Initial commit
Browse files- .gitattributes +1 -0
- README.md +28 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +105 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -29,3 +29,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 2061.72 +/- 70.57
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: AntBulletEnv-v0
|
20 |
+
type: AntBulletEnv-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
24 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:55b70bb8217e57c22d35bb8af0f0a691b0a7c1df301928d430764cbd0a071949
|
3 |
+
size 130306
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f29c7aff3a0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f29c7aff430>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f29c7aff4c0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f29c7aff550>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f29c7aff5e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f29c7aff670>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f29c7aff700>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f29c7aff790>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f29c7aff820>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f29c7aff8b0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f29c7aff940>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f29c7cc8e00>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
28
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 8,
|
61 |
+
"num_timesteps": 20000000,
|
62 |
+
"_total_timesteps": 20000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1659303923.51274,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "./tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGMvaG9tZS9ubS9hbmFjb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGMvaG9tZS9ubS9hbmFjb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gAWV9QMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAwAAAAAAABynsb4NiZS+AvPzPjN4Oz9awYu/1+GBO0T5dz8Y4KQ+EvZKP5Kqvb5XiU0/yH/Lvl+1pb9vB9U+ezG1v8oSCb0nhI2/ECM5PdP+OD8dTwi9LfgivzCqkr0gxW2/+bTVPhP6rj8FAh0/HadMP1+NP78afYe/cB0CPib7+z6kZJe+3ev5vm//B7/hO7o+qFwkPzAySz/zYyi9N0TRPY1Blj6AoKa/nRGCvkmo1r7VMhW/CFQiv3G7c72tbvU+dEKRP0M3CL+UoSU+g+tvv+J6dD4T+q4/BQIdPx2nTD9fjT+/KmolP1JgXr/EtGw+9etTP8B2FL+AeN48yoZgvjs4Z7+tyGg/K7oeQD9xmT8xvzm+7a2pv9VmGD/6z1C/aFuWvi0xir/ux0g+6vuqPiwZB0DzFsE8sRQMP6WWb7/fOZ0+E/quPwUCHT8dp0w/X40/vyhiCL5VTQe/POfQPuR4ED9XTvK+PDC0Phrccj8O3lU9ZMULP+4SKUD8upY/uL3avmZQo7/ZX9o+970tv9RdGb86xe++bsGrPtesNz8jDQO8qoacPvZUJD8Ux16/r2UiPxP6rj/ws9C/HadMP1+NP79p3BhA2EXevk984T6eqyPA9RjnPvgBocACw2A/jGYEQJ49nr9B0dE+x7KmPwg7HUBCxXi/9cVbvxMN7j4Z9ALAnNu8vhOmsL5XiFXAwrBpwBVNS7+7MNE8TxRAwNCYlz4+RTu/8LPQv3cdoL9fjT+/EhGgPWkwOL/CKqQ+gzTRPSh5NL+ibxm/bWiHvnkq277osyQ9PCKAv6UuZ7+SPQw/0LsVP449FL9ljo8/QwabOxpUcz8HPlC/jFMuv1ruGMA3ds6+aHpPP+YFaz8y3ny/PkU7v/Cz0L93HaC/zBCrPwxvVj8VQ08+Skb2PjTxWj8ArYy+du6fvmqZEb50PZG/fA46P8gtgL5dWPq918a1P+CEjj5tYJi/rrONP2yTE72rZEy9kjKpv00lcb7TI74+I4m4vuJitb4ngzY/VQu+vz5FO7/ws9C/dx2gv1+NP78GaRE7qfl3v+4EJD5wZ8u+5mWvvnnyID9TNjM/GEoCvxG9Sz9neTY/GKmlP58GgT0JDhC/niGtv7yiKr9/dXq/32RnPOQAYr8uAiY/kPTHPkfb6b6IVkk9102Av//PPz0T+q4/8LPQvx2nTD9fjT+/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksISxyGlIwBQ5R0lFKULg=="
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gAWV9QMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAwAAAAAAAAAAAAANU802AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALyMGvgAAAACPL/6/AAAAAG8v4D0AAAAAQqD6PwAAAADoqsg9AAAAADHz6j8AAAAAnaSmPQAAAADpUui/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5pG6tQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgA8XWD0AAAAAv435vwAAAACKK4a9AAAAAA/L5z8AAAAAqbk5vQAAAADrEN0/AAAAAGYU3b0AAAAAVp7dvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwmPLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICXvrw9AAAAADG+AMAAAAAAE2ouvQAAAABJ1+Q/AAAAAOrukbwAAAAAvSb7PwAAAAD15OC8AAAAAOUo6L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8tQW3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAxGgMPgAAAACLP+q/AAAAAJxnDr4AAAAA8szbPwAAAAB4X4E9AAAAAEL54T8AAAAAHrsLPgAAAACySOq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaDANNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJxBjr0AAAAAZALsvwAAAAATDIs9AAAAADLx9D8AAAAA8wBkPAAAAAD7Sfs/AAAAABiBez0AAAAAMw3hvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/JbDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICZp+G9AAAAAPqS8b8AAAAAB1xrvQAAAABLW+Y/AAAAAF2Qe7wAAAAAQH76PwAAAADvBu29AAAAAOzT/r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB9TMm1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA2ETePQAAAABIpuy/AAAAAGsLqT0AAAAAOxviPwAAAABXaW69AAAAAMRI4z8AAAAAuxhuvAAAAAAqKOe/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhDqRtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgE0Sfr0AAAAAExb+vwAAAACJ+/28AAAAAHpvAEAAAAAAPYGhvQAAAABx4fI/AAAAAEFzCT4AAAAAemz0vwAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksISxyGlIwBQ5R0lFKULg=="
