menimeni123
commited on
Commit
·
f311c70
1
Parent(s):
1b297c3
added better handler
Browse files- .DS_Store +0 -0
- handler.py +20 -18
.DS_Store
CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
|
|
handler.py
CHANGED
@@ -1,32 +1,34 @@
|
|
1 |
-
|
|
|
2 |
import torch
|
|
|
|
|
|
|
3 |
|
4 |
class EndpointHandler:
|
5 |
def __init__(self, model_dir):
|
6 |
-
self.
|
7 |
-
self.
|
8 |
-
self.label_mapping =
|
|
|
9 |
|
10 |
def __call__(self, inputs):
|
11 |
if isinstance(inputs, dict) and 'inputs' in inputs:
|
12 |
return self.predict(inputs['inputs'])
|
13 |
return self.predict(inputs)
|
14 |
|
15 |
-
def predict(self,
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
with torch.no_grad():
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
predicted_label = self.label_mapping[predicted_class]
|
28 |
-
|
29 |
-
return {"label": predicted_label, "score": output.logits.softmax(dim=1).max().item()}
|
30 |
|
31 |
def get_pipeline():
|
32 |
return EndpointHandler
|
|
|
1 |
+
import os
|
2 |
+
import joblib
|
3 |
import torch
|
4 |
+
import numpy as np
|
5 |
+
from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification
|
6 |
+
import torch.nn.functional as F
|
7 |
|
8 |
class EndpointHandler:
|
9 |
def __init__(self, model_dir):
|
10 |
+
self.model = DistilBertForSequenceClassification.from_pretrained(model_dir)
|
11 |
+
self.tokenizer = DistilBertTokenizerFast.from_pretrained(model_dir)
|
12 |
+
self.label_mapping = joblib.load(os.path.join(model_dir, "label_mapping.joblib"))
|
13 |
+
self.labels = {v: k for k, v in self.label_mapping.items()}
|
14 |
|
15 |
def __call__(self, inputs):
|
16 |
if isinstance(inputs, dict) and 'inputs' in inputs:
|
17 |
return self.predict(inputs['inputs'])
|
18 |
return self.predict(inputs)
|
19 |
|
20 |
+
def predict(self, text):
|
21 |
+
if len(text.split()) < 4:
|
22 |
+
return {"label": "SAFE", "score": 1.0}
|
23 |
+
|
24 |
+
encoded_input = self.tokenizer(text, return_tensors='pt', truncation=True, max_length=128)
|
25 |
with torch.no_grad():
|
26 |
+
outputs = self.model(**encoded_input)
|
27 |
+
probabilities = F.softmax(outputs.logits, dim=-1).cpu().numpy()[0]
|
28 |
+
confidence = np.max(probabilities)
|
29 |
+
predicted_label_idx = int(np.argmax(probabilities))
|
30 |
+
predicted_label = self.labels[predicted_label_idx]
|
31 |
+
return {"label": predicted_label, "score": float(confidence)}
|
|
|
|
|
|
|
32 |
|
33 |
def get_pipeline():
|
34 |
return EndpointHandler
|