memyprokotow
commited on
Commit
•
c4bda13
1
Parent(s):
887f805
test upload
Browse files- .gitattributes +1 -0
- README.md +28 -0
- RL-LunarLander-ppo-v0.zip +3 -0
- RL-LunarLander-ppo-v0/_stable_baselines3_version +1 -0
- RL-LunarLander-ppo-v0/data +94 -0
- RL-LunarLander-ppo-v0/policy.optimizer.pth +3 -0
- RL-LunarLander-ppo-v0/policy.pth +3 -0
- RL-LunarLander-ppo-v0/pytorch_variables.pth +3 -0
- RL-LunarLander-ppo-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 244.64 +/- 30.60
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
RL-LunarLander-ppo-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c799d9c2cf16e333f665a8c1579e0a357ee78ec2cd9df6786947292eaf564302
|
3 |
+
size 144040
|
RL-LunarLander-ppo-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
RL-LunarLander-ppo-v0/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f4c903388c0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4c90338950>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4c903389e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4c90338a70>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f4c90338b00>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f4c90338b90>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4c90338c20>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f4c90338cb0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4c90338d40>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4c90338dd0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4c90338e60>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f4c90308630>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652803759.5306137,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABmi7xibAk/ze//vIV0177hN8Y8zvFEvQAAAAAAAAAAZtBwvClQV7oCgKY6V9nONXlCmbdIwsG5AACAPwAAgD8mt7a99pxOupq0XDrXWmk21rZIuuhRfrkAAIA/AACAP7pEfj4vGrk+7PWKvi3nw760dUa9DcumvQAAAAAAAAAAM9v9O7gu4bllvHe5/g26tN/RnzuqdJA4AACAPwAAgD/NVVO9w+kSugW4XDqUjO01tGNsOZ77erkAAIA/AACAP0A56r2Pqia66uqxOsv0rLVM8gQ7Zc7PuQAAgD8