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ+csCU5dW2MAWyUTegDjAF0lEdAzImskIomX3V9lChoBkdAn34T6N2ki2gHTegDaAhHQMyJ4rYPGyZ1fZQoaAZHQJ+VGzru6VdoB03oA2gIR0DMifufGuLadX2UKGgGR0CgpuyIYWLxaAdN6ANoCEdAzIobE5Qxe3V9lChoBkdAoNDEQEpy62gHTegDaAhHQMyKQDtgKF91fZQoaAZHQJ7ROvdM0xdoB03oA2gIR0DMinfpMYdidX2UKGgGR0Cg6TchLXcyaAdN6ANoCEdAzIxxEWIoE3V9lChoBkdAoEMjcj7hvWgHTegDaAhHQMyMgU3GXHB1fZQoaAZHQKDZ9n7HhjxoB03oA2gIR0DMjKBIDoyLdX2UKGgGR0CgcJ6naWX1aAdN6ANoCEdAzIzXIq9XcXV9lChoBkdAoF2v2RJVbWgHTegDaAhHQMyM8Ao5PuZ1fZQoaAZHQJ7DZBrvb49oB03oA2gIR0DMjQ+R9w3pdX2UKGgGR0CgK5STY/VzaAdN6ANoCEdAzI00dOIqLHV9lChoBkdAoHRyzHCGe2gHTegDaAhHQMyNbDhky1x1fZQoaAZHQJ+uC06YE4hoB03oA2gIR0DMj2OyTpxFdX2UKGgGR0CgdAufVZs9aAdN6ANoCEdAzI9zzDn/1nV9lChoBkdAoEIIWnCO3mgHTegDaAhHQMyPkt/nW8R1fZQoaAZHQKBw0LWqcVhoB03oA2gIR0DMj8kVN5+pdX2UKGgGR0CdElVzp5eJaAdN6ANoCEdAzI/h876pHnV9lChoBkdAnQvevQnhKmgHTegDaAhHQMyQAWOhkAh1fZQoaAZHQJ1L8w0waitoB03oA2gIR0DMkCY9ovi+dX2UKGgGR0CghkCYCyQgaAdN6ANoCEdAzJBdrVOKwnV9lChoBkdAniyN3fQ8fWgHTegDaAhHQMySVcyN4qx1fZQoaAZHQJzRkbfgrH5oB03oA2gIR0DMkmXPE87qdX2UKGgGR0CfYCruYx+KaAdN6ANoCEdAzJKEwSrYG3V9lChoBkdAoKqRrYXfqGgHTegDaAhHQMySuyFoL5R1fZQoaAZHQKB0YNXo1UFoB03oA2gIR0DMktQQz1sddX2UKGgGR0CgEvtm16VuaAdN6ANoCEdAzJLzlSS/03V9lChoBkdAoMGPqoqCpWgHTegDaAhHQMyTGIa1kUd1fZQoaAZHQJ6fHkp7TlVoB03oA2gIR0DMk1BRIjGDdX2UKGgGR0Ce7yrWAf+1aAdN6ANoCEdAzJVJS75EdHV9lChoBkdAnx0XoX9BKWgHTegDaAhHQMyVWTuv2Xd1fZQoaAZHQJ341lEqlP9oB03oA2gIR0DMlXgrc0tRdX2UKGgGR0CZ6E4uK4x2aAdN6ANoCEdAzJWuZJkGzXV9lChoBkdAoNLI57w8XGgHTegDaAhHQMyVxy8an751fZQoaAZHQJ6sL9xZMcpoB03oA2gIR0DMleaziS7odX2UKGgGR0CgoSolt0muaAdN6ANoCEdAzJYMBTXJ5nV9lChoBkdAn5aXfZVXFWgHTegDaAhHQMyWQ9cjZ+R1fZQoaAZHQJ7o0K+i8FpoB03oA2gIR0DMmDomXw9adX2UKGgGR0CgNvu/DcdpaAdN6ANoCEdAzJhKTdLxqnV9lChoBkdAoHvF6HCXQmgHTegDaAhHQMyYaTUAks11fZQoaAZHQKCyQY64lQdoB03oA2gIR0DMmJ+4uscRdX2UKGgGR0CdHGSeyzHCaAdN6ANoCEdAzJi5aFEiMnV9lChoBkdAoJ5QOOKfnWgHTegDaAhHQMyY2Rb0OEx1fZQoaAZHQKBhpSHdoFpoB03oA2gIR0DMmP5QHiWFdX2UKGgGR0CexLMfzSThaAdN6ANoCEdAzJk2J4SpSHV9lChoBkdAoFQ6v/zasmgHTegDaAhHQMybLU7Sy+p1fZQoaAZHQJynwCLdeppoB03oA2gIR0DMmz1GViWndX2UKGgGR0CeBGQHzH0caAdN6ANoCEdAzJtcDlHSW3