQLzf779aAdN6ANoCEdAtbICLXL/0nV9lChoBkdAmYRAE2YOUmgHTegDaAhHQLWzVVX3g1p1fZQoaAZHQJ5ANyjpLVZoB03oA2gIR0C1tIoRVZLadX2UKGgGR0CXUkZMcp9aaAdN6ANoCEdAtbd+xB3RonV9lChoBkdAmn0o0hvBJ2gHTegDaAhHQLW6iTH80k51fZQoaAZHQJPhIVj7Q9loB03oA2gIR0C1vIZNj9XLdX2UKGgGR0CaxmqwhW5paAdN6ANoCEdAtb2+9i+cpnV9lChoBkdAm587WAf+0mgHTegDaAhHQLXAHP2wmmd1fZQoaAZHQJXP2ziS7oVoB03oA2gIR0C1wgH668QJdX2UKGgGR0CccZ8+iaiLaAdN6ANoCEdAtcNLTUiIL3V9lChoBkdAnCRETHsC1mgHTegDaAhHQLXEhhCMPz51fZQoaAZHQJWmaWrwOONoB03oA2gIR0C1xz7vPToddX2UKGgGR0CfMSWj4593aAdN6ANoCEdAtcpBwJgLJHV9lChoBkdAnRib+YMOPWgHTegDaAhHQLXMW7WNFSd1fZQoaAZHQJwcpESdvsJoB03oA2gIR0C1zbpKzzErdX2UKGgGR0CbQqjpLVWkaAdN6ANoCEdAtdAkSXdCV3V9lChoBkdAmiFyG8EmpmgHTegDaAhHQLXSDL1mJ3x1fZQoaAZHQI+0W5hBqsVoB03oA2gIR0C102VPBSDRdX2UKGgGR0CYJA+WGATaaAdN6ANoCEdAtdSj5FgDzXV9lChoBkdAjNrSqlxffGgHTegDaAhHQLXXUcAzYVZ1fZQoaAZHQIv6wyKvV3FoB03oA2gIR0C12mmszVMFdX2UKGgGR0CMWulXzUZvaAdN6ANoCEdAtdyaNBF/hHV9lChoBkdAg5phTn7pFGgHTegDaAhHQLXeCnfVI7N1fZQoaAZHQIr9jLlmvntoB03oA2gIR0C14IUu6ErYdX2UKGgGR0CHSk/Yao/BaAdN6ANoCEdAteKGCOFQEnV9lChoBkdAhndJA2Q4j2gHTegDaAhHQLXj3ISUTtd1fZQoaAZHQIer+zD4xlBoB03oA2gIR0C15RqbKA8TdX2UKGgGR0CFiTsdkrf+aAdN6ANoCEdAtefyqsEJSnV9lChoBkdAgPj01qFh5WgHTegDaAhHQLXq/GhEjPh1fZQoaAZHQIsPMBbOeJ5oB03oA2gIR0C17SZUo8ZDdX2UKGgGR0ByTLzErGzbaAdN6ANoCEdAte54hib2DnV9lChoBkdAdKLWldkauWgHTegDaAhHQLXw8BAOav11fZQoaAZHQHt9yEYfnwJoB03oA2gIR0C18udn5BTodX2UKGgGR0B4/9bJOnEVaAdN6ANoCEdAtfQ6zByjpXV9lChoBkdAgaC6WPcSG2gHTegDaAhHQLX1hh2nsLR1fZQoaAZHQH7bWEGqxTtoB03oA2gIR0C1+HI5tFa0dX2UKGgGR0BR+3jIaLn+aAdN6ANoCEdAtfuURtgrpnV9lChoBkdAgIkU34sVcmgHTegDaAhHQLX9sz5oGpx1fZQoaAZHQIrgvf2saKloB03oA2gIR0C1/usTBZZCdX2UKGgGR0CRrbZ00WM1aAdN6ANoCEdAtgFN0MgEEHV9lChoBkdAlYrIgA6uGWgHTegDaAhHQLYDNUMG5c11fZQoaAZHQJpJTeYUnG9oB03oA2gIR0C2BHyMglnidX2UKGgGR0CWwxYUnG83aAdN6ANoCEdAtgWx7XxvvXV9lChoBkdAm92yZSeiBWgHTegDaAhHQLYIVJAt4A11fZQoaAZHQJER4T8HfMxoB03oA2gIR0C2C0wGwA2idX2UKGgGR0CdHY3aSLZSaAdN6ANoCEdAtg1kFxGUfXV9lChoBkdAhGOzF2mpEWgHTegDaAhHQLYO3KbrkbR1fZQoaAZHQJoYdW1c+q1oB03oA2gIR0C2EVfPC2tudX2UKGgGR0CbFPJuEVWTaAdN6ANoCEdAthNGkl/pdXV9lChoBkdAk0eSBoVVP2gHTegDaAhHQLYUjjhUBGR1fZQoaAZHQJbcsQwsXi1oB03oA2gIR0C2Fb8jRlYmdX2UKGgGR0CWo28+iaiLaAdN6ANoCEdAthg6zY287XVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2fb46562f0a6c4e42ee62e69be2e9bc2616a3c2a8e323cccb2f743e56d839195
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbde509616f63a6dbbd9dcd6ea1829812e3cc4a8a75c5725e4c9364378534769