AAIA/M3bXPEgjiLoI+IA5wVVvNWIQ3bkSCJa4AACAPwAAgD+z/gq9uNbSufYLBLw1lBw0JqybOlYcX7MAAIA/AACAPwDjijyB6a09EsDtPTTcHL5Vv1s88HuCvQAAAAAAAAAAgBCgPY+SNbqKzcK6PHOFtd1pLLt1quA5AACAPwAAgD8z+967KTg5ul3fJjqrm3c1AJveObx4PbkAAIA/AACAP40jtz2FA7e5FoqBus0fe7Seccy6phOXOQAAAAAAAIA/mueLPVyEPT4aOoW+QC2Mvq+7j77lB429AAAAAAAAAAAAq7M8e/zOOSVt2LuvNcm2fYBSu9WVRDYAAIA/AACAPw0Gnb2uvZ666tmVO2+N6Tb/o7Y6HXarugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIY30Dk5utY0CUhpRSlIwBbJRN6AOMAXSUR0CAtWYKIBRydX2UKGgGaAloD0MIJH1aRX/QXECUhpRSlGgVTegDaBZHQIC2zrmhdt51fZQoaAZoCWgPQwiPHVTiOj1lQJSGlFKUaBVN6ANoFkdAgL5Ks+3YtnV9lChoBmgJaA9DCNOh0/NuY2JAlIaUUpRoFU3oA2gWR0CAvufukUKzdX2UKGgGaAloD0MIs/D1ta4hZ0CUhpRSlGgVTegDaBZHQIDK4EyLyc11fZQoaAZoCWgPQwgL68a7I9tnQJSGlFKUaBVN6ANoFkdAgMse3H7xeHV9lChoBmgJaA9DCJCeIoeIsFtAlIaUUpRoFU3oA2gWR0CA0GpNKyv+dX2UKGgGaAloD0MImngHeNIiHkCUhpRSlGgVS7BoFkdAgNJnlnyup3V9lChoBmgJaA9DCCF1O/vKaVhAlIaUUpRoFU3oA2gWR0CA13ZX+2mYdX2UKGgGaAloD0MILT4FwPjjYkCUhpRSlGgVTegDaBZHQIDcACr92ox1fZQoaAZoCWgPQwg0DvW7ML9kQJSGlFKUaBVN6ANoFkdAgNx8YZVGTnV9lChoBmgJaA9DCEaU9gZfkmZAlIaUUpRoFU3oA2gWR0CA4JM1TBIndX2UKGgGaAloD0MIqpz2lBzUZECUhpRSlGgVTegDaBZHQIDo737DVH51fZQoaAZoCWgPQwgNwtzu5eFgQJSGlFKUaBVN6ANoFkdAgPB7m+0w8HV9lChoBmgJaA9DCB7AIr/+BWZAlIaUUpRoFU3oA2gWR0CA8oqaPS2IdX2UKGgGaAloD0MIrTHohNB9SkCUhpRSlGgVS85oFkdAgTtBBZ6lcnV9lChoBmgJaA9DCBA+lGjJ5GRAlIaUUpRoFU3oA2gWR0CBQfq7AckudX2UKGgGaAloD0MIu7VMhmOeZUCUhpRSlGgVTegDaBZHQIFWjKq4pc51fZQoaAZoCWgPQwjUfQBSm/FkQJSGlFKUaBVN6ANoFkdAgVodbHIZInV9lChoBmgJaA9DCLpm8s02qGNAlIaUUpRoFU3oA2gWR0CBW0ieumrKdX2UKGgGaAloD0MIzZTW3xIEY0CUhpRSlGgVTegDaBZHQIFh+jTKDCh1fZQoaAZoCWgPQwgL73IRX/JkQJSGlFKUaBVN6ANoFkdAgW5Kmj0tiHV9lChoBmgJaA9DCFrxDYXPSmNAlIaUUpRoFU3oA2gWR0CBboBjnV5KdX2UKGgGaAloD0MIg4b+CS7lZkCUhpRSlGgVTegDaBZHQIFzaL0jC551fZQoaAZoCWgPQwjDSC9q9wVhQJSGlFKUaBVN6ANoFkdAgXVUe2d/a3V9lChoBmgJaA9DCNCAejPq4mFAlIaUUpRoFU3oA2gWR0CBeZVGTcIrdX2UKGgGaAloD0MI2ln0TgVsXUCUhpRSlGgVTegDaBZHQIF9OCmMwUR1fZQoaAZoCWgPQwi3Y+qubO9hQJSGlFKUaBVN6ANoFkdAgX2isOoYN3V9lChoBmgJaA9DCB5ssdtnL2dAlIaUUpRoFU3oA2gWR0CBgUTURWcSdX2UKGgGaAloD0MIRIfAkUCHPECUhpRSlGgVS59oFkdAgYhWLgn+h3V9lChoBmgJaA9DCLywNVv51WFAlIaUUpRoFU3oA2gWR0CBiKI7eVLSdX2UKGgGaAloD0MIj6UPXVBwVkCUhpRSlGgVTegDaBZHQIGSCup0fYB1fZQoaAZoCWgPQwikN9xH7h5jQJSGlFKUaBVN6ANoFkdAgd0EMkQf63V9lChoBmgJaA9DCBfxnZh1AmVAlIaUUpRoFU3oA2gWR0CB48+XZ5AydX2UKGgGaAloD0MI5SZqae6XYUCUhpRSlGgVTegDaBZHQIH4PR3NcGF1fZQoaAZoCWgPQwhI+N7fIEVkQJSGlFKUaBVN6ANoFkdAgfv3jU/fO3V9lChoBmgJaA9DCDHPSlrxdGRAlIaUUpRoFU3oA2gWR0CB/TNorWiDdX2UKGgGaAloD0MI5xiQvV6qYkCUhpRSlGgVTegDaBZHQIIEETURWcV1fZQoaAZoCWgPQwgEkrBvp/NjQJSGlFKUaBVN6ANoFkdAgg/0Eovzv3V9lChoBmgJaA9DCCzWcJH7D2RAlIaUUpRoFU3oA2gWR0CCECz3yqdZdX2UKGgGaAloD0MImdamsb0PZUCUhpRSlGgVTegDaBZHQIIVXwgDA8B1fZQoaAZoCWgPQwifdCLBVOJmQJSGlFKUaBVN6ANoFkdAghc+6Zpi7XV9lChoBmgJaA9DCJVHN8KixmRAlIaUUpRoFU3oA2gWR0CCH1JT2nKodX2UKGgGaAloD0MIGjOJesEbXUCUhpRSlGgVTegDaBZHQIIfyLQ5WBB1fZQoaAZoCWgPQwg18Q7wpPhjQJSGlFKUaBVN6ANoFkdAgiOVAJLM93V9lChoBmgJaA9DCD1DOGbZhWJAlIaUUpRoFU3oA2gWR0CCKrvOyE+QdX2UKGgGaAloD0MI3BK54AzpZUCUhpRSlGgVTegDaBZHQIIrBSxZ+x51fZQoaAZoCWgPQwiUUPpCyKlOQJSGlFKUaBVLf2gWR0CCLzYeT3ZgdX2UKGgGaAloD0MIgEqVKPtfYkCUhpRSlGgVTegDaBZHQIIzuC9RJmN1fZQoaAZoCWgPQwjDSZo/phUFQJSGlFKUaBVLi2gWR0CCN7c1wYLtdX2UKGgGaAloD0MI7Z48LNR/XcCUhpRSlGgVS4RoFkdAgjvqBEroXHV9lChoBmgJaA9DCHuhgO1g/2VAlIaUUpRoFU3oA2gWR0CCfFcdHUc5dX2UKGgGaAloD0MICrlSz4KUYUCUhpRSlGgVTegDaBZHQIKCPWUbDMx1fZQoaAZoCWgPQwhyiSMPxLpjQJSGlFKUaBVN6ANoFkdAgpVaC17Y03V9lChoBmgJaA9DCBMKEXAIvWhAlIaUUpRoFU3oA2gWR0CCmLGlQ/HHdX2UKGgGaAloD0MIMLq8OVy2ZkCUhpRSlGgVTegDaBZHQIKZ4I8hcJN1fZQoaAZoCWgPQwg50hkYeahjQJSGlFKUaBVN6ANoFkdAgqCG4qgAZXV9lChoBmgJaA9DCC+JsyLqC2RAlIaUUpRoFU3oA2gWR0CCqzm9QGfPdX2UKGgGaAloD0MIdopVgzCrZkCUhpRSlGgVTegDaBZHQIKrcL6UJOZ1fZQoaAZoCWgPQwjTakjc4/lhQJSGlFKUaBVN6ANoFkdAgq/ZJ04io3V9lChoBmgJaA9DCOPCgZAsDWZAlIaUUpRoFU3oA2gWR0CCsX8hLXcydX2UKGgGaAloD0MIYcQ+ARRUZkCUhpRSlGgVTegDaBZHQIK5h/I8yN51fZQoaAZoCWgPQwj2m4npQrpfQJSGlFKUaBVN6ANoFkdAgrnrhJiAlXV9lChoBmgJaA9DCEX11sBWFGZAlIaUUpRoFU3oA2gWR0CCxgomXw9adX2UKGgGaAloD0MInigJibRWYECUhpRSlGgVTegDaBZHQILQzopx3mp1fZQoaAZoCWgPQwjNP/omzTFjQJSGlFKUaBVN6ANoFkdAgtWv/rB0p3V9lChoBmgJaA9DCMXkDTDz0FJAlIaUUpRoFUuNaBZHQILWOQXAM2F1fZQoaAZoCWgPQwgcCwqDMixjQJSGlFKUaBVN6ANoFkdAgto5H3Dej3V9lChoBmgJaA9DCEcE4+BSnGVAlIaUUpRoFU3oA2gWR0CDGhLytmthdX2UKGgGaAloD0MI1EhL5W0KZkCUhpRSlGgVTegDaBZHQIMgl4TsY2t1fZQoaAZoCWgPQwjDt7BuvJ1kQJSGlFKUaBVN6ANoFkdAgzWg+pwS8XV9lChoBmgJaA9DCB/WG7VCSWNAlIaUUpRoFU3oA2gWR0CDOW3dbgTAdX2UKGgGaAloD0MII9qOqTvBY0CUhpRSlGgVTegDaBZHQIM6r3dsSCh1fZQoaAZoCWgPQwhGzsKe9sRiQJSGlFKUaBVN6ANoFkdAg0GtvGZNPHV9lChoBmgJaA9DCDp4JjRJ7WNAlIaUUpRoFU3oA2gWR0CDTeP5HmRvdX2UKGgGaAloD0MIJlMFoxK8YkCUhpRSlGgVTegDaBZHQINOH/echDB1fZQoaAZoCWgPQwiBP/z8d/lkQJSGlFKUaBVN6ANoFkdAg1M/K6nR9nV9lChoBmgJaA9DCFqCjIAKvGVAlIaUUpRoFU3oA2gWR0CDVT18stkGdX2UKGgGaAloD0MI02weh0EmZUCUhpRSlGgVTegDaBZHQINdwb0e2eB1fZQoaAZoCWgPQwj+J3/3DgdkQJSGlFKUaBVN6ANoFkdAg14k/r0J4XV9lChoBmgJaA9DCLSwpx1+i2RAlIaUUpRoFU3oA2gWR0CDdHVxS5y3dX2UKGgGaAloD0MIqvOo+D+PY0CUhpRSlGgVTegDaBZHQIN5glSjxkN1fZQoaAZoCWgPQwh9IHnn0CZhQJSGlFKUaBVN6ANoFkdAg3oOG0u14XV9lChoBmgJaA9DCK0vEtryOWNAlIaUUpRoFU3oA2gWR0CDfg6Ymb9ZdX2UKGgGaAloD0MIrI2xE17wYECUhpRSlGgVTegDaBZHQIO+PV7Qb+91fZQoaAZoCWgPQwjgLCXLyQpgQJSGlFKUaBVN6ANoFkdAg8Qx9w3o93V9lChoBmgJaA9DCBH92vrpgGBAlIaUUpRoFU3oA2gWR0CD17Zwn6VMdX2UKGgGaAloD0MIs14M5UQwY0CUhpRSlGgVTegDaBZHQIPbICwKSgZ1fZQoaAZoCWgPQwhTBaOSuiVjQJSGlFKUaBVN6ANoFkdAg9xu6d1+zHV9lChoBmgJaA9DCM++8iC95WhAlIaUUpRoFU3oA2gWR0CD4uz3RG+cdX2UKGgGaAloD0MIem8MAcAMYUCUhpRSlGgVTegDaBZHQIPteVHFxXJ1fZQoaAZoCWgPQwgLtaZ5x15hQJSGlFKUaBVN6ANoFkdAg+2r5ylvZXV9lChoBmgJaA9DCFESEmmbG2FAlIaUUpRoFU3oA2gWR0CD8mhnrY5DdX2UKGgGaAloD0MIObh0zHmdY0CUhpRSlGgVTegDaBZHQIP0LLB9Cu51fZQoaAZoCWgPQwhaYmU08opnQJSGlFKUaBVN6ANoFkdAg/xWJ79hqnV9lChoBmgJaA9DCEetMH2vX2RAlIaUUpRoFU3oA2gWR0CD/MHk92X+dX2UKGgGaAloD0MID3wMVhzvYUCUhpRSlGgVTegDaBZHQIQVZ9Vmz0J1fZQoaAZoCWgPQwiwOnKkM7tbQJSGlFKUaBVN6ANoFkdAhBqwFC9h7XV9lChoBmgJaA9DCLpqniPyk2JAlIaUUpRoFU3oA2gWR0CEG1BZZB9kdX2UKGgGaAloD0MI7NtJRPikY0CUhpRSlGgVTegDaBZHQIQftjCpFTh1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 186,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 6,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