V9lChoBkdAoTkGOjqOcWgHTegDaAhHQMybkhbGFSN1fZQoaAZHQJ+76eumrKhoB03oA2gIR0DMm6rodMkAdX2UKGgGR0CbUap7kXDWaAdN6ANoCEdAzJvKkfLcK3V9lChoBkdAn0nTjBEa2mgHTegDaAhHQMyb735WRzR1fZQoaAZHQJ7tu8M/hVFoB03oA2gIR0DMnCdUuL75dX2UKGgGR0Ce7+TspoboaAdN6ANoCEdAzJ4g4JeE7HV9lChoBkdAoHzUophF3WgHTegDaAhHQMyeMPj4pMJ1fZQoaAZHQKDaRTjNpudoB03oA2gIR0DMnk/uAqd6dX2UKGgGR0CgcsiW/rSmaAdN6ANoCEdAzJ6GMz/IbXV9lChoBkdAn+VQ79ycTmgHTegDaAhHQMyenxwqAjJ1fZQoaAZHQKA7TqXWvr5oB03oA2gIR0DMnr7GkvbodX2UKGgGR0CcawEwWWQfaAdN6ANoCEdAzJ7jxaPjn3V9lChoBkdAnhJqQiiZfGgHTegDaAhHQMyfG3EAHVx1fZQoaAZHQJ/I7ocJdB1oB03oA2gIR0DMoROdRR/FdX2UKGgGR0Cf9AZ6Uqx1aAdN6ANoCEdAzKEjnKW9lHV9lChoBkdAnhj+rIYFaGgHTegDaAhHQMyhQm8274B1fZQoaAZHQJ5mFm9QGfRoB03oA2gIR0DMoXh7iQ1adX2UKGgGR0CgFgmH58BuaAdN6ANoCEdAzKGRJf6XSnV9lChoBkdAn8EhEv0yxmgHTegDaAhHQMyhsIod+5R1fZQoaAZHQKBWAZHd43ZoB03oA2gIR0DModV7WuoxdX2UKGgGR0Ce/X5Jbt7baAdN6ANoCEdAzKINTdcjaHV9lChoBkdAoGKjDXOGCmgHTegDaAhHQMykBOnEVFh1fZQoaAZHQJ+12AI6bONoB03oA2gIR0DMpBUnNPgvdX2UKGgGR0CgZA7jDKoyaAdN6ANoCEdAzKQz9ETg23V9lChoBkdAoKzhxxT852gHTegDaAhHQMykajXWe6J1fZQoaAZHQKAGa2RaHKxoB03oA2gIR0DMpIL7yhBadX2UKGgGR0CdSrgyuZCwaAdN6ANoCEdAzKSiZmZmZnV9lChoBkdAnrTjBMzuW2gHTegDaAhHQMykxzJQtSR1fZQoaAZHQKB1T5HEuQJoB03oA2gIR0DMpP6iAUcodX2UKGgGR0Cg4vJwbVBlaAdN6ANoCEdAzKb2gte2NXV9lChoBkdAoLLorOJLumgHTegDaAhHQMynBoUrTYx1fZQoaAZHQJ9g3j94u9RoB03oA2gIR0DMpyU163RYdX2UKGgGR0CdBRUc4o7WaAdN6ANoCEdAzKdbGc4HX3V9lChoBkdAn7ASyIHkcWgHTegDaAhHQMync9y1eBx1fZQoaAZHQKAgLitJWeZoB03oA2gIR0DMp5NZ7ojfdX2UKGgGR0Cg3S3+2mYTaAdN6ANoCEdAzKe44KhL5HV9lChoBkdAoYZevIOpbWgHTegDaAhHQMyn8Ikqto11fZQoaAZHQJ3zF6/qPfdoB03oA2gIR0DMqego5PuYdX2UKGgGR0ChPaRN7BwdaAdN6ANoCEdAzKn4NOM2nHV9lChoBkdAnnUQUHpr12gHTegDaAhHQMyqF0AtFrl1fZQoaAZHQJ3+IaVD8cdoB03oA2gIR0DMqk2N5t3wdX2UKGgGR0CgkYoeo1k2aAdN6ANoCEdAzKpmZaV2R3V9lChoBkdAoJ9RAhStNmgHTegDaAhHQMyqhgXuVop1fZQoaAZHQKAa5Ls8gZFoB03oA2gIR0DMqqr1M/QjdX2UKGgGR0Cg5lJSJj2BaAdN6ANoCEdAzKrjceKba3V9lChoBkdAoNSJMYdhiWgHTegDaAhHQMys26S1Vo91fZQoaAZHQKDTxUT+NtJoB03oA2gIR0DMrOvC/GlzdX2UKGgGR0CgZN9/BnBdaAdN6ANoCEdAzK0K150KZ3V9lChoBkdAnVUI+B6KL2gHTegDaAhHQMytQX9aUzN1fZQoaAZHQKCqTxBE8aJoB03oA2gIR0DMrVp1ie/YdX2UKGgGR0CfsSlI3BHkaAdN6ANoCEdAzK16O3DvVnVlLg=="
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 312500,
|
98 |
+
"n_steps": 8,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d35534d1dfef3ae45f3567055cc4a3212fe6049919265d31feecd5fb5a9a6ef
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a0e2c81ea6eaec979d277c444070525a43d0df77d7db60258b6e380bad699604
|
3 |
+
size 56766
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.11.0-38-generic-x86_64-with-glibc2.31 #42~20.04.1-Ubuntu SMP Tue Sep 28 20:41:07 UTC 2021
|
2 |
+
Python: 3.9.12
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu102
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.22.3
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f29c7aff3a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f29c7aff430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f29c7aff4c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f29c7aff550>", "_build": "<function ActorCriticPolicy._build at 0x7f29c7aff5e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f29c7aff670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f29c7aff700>", "_predict": "<function ActorCriticPolicy._predict at 0x7f29c7aff790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f29c7aff820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f29c7aff8b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f29c7aff940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f29c7cc8e00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 8, "num_timesteps": 20000000, "_total_timesteps": 20000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1659303923.51274, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGMvaG9tZS9ubS9hbmFjb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGMvaG9tZS9ubS9hbmFjb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAwAAAAAAABynsb4NiZS+AvPzPjN4Oz9awYu/1+GBO0T5dz8Y4KQ+EvZKP5Kqvb5XiU0/yH/Lvl+1pb9vB9U+ezG1v8oSCb0nhI2/ECM5PdP+OD8dTwi9LfgivzCqkr0gxW2/+bTVPhP6rj8FAh0/HadMP1+NP78afYe/cB0CPib7+z6kZJe+3ev5vm//B7/hO7o+qFwkPzAySz/zYyi9N0TRPY1Blj6AoKa/nRGCvkmo1r7VMhW/CFQiv3G7c72tbvU+dEKRP0M3CL+UoSU+g+tvv+J6dD4T+q4/BQIdPx2nTD9fjT+/KmolP1JgXr/EtGw+9etTP8B2FL+AeN48yoZgvjs4Z7+tyGg/K7oeQD9xmT8xvzm+7a2pv9VmGD/6z1C/aFuWvi0xir/ux0g+6vuqPiwZB0DzFsE8sRQMP6WWb7/fOZ0+E/quPwUCHT8dp0w/X40/vyhiCL5VTQe/POfQPuR4ED9XTvK+PDC0Phrccj8O3lU9ZMULP+4SKUD8upY/uL3avmZQo7/ZX9o+970tv9RdGb86xe++bsGrPtesNz8jDQO8qoacPvZUJD8Ux16/r2UiPxP6rj/ws9C/HadMP1+NP79p3BhA2EXevk984T6eqyPA9RjnPvgBocACw2A/jGYEQJ49nr9B0dE+x7KmPwg7HUBCxXi/9cVbvxMN7j4Z9ALAnNu8vhOmsL5XiFXAwrBpwBVNS7+7MNE8TxRAwNCYlz4+RTu