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f568250e670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f568250e700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f568250e790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f568250e820>", "_build": "<function ActorCriticPolicy._build at 0x7f568250e8b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f568250e940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f568250e9d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f568250ea60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f568250eaf0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f568250eb80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f568250ec10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f568250eca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f568250cb10>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676748911519270815, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABgQKD9YvKo9yisAP6pehj+Iq+K/dUwfwEms+r0ETcS+1viCPlDfIb+X8jk/qZYuwFtK5L6S1/4/wvLOveIriL9q06S/Nyt9P/THED/sbh6/xA2ePuQ95T/YuAw/K3MqQDRXir9aMgDAbZ3/v96yjb+7+jk/8e2UP6XABL6tk28/BY0IP/WaVb4duSK/9VHovuq6Mju+tSvAenQOvhuYNkCyGE8/Wyr+vvh9Pz9q/aq+V5GHP5KTib9U+4g+BSTCvsW1H79PK6c8VkHEP4weqL80V4q/WjIAwG2d/79RQGc/kXfpPjAldD/wa5Q9ACPAPuPt8j73lwe/gcQzvonC779gxJ29s324P5QPtD9FgCpAHFeav3UGkb8HIlm6MvjFv7IzHj8MkC2/pKuRPits+z4oiR+/9K5sPG/RmD4iTDbANFeKv3Kb/z5cMQA/3rKNv92VHz/1y3A+R3buPkLGsj9cURc/uqQgwIdNFDy9qLq/kX1OP8SrjUDZIRs/bGc2QJT+rb8RJjM+BaPwvoTjBMCrNTY+LyosPubO7D6s7L4/g0LrvgB+iz9pCXS/fnWBwDRXir9aMgDAXDEAP96yjb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA83xK3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAkLKVPQAAAADXXO2/AAAAAERhzr0AAAAAGZvoPwAAAABIOoq9AAAAAGVw/T8AAAAAtH0GPgAAAACYF/q/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN14gtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBoOTT0AAAAA6nTevwAAAAAyZxG+AAAAALXh7j8AAAAAvyP9PAAAAAAyQvM/AAAAAPRmT70AAAAABkDqvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK667LYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDDbvE9AAAAAFw5678AAAAAaqQ0uwAAAAAJ9u4/AAAAAHkFwr0AAAAA7ID1PwAAAADiq649AAAAACnw2b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADpy421AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA7o9ROAAAAAA6mfu/AAAAADemtjwAAAAAR57dPwAAAABG