RL-LunarLander-ppo-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0910c027f14fd527afb6655d96d53e07eb996ac31b6e2e0e98fd69903421c8e7
|
3 |
+
size 84829
|
RL-LunarLander-ppo-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8e0ea339d8749c8b82640503a68ff980c38bcc627b8f840e626323a2d6c30a63
|
3 |
+
size 43201
|
RL-LunarLander-ppo-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
RL-LunarLander-ppo-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4c903388c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4c90338950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4c903389e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4c90338a70>", "_build": "<function ActorCriticPolicy._build at 0x7f4c90338b00>", "forward": "<function ActorCriticPolicy.forward at 0x7f4c90338b90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4c90338c20>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4c90338cb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4c90338d40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4c90338dd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4c90338e60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4c90308630>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652803759.5306137, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABmi7xibAk/ze//vIV0177hN8Y8zvFEvQAAAAAAAAAAZtBwvClQV7oCgKY6V9nONXlCmbdIwsG5AACAPwAAgD8mt7a99pxOupq0XDrXWmk21rZIuuhRfrkAAIA/AACAP7pEfj4vGrk+7PWKvi3nw760dUa9DcumvQAAAAAAAAAAM9v9O7gu4bllvHe5/g26tN/RnzuqdJA4AACAPwAAgD/NVVO9w+kSugW4XDqUjO01tGNsOZ77erkAAIA/AACAP0A56r2Pqia66uqxOsv0rLVM8gQ7Zc7PuQAAgD8AAIA/M3bXPEgjiLoI+IA5wVVvNWIQ3bkSCJa4AACAPwAAgD+z/gq9uNbSufYLBLw1lBw0JqybOlYcX7MAAIA/AACAPwDjijyB6a09EsDtPTTcHL5Vv1s88HuCvQAAAAAAAAAAgBCgPY+SNbqKzcK6PHOFtd1pLLt1quA5AACAPwAAgD8z+967KTg5ul3fJjqrm3c1AJveObx4PbkAAIA/AACAP40jtz2FA7e5FoqBus0fe7Seccy6phOXOQAAAAAAAIA/mueLPVyEPT4aOoW+QC2Mvq+7j77lB429AAAAAAAAAAAAq7M8e/zOOSVt2LuvNcm2fYBSu9WVRDYAAIA/AACAPw0Gnb2uvZ666tmVO2+N6Tb/o7Y6HXarugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIY30Dk5utY0CUhpRSlIwBbJRN6AOMAXSUR0CAtWYKIBRydX2UKGgGaAloD0MIJH1aRX/QXECUhpRSlGgVTegDaBZHQIC2zrmhdt51fZQoaAZoCWgPQwiPHVTiOj1lQJSGlFKUaBVN6ANoFkdAgL5Ks+3YtnV9lChoBmgJaA9DCNOh0/NuY2JAlIaUUpRoFU3oA2gWR0CAvufukUKzdX2UKGgGaAloD0MIs/D1ta4hZ0CUhpRSlGgVTegDaBZHQIDK4EyLyc11fZQoaAZoCWgPQwgL68a7I9tnQJSGlFKUaBVN6ANoFkdAgMse3H7xeHV9lChoBmgJaA9DCJCeIoeIsFtAlIaUUpRoFU3oA2gWR0CA0GpNKyv+dX2UKGgGaAloD0MImngHeNIiHkCUhpRSlGgVS7BoFkdAgNJnlnyup3V9lChoBmgJaA9DCCF1O/vKaVhAlIaUUpRoFU3oA2gWR0CA13ZX+2mYdX2UKGgGaAloD0MILT4FwPjjYkCUhpRSlGgVTegDaBZHQIDcACr92ox1fZQoaAZoCWgPQwg0DvW7ML9kQJSGlFKUaBVN6ANoFkdAgNx8YZVGTnV9lChoBmgJaA9DCEaU9gZfkmZAlIaUUpRoFU3oA2gWR0CA4JM1TBIndX2UKGgGaAloD0MIqpz2lBzUZECUhpRSlGgVTegDaBZHQIDo737DVH51fZQoaAZoCWgPQwgNwtzu5eFgQJSGlFKUaBVN6ANoFkdAgPB7m+0w8HV9lChoBmgJaA9DCB7AIr/+BWZAlIaUUpRoFU3oA2gWR0CA8oqaPS2IdX2UKGgGaAloD0MIrTHohNB9SkCUhpRSlGgVS85oFkdAgTtBBZ6lcnV9lChoBmgJaA9DCBA+lGjJ5GRAlIaUUpRoFU3oA2gWR0CBQfq7AckudX2UKGgGaAloD0MIu7VMhmOeZUCUhpRSlGgVTegDaBZHQIFWjKq4pc51fZQoaAZoCWgPQwjUfQBSm/FkQJSGlFKUaBVN6ANoFkdAgVodbHIZInV9lChoBmgJaA9DCLpm8s02qGNAlIaUUpRoFU3oA2gWR0CBW0ieumrKdX2UKGgGaAloD0MIzZTW3xIEY0CUhpRSlGgVTegDaBZHQIFh+jTKDCh1fZQoaAZoCWgPQwgL73IRX/JkQJSGlFKUaBVN6ANoFkdAgW5Kmj0tiHV9lChoBmgJaA9DCFrxDYXPSmNAlIaUUpRoFU3oA2gWR0CBboBjnV5KdX2UKGgGaAloD0MIg4b+CS7lZkCUhpRSlGgVTegDaBZHQIFzaL0jC551fZQoaAZoCWgPQwjDSC9q9wVhQJSGlFKUaBVN6ANoFkdAgXVUe2d/a3V9lChoBmgJaA9DCNCAejPq4mFAlIaUUpRoFU3oA2gWR0CBeZVGTcIrdX2UKGgGaAloD0MI2ln0TgVsXUCUhpRSlGgVTegDaBZHQIF9OCmMwUR1fZQoaAZoCWgPQwi3Y+qubO9hQJSGlFKUaBVN6ANoFkdAgX2isOoYN3V9lChoBmgJaA9DCB5ssdtnL2dAlIaUUpRoFU3oA2gWR0CBgUTURWcSdX2UKGgGaAloD0MIRIfAkUCHPECUhpRSlGgVS59oFkdAgYhWLgn+h3V9lChoBmgJaA9DCLywNVv51WFAlIaUUpRoFU3oA2gWR0CBiKI7eVLSdX2UKGgGaAloD0MIj6UPXVBwVkCUhpRSlGgVTegDaBZHQIGSCup0fYB1fZQoaAZoCWgPQwikN9xH7h5jQJSGlFKUaBVN6ANoFkdAgd0EMkQf63V9lChoBmgJaA9DCBfxnZh1AmVAlIaUUpRoFU3oA2gWR0CB48+XZ5AydX2UKGgGaAloD0MI5SZqae6XYUCUhpRSlGgVTegDaBZHQIH4PR3NcGF1fZQoaAZoCWgPQwhI+N7fIEVkQJSGlFKUaBVN6ANoFkdAgfv3jU/fO3V9lChoBmgJaA9DCDHPSlrxdGRAlIaUUpRoFU3oA2gWR0CB/TNorWiDdX2UKGgGaAloD0MI5xiQvV6qYkCUhpRSlGgVTegDaBZHQIIEETURWcV1fZQoaAZoCWgPQwgEkrBvp/NjQJSGlFKUaBVN6ANoFkdAgg/0Eovzv3V9lChoBmgJaA9DCCzWcJH7D2RAlIaUUpRoFU3oA2gWR0CCECz3yqdZdX2UKGgGaAloD0MImdamsb0PZUCUhpRSlGgVTegDaBZHQIIVXwgDA8B1fZQoaAZoCWgPQwifdCLBVOJmQJSGlFKUaBVN6ANoFkdAghc+6Zpi7XV9lChoBmgJaA9DCJVHN8KixmRAlIaUUpRoFU3oA2gWR0CCH1JT2nKodX2UKGgGaAloD0MIGjOJesEbXUCUhpRSlGgVTegDaBZHQIIfyLQ5WBB1fZQoaAZoCWgPQwg18Q7wpPhjQJSGlFKUaBVN6ANoFkdAgiOVAJLM93V9lChoBmgJaA9DCD1DOGbZhWJAlIaUUpRoFU3oA2gWR0CCKrvOyE+QdX2UKGgGaAloD0MI3BK54AzpZUCUhpRSlGgVTegDaBZHQIIrBSxZ+x51fZQoaAZoCWgPQwiUUPpCyKlOQJSGlFKUaBVLf2gWR0CCLzYeT3ZgdX2UKGgGaAloD0MIgEqVKPtfYkCUhpRSlGgVTegDaBZHQIIzuC9RJmN1fZQoaAZoCWgPQwjDSZo/phUFQJSGlFKUaBVLi2gWR0CCN7c1wYLtdX2UKGgGaAloD0MI7Z48LNR/XcCUhpRSlGgVS4RoFkdAgjvqBEroXHV9lChoBmgJaA9DCHuhgO1g/2VAlIaUUpRoFU3oA2gWR0CCfFcdHUc5dX2UKGgGaAloD0MICrlSz4KUYUCUhpRSlGgVTegDaBZHQIKCPWUbDMx1fZQoaAZoCWgPQwhyiSMPxLpjQJSGlFKUaBVN6ANoFkdAgpVaC17Y03V9lChoBmgJaA9DCBMKEXAIvWhAlIaUUpRoFU3oA2gWR0CCmLGlQ/HHdX2UKGgGaAloD0MIMLq8OVy2ZkCUhpRSlGgVTegDaBZHQIKZ4I8hcJN1fZQoaAZoCWgPQwg50hkYeahjQJSGlFKUaBVN6ANoFkdAgqCG4qgAZXV9lChoBmgJaA9DCC+JsyLqC2RAlIaUUpRoFU3oA2gWR0CCqzm9QGfPdX2UKGgGaAloD0MIdopVgzCrZkCUhpRSlGgVTegDaBZHQIKrcL6UJOZ1fZQoaAZoCWgPQwjTakjc4/lhQJSGlFKUaBVN6ANoFkdAgq/ZJ04io3V9lChoBmgJaA9DCOPCgZAsDWZAlIaUUpRoFU3oA2gWR0CCsX8hLXcydX2UKGgGaAloD0MIYcQ+ARRUZkCUhpRSlGgVTegDaBZHQIK5h/I8yN51fZQoaAZoCWgPQwj2m4npQrpfQJSGlFKUaBVN6ANoFkdAgrnrhJiAlXV9lChoBmgJaA9DCEX11sBWFGZAlIaUUpRoFU3oA2gWR0CCxgomXw9adX2UKGgGaAloD0MInigJibRWYECUhpRSlGgVTegDaBZHQILQzopx3mp1fZQoaAZoCWgPQwjNP/omzTFjQJSGlFKUaBVN6ANoFkdAgtWv/rB0p3V9lChoBmgJaA9DCMXkDTDz0FJAlIaUUpRoFUuNaBZHQILWOQXAM2F1fZQoaAZoCWgPQwgcCwqDMixjQJSGlFKUaBVN6ANoFkdAgto5H3Dej3V9lChoBmgJaA9DCEcE4+BSnGVAlIaUUpRoFU3oA2gWR0CDGhLytmthdX2UKGgGaAloD0MI1EhL5W0KZkCUhpRSlGgVTegDaBZHQIMgl4TsY2t1fZQoaAZoCWgPQwjDt7BuvJ1kQJSGlFKUaBVN6ANoFkdAgzWg+pwS8XV9lChoBmgJaA9DCB/WG7VCSWNAlIaUUpRoFU3oA2gWR0CDOW3dbgTAdX2UKGgGaAloD0MII9qOqTvBY0CUhpRSlGgVTegDaBZHQIM6r3dsSCh1fZQoaAZoCWgPQwhGzsKe9sRiQJSGlFKUaBVN6ANoFkdAg0GtvGZNPHV9lChoBmgJaA9DCDp4JjRJ7WNAlIaUUpRoFU3oA2gWR0CDTeP5HmRvdX2UKGgGaAloD0MIJlMFoxK8YkCUhpRSlGgVTegDaBZHQINOH/echDB1fZQoaAZoCWgPQwiBP/z8d/lkQJSGlFKUaBVN6ANoFkdAg1M/K6nR9nV9lChoBmgJaA9DCFqCjIAKvGVAlIaUUpRoFU3oA2gWR0CDVT18stkGdX2UKGgGaAloD0MI02weh0EmZUCUhpRSlGgVTegDaBZHQINdwb0e2eB1fZQoaAZoCWgPQwj+J3/3DgdkQJSGlFKUaBVN6ANoFkdAg14k/r0J4XV9lChoBmgJaA9DCLSwpx1+i2RAlIaUUpRoFU3oA2gWR0CDdHVxS5y3dX2UKGgGaAloD0MIqvOo+D+PY0CUhpRSlGgVTegDaBZHQIN5glSjxkN1fZQoaAZoCWgPQwh9IHnn0CZhQJSGlFKUaBVN6ANoFkdAg3oOG0u14XV9lChoBmgJaA9DCK0vEtryOWNAlIaUUpRoFU3oA2gWR0CDfg6Ymb9ZdX2UKGgGaAloD0MIrI2xE17wYECUhpRSlGgVTegDaBZHQIO+PV7Qb+91fZQoaAZoCWgPQwjgLCXLyQpgQJSGlFKUaBVN6ANoFkdAg8Qx9w3o93V9lChoBmgJaA9DCBH92vrpgGBAlIaUUpRoFU3oA2gWR0CD17Zwn6VMdX2UKGgGaAloD0MIs14M5UQwY0CUhpRSlGgVTegDaBZHQIPbICwKSgZ1fZQoaAZoCWgPQwhTBaOSuiVjQJSGlFKUaBVN6ANoFkdAg9xu6d1+zHV9lChoBmgJaA9DCM++8iC95WhAlIaUUpRoFU3oA2gWR0CD4uz3RG+cdX2UKGgGaAloD0MIem8MAcAMYUCUhpRSlGgVTegDaBZHQIPteVHFxXJ1fZQoaAZoCWgPQwgLtaZ5x15hQJSGlFKUaBVN6ANoFkdAg+2r5ylvZXV9lChoBmgJaA9DCFESEmmbG2FAlIaUUpRoFU3oA2gWR0CD8mhnrY5DdX2UKGgGaAloD0MIObh0zHmdY0CUhpRSlGgVTegDaBZHQIP0LLB9Cu51fZQoaAZoCWgPQwhaYmU08opnQJSGlFKUaBVN6ANoFkdAg/xWJ79hqnV9lChoBmgJaA9DCEetMH2vX2RAlIaUUpRoFU3oA2gWR0CD/MHk92X+dX2UKGgGaAloD0MID3wMVhzvYUCUhpRSlGgVTegDaBZHQIQVZ9Vmz0J1fZQoaAZoCWgPQwiwOnKkM7tbQJSGlFKUaBVN6ANoFkdAhBqwFC9h7XV9lChoBmgJaA9DCLpqniPyk2JAlIaUUpRoFU3oA2gWR0CEG1BZZB9kdX2UKGgGaAloD0MI7NtJRPikY0CUhpRSlGgVTegDaBZHQIQftjCpFTh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 186, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b8f22283e48345c7a16e3c8a57b21d3008ebaa274df8ba7cd8693374031a0580
|
3 |
+
size 239974
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 244.64295867788223, "std_reward": 30.602016829693074, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-17T16:28:36.769595"}
|