/8LPQv3cdoL9fjT+/EhGgPWkwOL/CKqQ+gzTRPSh5NL+ibxm/bWiHvnkq277osyQ9PCKAv6UuZ7+SPQw/0LsVP449FL9ljo8/QwabOxpUcz8HPlC/jFMuv1ruGMA3ds6+aHpPP+YFaz8y3ny/PkU7v/Cz0L93HaC/zBCrPwxvVj8VQ08+Skb2PjTxWj8ArYy+du6fvmqZEb50PZG/fA46P8gtgL5dWPq918a1P+CEjj5tYJi/rrONP2yTE72rZEy9kjKpv00lcb7TI74+I4m4vuJitb4ngzY/VQu+vz5FO7/ws9C/dx2gv1+NP78GaRE7qfl3v+4EJD5wZ8u+5mWvvnnyID9TNjM/GEoCvxG9Sz9neTY/GKmlP58GgT0JDhC/niGtv7yiKr9/dXq/32RnPOQAYr8uAiY/kPTHPkfb6b6IVkk9102Av//PPz0T+q4/8LPQvx2nTD9fjT+/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksISxyGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAwAAAAAAAAAAAAANU802AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALyMGvgAAAACPL/6/AAAAAG8v4D0AAAAAQqD6PwAAAADoqsg9AAAAADHz6j8AAAAAnaSmPQAAAADpUui/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5pG6tQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgA8XWD0AAAAAv435vwAAAACKK4a9AAAAAA/L5z8AAAAAqbk5vQAAAADrEN0/AAAAAGYU3b0AAAAAVp7dvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwmPLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICXvrw9AAAAADG+AMAAAAAAE2ouvQAAAABJ1+Q/AAAAAOrukbwAAAAAvSb7PwAAAAD15OC8AAAAAOUo6L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8tQW3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAxGgMPgAAAACLP+q/AAAAAJxnDr4AAAAA8szbPwAAAAB4X4E9AAAAAEL54T8AAAAAHrsLPgAAAACySOq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaDANNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJxBjr0AAAAAZALsvwAAAAATDIs9AAAAADLx9D8AAAAA8wBkPAAAAAD7Sfs/AAAAABiBez0AAAAAMw3hvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/JbDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICZp+G9AAAAAPqS8b8AAAAAB1xrvQAAAABLW+Y/AAAAAF2Qe7wAAAAAQH76PwAAAADvBu29AAAAAOzT/r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB9TMm1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA2ETePQAAAABIpuy/AAAAAGsLqT0AAAAAOxviPwAAAABXaW69AAAAAMRI4z8AAAAAuxhuvAAAAAAqKOe/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhDqRtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgE0Sfr0AAAAAExb+vwAAAACJ+/28AAAAAHpvAEAAAAAAPYGhvQAAAABx4fI/AAAAAEFzCT4AAAAAemz0vwAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksISxyGlIwBQ5R0lFKULg=="}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ+csCU5dW2MAWyUTegDjAF0lEdAzImskIomX3V9lChoBkdAn34T6N2ki2gHTegDaAhHQMyJ4rYPGyZ1fZQoaAZHQJ+VGzru6VdoB03oA2gIR