ppo-LunarLander-v2 / config.json
melino2000's picture
Upload PPO LunarLander-v2 trained agent
74e874c
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d6de9cbedd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d6de9cbee60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d6de9cbeef0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d6de9cbef80>", "_build": "<function ActorCriticPolicy._build at 0x7d6de9cbf010>", "forward": "<function ActorCriticPolicy.forward at 0x7d6de9cbf0a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d6de9cbf130>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d6de9cbf1c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7d6de9cbf250>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d6de9cbf2e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d6de9cbf370>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d6de9cbf400>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d6de9cc8480>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696848918642335044, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA2KkT1cG68/PgPZPrv7or7zSHQ95JYPPgAAAAAAAAAA8ybEPdnGgj7jPwC9NtQUvkR+Kb2YEOM9AAAAAAAAAADmxYA9SNuluvgMzTcTQsUyQyelOgC167YAAIA/AACAP83/kD1Mk4Y+3covPoGJg74wMaM9FLIoOwAAAAAAAAAAZs+mPcug7T5tqWm7dp11viAfvz1bvIS9AAAAAAAAAACz+iw9p0LEPm81Kb2ZC56+JMnBPIjjOL0AAAAAAAAAAKa5QD6KUoE/C0jgPk05Db/gdIM+grbyPQAAAAAAAAAAGpPgPQyA9z6FAww9hH2BvuybPjz42nE9AAAAAAAAAABm6bw8bJLsu97jP7mf/EQ9DOmFvFAKe7sAAIA/AACAP7Pqej0pOAO6iquAu6381Tgl7s069EsNOgAAgD8AAIA/MwWFPNJ0iLvTP9C7xF2VPIJ/sDyV4369AACAPwAAgD/dyrE+NXTbvfg7Uj3L0HA80Mb+vvIvTDwAAIA/AACAP8BEPD4YtN0+ypsGvdkAnb7c7tg8nmPcvQAAAAAAAAAAM5s6PsrAuj4Ybou+aRBfvjvjkb0urhe9AAAAAAAAAAAaT449vE2fP9JdCD9hzCO/1LQxPF/eAD4AAAAAAAAAABoyGD1SO7e7tBimOynrZzyHWxi9JgtHPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIXQ1m8M/iMAWyUTRABjAF0lEdAlsNIAbQ1JnV9lChoBkdAbxR53Tuv2WgHTTQBaAhHQJbGKOBDohZ1fZQoaAZHQHLQop+c6NloB0vkaAhHQJbGTkn1Fph1fZQoaAZHQG35IUzsQd1oB00ZAWgIR0CWxloYNy5qdX2UKGgGR0BxymzIFNcoaAdNAwFoCEdAlsazKs+3Y3V9lChoBkdAbvG0qH4462gHTSUBaAhHQJbG4MkQf6p1fZQoaAZHQHBCsvysjmloB00VAWgIR0CWxx5sCT2WdX2UKGgGR0ByiYMd92HMaAdNAgFoCEdAlscjej2zwHV9lChoBkdAcqCHeJpFkWgHTVYBaAhHQJbHQiY9gWt1fZQoaAZHQHG0TxoZhrpoB00EAWgIR0CWx8tYB/7SdX2UKGgGR0Bvt8tK7I1caAdNGgFoCEdAlsis0pEx7HV9lChoBkdAcuEfQa72+WgHTRwDaAhHQJbI19AooeB1fZQoaAZHQG41NhNM495oB00GAWgIR0CWyVH93r2QdX2UKGgGR0BxD4dRzijtaAdNHAFoCEdAlsqey3Td+HV9lChoBkdAcYRpBHCoCWgHTTIDaAhHQJbLergflp51fZQoaAZHQDvsIKMNtqJoB0vGaAhHQJbM62AoXsR1fZQoaAZHQHF3mrS3LFJoB0v5aAhHQJbOIc2itaJ1fZQoaAZHQHBli+lCTlloB01AAWgIR0CWzmnHeaa1dX2UKGgGR0BylUo2GZeBaAdL62gIR0CWzyCwKSgXdX2UKGgGR0ByiJwXIlt1aAdNGAFoCEdAls9QkHD77HV9lChoBkdAc5137k4m1WgHTTYBaAhHQJbQX2Jzkp91fZQoaAZHQHGMjiKiwjdoB00mAWgIR0CW0KbfP5YYdX2UKGgGR0BxZjXlKbrkaAdNMQFoCEdAltDgIIF/x3V9lChoBkdAcOMYI0IkaGgHS/5oCEdAltDyZBsyi3V9lChoBkdAcAvGNJe3QWgHTUoBaAhHQJbTaoo/iYN1fZQoaAZHQG9pqYzBRANoB00uAWgIR0CW1M+PBBRidX2UKGgGR0ByP6YNRWLhaAdNEwFoCEdAltT4IjW07nV9lChoBkdAZ3L04iosI2gHTegDaAhHQJbVNbbDdgx1fZQoaAZHQHDvfJeVs1toB00aAWgIR0CW1vaRISUUdX2UKGgGR0BxyzBXS0BwaAdNEAFoCEdAltfjabnX/nV9lChoBkdAcSDb2lEZzmgHTRABaAhHQJbYNNQCSzR1fZQoaAZHQEjQ7jDKoydoB0viaAhHQJbY5BMSK3x1fZQoaAZHQHDi+lbeMydoB00eAWgIR0CW2YwazeGgdX2UKGgGR0Bx1YzfrKNiaAdNIAFoCEdAltncSK3uu3V9lChoBkdAcOWLfk3juWgHTQUBaAhHQJbZ7zQNTcZ1fZQoaAZHQG7srLIPsiVoB00DAWgIR0CW2l4xk/bCdX2UKGgGR0BxMfbVSXMRaAdNLQFoCEdAltvxJiAlOXV9lChoBkdAbBAUZeiSJWgHTXECaAhHQJbcKsgdOqN1fZQoaAZHQHC7uZb6guhoB0vwaAhHQJbcSJ3xFy91fZQoaAZHQHDJI+KTB69oB0vqaAhHQJbdijL0SRN1fZQoaAZHQG/z30Gu9vloB00GAWgIR0CW3jPIn0CjdX2UKGgGR0BxySugYgq3aAdNdAJoCEdAlt75LM9r43V9lChoBkdAcTlet0V8C2gHTRsBaAhHQJbfMDFId2h1fZQoaAZHQE6JDO1OTJRoB0vFaAhHQJbfOsuFpPB1fZQoaAZHQHEqVyJbdJtoB00aAWgIR0CW4Ups41gqdX2UKGgGR0Bwp+ixmkFfaAdN9gJoCEdAluFsbrC3w3V9lChoBkdAcW6j6vaDf2gHS/NoCEdAluHad+Xqq3V9lChoBkdAcRvLB9Cu2mgHTQ4BaAhHQJb5BweeWfN1fZQoaAZHQHIhgdOqNqBoB009AWgIR0CW+SOcDr7gdX2UKGgGR0BxmRU70WdmaAdNGAFoCEdAlvmglfJFLHV9lChoBkdAcO/bcXWOImgHTRgBaAhHQJb6BLVWjoJ1fZQoaAZHQHDHcQ7LdN5oB0vuaAhHQJb6FVZLZjB1fZQoaAZHQHKzkKmbb11oB00HAWgIR0CW+wwazeGgdX2UKGgGR0Bs+5i9Zid8aAdNEgFoCEdAlvuE34sVcnV9lChoBkdAcEqm3fAKv2gHTQABaAhHQJb8R2t+1Bt1fZQoaAZHQHF0labF0gdoB0v8aAhHQJb9Wm3vx6R1fZQoaAZHQHA2mldkauRoB00SAWgIR0CW/kGFSKm9dX2UKGgGR0Bx+qWY4Qz2aAdNFgFoCEdAlv5trTH80nV9lChoBkdAb36FuejEemgHTT0BaAhHQJb+41VHWjJ1fZQoaAZHQG4uUoa1kUdoB03RAWgIR0CW/5EpAlfJdX2UKGgGR0By7Lf2saKlaAdNCAFoCEdAlv+3aN+9anV9lChoBkdAcO2Rw6ySm2gHTSIBaAhHQJcAnLs8gZF1fZQoaAZHQHNMKl54W1toB005AWgIR0CXAaUN8VpLdX2UKGgGR0ByC9yNn5BUaAdL/mgIR0CXAjgRbr1NdX2UKGgGR0ByNyOS4e90aAdNIwFoCEdAlwKAjY7JXHV9lChoBkdAccDPRzBAOmgHTQcBaAhHQJcClXr+o991fZQoaAZHQHAZD2nKnvVoB00vAWgIR0CXAsPmgam5dX2UKGgGR0Bxcrkjopx4aAdNDQFoCEdAlwOi+De0onV9lChoBkdAcepYcNpdr2gHS/xoCEdAlwRD8pCrtHV9lChoBkdAcFErULDyfGgHTRwBaAhHQJcEf9Hc1wZ1fZQoaAZHQGx7CwjdHlRoB00AAWgIR0CXBWLxI8QqdX2UKGgGR0BxsNjx0+1SaAdL/GgIR0CXBknw5NoKdX2UKGgGR0ByVcohIOH4aAdNCQFoCEdAlwaKpDNQj3V9lChoBkdAclEw71ZkkWgHS/doCEdAlwcxmK64D3V9lChoBkdAcC/sjVx0dWgHTSYBaAhHQJcIIwXZXdV1fZQoaAZHQHDFrLpzLfVoB00cAWgIR0CXCKH7P6bfdX2UKGgGR0ByH8+lj3EiaAdNDAFoCEdAlwkQcghbGHV9lChoBkdAcLkpWmxdIGgHTR0BaAhHQJcLaueSSvF1fZQoaAZHQHFz8+A3DN1oB00TAWgIR0CXC7PikwevdX2UKGgGR0BwrMQOFxn4aAdNQwFoCEdAlww1sLv1DnV9lChoBkdAcX2mCyyD7WgHTRIBaAhHQJcM0w482aV1fZQoaAZHQHAAoN3GGVRoB006AWgIR0CXDOnHvMKUdX2UKGgGR0BuPsnmaH9FaAdNDwFoCEdAlw156IFeOXV9lChoBkdAcJ3KYAsCk2gHTSABaAhHQJcPicx0uDl1fZQoaAZHQG0/okAxSHdoB0v8aAhHQJcRaSMcZLt1fZQoaAZHQHH7vUWl/H5oB000AWgIR0CXEXiGWUr1dX2UKGgGR0BvP7/ffoA5aAdNHgFoCEdAlxG33UQTVXV9lChoBkdAcRqzSCvovGgHS+5oCEdAlxILN8ma6XV9lChoBkdAca7ERradtmgHTUEBaAhHQJcSYmAskIJ1fZQoaAZHQHDOE9+w1SBoB00YAWgIR0CXEx2zfJmvdX2UKGgGR0ByIblNlAeJaAdL6GgIR0CXFdp4KQaKdX2UKGgGR0BtdeWfK6nSaAdL/mgIR0CXFfbvw3HadX2UKGgGR0BwBgG7jDKpaAdNDQFoCEdAlxYGtyPuHHV9lChoBkdAbsdKtga3qmgHTS4CaAhHQJcWN0xM3611fZQoaAZHQG6cIiLVFx5oB00bAWgIR0CXFkPIn0CjdX2UKGgGR0ByoITdtVJdaAdNDQFoCEdAlxb47muDBnV9lChoBkdAcRxVgQYk3WgHS/9oCEdAlxcbBKtga3V9lChoBkdAceI4ku6ErWgHTVMCaAhHQJcZe2OQyRB1fZQoaAZHQGxGixFAmiRoB0v5aAhHQJcaH+wTufF1fZQoaAZHQHEs6nvUjLVoB0v6aAhHQJcaMHlfZ291ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}