67y8AAAAAB0K7T8AAAAAWuE6PQAAAADvBPa/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJyK7DBMzuaMAWyUTegDjAF0lEdAtVFXw/gR9XV9lChoBkdAnJdD28IzFmgHTegDaAhHQLVSpg7HQyB1fZQoaAZHQI57/3UQTVVoB03oA2gIR0C1U/AWnCO4dX2UKGgGR0CZU+HpKSPmaAdN6ANoCEdAtVexet0V8HV9lChoBkdAm7q99lVcU2gHTegDaAhHQLValOBDohZ1fZQoaAZHQJ2TPbfxc3VoB03oA2gIR0C1W+oPTXrddX2UKGgGR0CgA3u8TSLJaAdN6ANoCEdAtV0n3IuGsXV9lChoBkdAm3R/iHZbp2gHTegDaAhHQLVfib961LJ1fZQoaAZHQJuMA2NvOyFoB03oA2gIR0C1YWRigCfZdX2UKGgGR0CfharvsqrjaAdN6ANoCEdAtWKzCYTkAHV9lChoBkdAn4aXyd4FA2gHTegDaAhHQLVj64n4O+Z1fZQoaAZHQJ8aSiCaqjtoB03oA2gIR0C1Z5EQTVUddX2UKGgGR0CXmbi22G7BaAdN6ANoCEdAtWqa3F1jiHV9lChoBkdAmAgpmAbyY2gHTegDaAhHQLVr4B5ooNN1fZQoaAZHQJt4peKKpDNoB03oA2gIR0C1bRz2zv7WdX2UKGgGR0CfMKndO6/ZaAdN6ANoCEdAtW+A5FPSD3V9lChoBkdAl+pzByjpLWgHTegDaAhHQLVxZbQTmGN1fZQoaAZHQJuHBFG5MDhoB03oA2gIR0C1crgla8pTdX2UKGgGR0CU5v8iOeasaAdN6ANoCEdAtXP1UaQ3gnV9lChoBkdAhDP89Oh0yWgHTegDaAhHQLV3ZwJPZZl1fZQoaAZHQI9ivUSZjQRoB03oA2gIR0C1erFclgMMdX2UKGgGR0CRKW9sabWmaAdN6ANoCEdAtXwgfRu0kXV9lChoBkdAgW2ivPkaM2gHTegDaAhHQLV9XGhEjPh1fZQoaAZHQJpdqqYJE6VoB03oA2gIR0C1f9FUhmoSdX2UKGgGR0CAnDMzuWrwaAdN6ANoCEdAtYHcGbCrLnV9lChoBkdAmi2PyPMjeWgHTegDaAhHQLWDIogFHJ91fZQoaAZHQHoJsuez2OBoB03oA2gIR0C1hFfzvqkedX2UKGgGR0CdM6HARChOaAdN6ANoCEdAtYfTUI9kjHV9lChoBkdAnMbnscABDGgHTegDaAhHQLWK7mZ3LV51fZQoaAZHQJqytGYrrgRoB03oA2gIR0C1jG59iMHbdX2UKGgGR0CbkfB5X2dvaAdN6ANoCEdAtY2n+l0o0HV9lChoBkdAnBJ+0LMLW2gHTegDaAhHQLWQDwqiGnJ1fZQoaAZHQJO/1MZgogFoB03oA2gIR0C1kfxAB1cMdX2UKGgGR0Ccl80Y0l7daAdN6ANoCEdAtZM+rXDm83V9lChoBkdAnqpkTHsC1mgHTegDaAhHQLWUfhAGB4F1fZQoaAZHQJ2Yc99tuUFoB03oA2gIR0C1l71jRUm2dX2UKGgGR0CYGDvo/zJ7aAdN6ANoCEdAtZreGahHsnV9lChoBkdAnYP1vybx3GgHTegDaAhHQLWccF2V3Ux1fZQoaAZHQJ0pe7NB4UxoB03oA2gIR0C1naY91U2ldX2UKGgGR0CeSajLSuyNaAdN6ANoCEdAtaALW6K+BnV9lChoBkdAlw+bkjopx2gHTegDaAhHQLWh8KeCkGl1fZQoaAZHQJwL6Xu3MINoB03oA2gIR0C1ozc2NvOydX2UKGgGR0Cc9Ay+pOvdaAdN6ANoCEdAtaRwGZ/kNnV9lChoBkdAnWY1XNke62gHTegDaAhHQLWngCRwIdF1fZQoaAZHQJxJfH3lCC1oB03oA2gIR0C1qqOZof0VdX2UKGgGR0Capo5Fw1iwaAdN6ANoCEdAtaxzaBZpz3V9lChoBkdAmoN+O4oZymgHTegDaAhHQLWtr1OTJQt1fZQoaAZHQJpT0C9ytFNoB03oA2gIR0C1sCCqEOAidX2UKGgGR0CcTQLzf779aAdN6ANoCEdAtbICLXL/0nV9lChoBkdAmYRAE2YOUmgHTegDaAhHQLWzVVX3g1p1fZQoaAZHQJ5ANyjpLVZoB03oA2gIR0C1tIoRVZLadX2UKGgGR0CXUkZMcp9aaAdN6ANoCEdAtbd+xB3RonV9lChoBkdAmn0o0hvBJ2gHTegDaAhHQLW6iTH80k51fZQoaAZHQJPhIVj7Q9loB03oA2gIR0C1vIZNj9XLdX2UKGgGR0CaxmqwhW5paAdN6ANoCEdAtb2+9i+cpnV9lChoBkdAm587WAf+0mgHTegDaAhHQLXAHP2wmmd1fZQoaAZHQJXP2ziS7oVoB03oA2gIR0C1wgH668QJdX2UKGgGR0CccZ8+iaiLaAdN6ANoCEdAtcNLTUiIL3V9lChoBkdAnCRETHsC1mgHTegDaAhHQLXEhhCMPz51fZQoaAZHQJWmaWrwOONoB03oA2gIR0C1xz7vPToddX2UKGgGR0CfMSWj4593aAdN6ANoCEdAtcpBwJgLJHV9lChoBkdAnRib+YMOPWgHTegDaAhHQLXMW7WNFSd1fZQoaAZHQJwcpESdvsJoB03oA2gIR0C1zbpKzzErdX2UKGgGR0CbQqjpLVWkaAdN6ANoCEdAtdAkSXdCV3V9lChoBkdAmiFyG8EmpmgHTegDaAhHQLXSDL1mJ3x1fZQoaAZHQI+0W5hBqsVoB03oA2gIR0C102VPBSDRdX2UKGgGR0CYJA+WGATaaAdN6ANoCEdAtdSj5FgDzXV9lChoBkdAjNrSqlxffGgHTegDaAhHQLXXUcAzYVZ1fZQoaAZHQIv6wyKvV3FoB03oA2gIR0C12mmszVMFdX2UKGgGR0CMWulXzUZvaAdN6ANoCEdAtdyaNBF/hHV9lChoBkdAg5phTn7pFGgHTegDaAhHQLXeCnfVI7N1fZQoaAZHQIr9jLlmvntoB03oA2gIR0C14IUu6ErYdX2UKGgGR0CHSk/Yao/BaAdN6ANoCEdAteKGCOFQEnV9lChoBkdAhndJA2Q4j2gHTegDaAhHQLXj3ISUTtd1fZQoaAZHQIer+zD4xlBoB03oA2gIR0C15RqbKA8TdX2UKGgGR0CFiTsdkrf+aAdN6ANoCEdAtefyqsEJSnV9lChoBkdAgPj01qFh5WgHTegDaAhHQLXq/GhEjPh1fZQoaAZHQIsPMBbOeJ5oB03oA2gIR0C17SZUo8ZDdX2UKGgGR0ByTLzErGzbaAdN6ANoCEdAte54hib2DnV9lChoBkdAdKLWldkauWgHTegDaAhHQLXw8BAOav11fZQoaAZHQHt9yEYfnwJoB03oA2gIR0C18udn5BTodX2UKGgGR0B4/9bJOnEVaAdN6ANoCEdAtfQ6zByjpXV9lChoBkdAgaC6WPcSG2gHTegDaAhHQLX1hh2nsLR1fZQoaAZHQH7bWEGqxTtoB03oA2gIR0C1+HI5tFa0dX2UKGgGR0BR+3jIaLn+aAdN6ANoCEdAtfuURtgrpnV9lChoBkdAgIkU34sVcmgHTegDaAhHQLX9sz5oGpx1fZQoaAZHQIrgvf2saKloB03oA2gIR0C1/usTBZZCdX2UKGgGR0CRrbZ00WM1aAdN6ANoCEdAtgFN0MgEEHV9lChoBkdAlYrIgA6uGWgHTegDaAhHQLYDNUMG5c11fZQoaAZHQJpJTeYUnG9oB03oA2gIR0C2BHyMglnidX2UKGgGR0CWwxYUnG83aAdN6ANoCEdAtgWx7XxvvXV9lChoBkdAm92yZSeiBWgHTegDaAhHQLYIVJAt4A11fZQoaAZHQJER4T8HfMxoB03oA2gIR0C2C0wGwA2idX2UKGgGR0CdHY3aSLZSaAdN6ANoCEdAtg1kFxGUfXV9lChoBkdAhGOzF2mpEWgHTegDaAhHQLYO3KbrkbR1fZQoaAZHQJoYdW1c+q1oB03oA2gIR0C2EVfPC2tudX2UKGgGR0CbFPJuEVWTaAdN6ANoCEdAthNGkl/pdXV9lChoBkdAk0eSBoVVP2gHTegDaAhHQLYUjjhUBGR1fZQoaAZHQJbcsQwsXi1oB03oA2gIR0C2Fb8jRlYmdX2UKGgGR0CWo28+iaiLaAdN6ANoCEdAthg6zY287XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:770681e0f6b8d62f26c7b5a04a578170e7c3f2d0e9550ecc414430a4566afeef
3
+ size 1140738
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1844.176864848408, "std_reward": 134.9717557529008, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-18T21:42:15.901824"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:423fe448d3bad07246cc3efcde4d0f0cf831c089080f41c4f13c7067556f298f
3
+ size 2136