0DMifufGuLadX2UKGgGR0CgpuyIYWLxaAdN6ANoCEdAzIobE5Qxe3V9lChoBkdAoNDEQEpy62gHTegDaAhHQMyKQDtgKF91fZQoaAZHQJ7ROvdM0xdoB03oA2gIR0DMinfpMYdidX2UKGgGR0Cg6TchLXcyaAdN6ANoCEdAzIxxEWIoE3V9lChoBkdAoEMjcj7hvWgHTegDaAhHQMyMgU3GXHB1fZQoaAZHQKDZ9n7HhjxoB03oA2gIR0DMjKBIDoyLdX2UKGgGR0CgcJ6naWX1aAdN6ANoCEdAzIzXIq9XcXV9lChoBkdAoF2v2RJVbWgHTegDaAhHQMyM8Ao5PuZ1fZQoaAZHQJ7DZBrvb49oB03oA2gIR0DMjQ+R9w3pdX2UKGgGR0CgK5STY/VzaAdN6ANoCEdAzI00dOIqLHV9lChoBkdAoHRyzHCGe2gHTegDaAhHQMyNbDhky1x1fZQoaAZHQJ+uC06YE4hoB03oA2gIR0DMj2OyTpxFdX2UKGgGR0CgdAufVZs9aAdN6ANoCEdAzI9zzDn/1nV9lChoBkdAoEIIWnCO3mgHTegDaAhHQMyPkt/nW8R1fZQoaAZHQKBw0LWqcVhoB03oA2gIR0DMj8kVN5+pdX2UKGgGR0CdElVzp5eJaAdN6ANoCEdAzI/h876pHnV9lChoBkdAnQvevQnhKmgHTegDaAhHQMyQAWOhkAh1fZQoaAZHQJ1L8w0waitoB03oA2gIR0DMkCY9ovi+dX2UKGgGR0CghkCYCyQgaAdN6ANoCEdAzJBdrVOKwnV9lChoBkdAniyN3fQ8fWgHTegDaAhHQMySVcyN4qx1fZQoaAZHQJzRkbfgrH5oB03oA2gIR0DMkmXPE87qdX2UKGgGR0CfYCruYx+KaAdN6ANoCEdAzJKEwSrYG3V9lChoBkdAoKqRrYXfqGgHTegDaAhHQMySuyFoL5R1fZQoaAZHQKB0YNXo1UFoB03oA2gIR0DMktQQz1sddX2UKGgGR0CgEvtm16VuaAdN6ANoCEdAzJLzlSS/03V9lChoBkdAoMGPqoqCpWgHTegDaAhHQMyTGIa1kUd1fZQoaAZHQJ6fHkp7TlVoB03oA2gIR0DMk1BRIjGDdX2UKGgGR0Ce7yrWAf+1aAdN6ANoCEdAzJVJS75EdHV9lChoBkdAnx0XoX9BKWgHTegDaAhHQMyVWTuv2Xd1fZQoaAZHQJ341lEqlP9oB03oA2gIR0DMlXgrc0tRdX2UKGgGR0CZ6E4uK4x2aAdN6ANoCEdAzJWuZJkGzXV9lChoBkdAoNLI57w8XGgHTegDaAhHQMyVxy8an751fZQoaAZHQJ6sL9xZMcpoB03oA2gIR0DMleaziS7odX2UKGgGR0CgoSolt0muaAdN6ANoCEdAzJYMBTXJ5nV9lChoBkdAn5aXfZVXFWgHTegDaAhHQMyWQ9cjZ+R1fZQoaAZHQJ7o0K+i8FpoB03oA2gIR0DMmDomXw9adX2UKGgGR0CgNvu/DcdpaAdN6ANoCEdAzJhKTdLxqnV9lChoBkdAoHvF6HCXQmgHTegDaAhHQMyYaTUAks11fZQoaAZHQKCyQY64lQdoB03oA2gIR0DMmJ+4uscRdX2UKGgGR0CdHGSeyzHCaAdN6ANoCEdAzJi5aFEiMnV9lChoBkdAoJ5QOOKfnWgHTegDaAhHQMyY2Rb0OEx1fZQoaAZHQKBhpSHdoFpoB03oA2gIR0DMmP5QHiWFdX2UKGgGR0CexLMfzSThaAdN6ANoCEdAzJk2J4SpSHV9lChoBkdAoFQ6v/zasmgHTegDaAhHQMybLU7Sy+p1fZQoaAZHQJynwCLdeppoB03oA2gIR0DMmz1GViWndX2UKGgGR0CeBGQHzH0caAdN6ANoCEdAzJtcDlHSW3V9lChoBkdAoTkGOjqOcWgHTegDaAhHQMybkhbGFSN1fZQoaAZHQJ+76eumrKhoB03oA2gIR0DMm6rodMkAdX2UKGgGR0CbUap7kXDWaAdN6ANoCEdAzJvKkfLcK3V9lChoBkdAn0nTjBEa2mgHTegDaAhHQMyb735WRzR1fZQoaAZHQJ7tu8M/hVFoB03oA2gIR0DMnCdUuL75dX2UKGgGR0Ce7+TspoboaAdN6ANoCEdAzJ4g4JeE7HV9lChoBkdAoHzUophF3WgHTegDaAhHQMyeMPj4pMJ1fZQoaAZHQKDaRTjNpudoB03oA2gIR0DMnk/uAqd6dX2UKGgGR0CgcsiW/rSmaAdN6ANoCEdAzJ6GMz/IbXV9lChoBkdAn+VQ79ycTmgHTegDaAhHQMyenxwqAjJ1fZQoaAZHQKA7TqXWvr5oB03oA2gIR0DMnr7GkvbodX2UKGgGR0CcawEwWWQfaAdN6ANoCEdAzJ7jxaPjn3V9lChoBkdAnhJqQiiZfGgHTegDaAhHQMyfG3EAHVx1fZQoaAZHQJ/I7ocJdB1oB03oA2gIR0DMoROdRR/FdX2UKGgGR0Cf9AZ6Uqx1aAdN6ANoCEdAzKEjnKW9lHV9lChoBkdAnhj+rIYFaGgHTegDaAhHQMyhQm8274B1fZQoaAZHQJ5mFm9QGfRoB03oA2gIR0DMoXh7iQ1adX2UKGgGR0CgFgmH58BuaAdN6ANoCEdAzKGRJf6XSnV9lChoBkdAn8EhEv0yxmgHTegDaAhHQMyhsIod+5R1fZQoaAZHQKBWAZHd43ZoB03oA2gIR0DModV7WuoxdX2UKGgGR0Ce/X5Jbt7baAdN6ANoCEdAzKINTdcjaHV9lChoBkdAoGKjDXOGCmgHTegDaAhHQMykBOnEVFh1fZQoaAZHQJ+12AI6bONoB03oA2gIR0DMpBUnNPgvdX2UKGgGR0CgZA7jDKoyaAdN6ANoCEdAzKQz9ETg23V9lChoBkdAoKzhxxT852gHTegDaAhHQMykajXWe6J1fZQoaAZHQKAGa2RaHKxoB03oA2gIR0DMpIL7yhBadX2UKGgGR0CdSrgyuZCwaAdN6ANoCEdAzKSiZmZmZnV9lChoBkdAnrTjBMzuW2gHTegDaAhHQMykxzJQtSR1fZQoaAZHQKB1T5HEuQJoB03oA2gIR0DMpP6iAUcodX2UKGgGR0Cg4vJwbVBlaAdN6ANoCEdAzKb2gte2NXV9lChoBkdAoLLorOJLumgHTegDaAhHQMynBoUrTYx1fZQoaAZHQJ9g3j94u9RoB03oA2gIR0DMpyU163RYdX2UKGgGR0CdBRUc4o7WaAdN6ANoCEdAzKdbGc4HX3V9lChoBkdAn7ASyIHkcWgHTegDaAhHQMync9y1eBx1fZQoaAZHQKAgLitJWeZoB03oA2gIR0DMp5NZ7ojfdX2UKGgGR0Cg3S3+2mYTaAdN6ANoCEdAzKe44KhL5HV9lChoBkdAoYZevIOpbWgHTegDaAhHQMyn8Ikqto11fZQoaAZHQJ3zF6/qPfdoB03oA2gIR0DMqego5PuYdX2UKGgGR0ChPaRN7BwdaAdN6ANoCEdAzKn4NOM2nHV9lChoBkdAnnUQUHpr12gHTegDaAhHQMyqF0AtFrl1fZQoaAZHQJ3+IaVD8cdoB03oA2gIR0DMqk2N5t3wdX2UKGgGR0CgkYoeo1k2aAdN6ANoCEdAzKpmZaV2R3V9lChoBkdAoJ9RAhStNmgHTegDaAhHQMyqhgXuVop1fZQoaAZHQKAa5Ls8gZFoB03oA2gIR0DMqqr1M/QjdX2UKGgGR0Cg5lJSJj2BaAdN6ANoCEdAzKrjceKba3V9lChoBkdAoNSJMYdhiWgHTegDaAhHQMys26S1Vo91fZQoaAZHQKDTxUT+NtJoB03oA2gIR0DMrOvC/GlzdX2UKGgGR0CgZN9/BnBdaAdN6ANoCEdAzK0K150KZ3V9lChoBkdAnVUI+B6KL2gHTegDaAhHQMytQX9aUzN1fZQoaAZHQKCqTxBE8aJoB03oA2gIR0DMrVp1ie/YdX2UKGgGR0CfsSlI3BHkaAdN6ANoCEdAzK16O3DvVnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 312500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.11.0-38-generic-x86_64-with-glibc2.31 #42~20.04.1-Ubuntu SMP Tue Sep 28 20:41:07 UTC 2021", "Python": "3.9.12", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.22.3", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a49aebb221023421402185a7569a375056841f3dc3cad05b227ca9e696fd5b0
|
3 |
+
size 1074649
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 2061.7214769553743, "std_reward": 70.57446405844821, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-08-01T10:03:57.924608"}
|