megha-shroff commited on
Commit
508d4a4
·
verified ·
1 Parent(s): a32d534

End of training

Browse files
Files changed (5) hide show
  1. .amlignore +6 -0
  2. .amlignore.amltmp +6 -0
  3. README.md +207 -185
  4. adapter_model.safetensors +1 -1
  5. training_args.bin +1 -1
.amlignore ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ ## This file was auto generated by the Azure Machine Learning Studio. Please do not remove.
2
+ ## Read more about the .amlignore file here: https://docs.microsoft.com/azure/machine-learning/how-to-save-write-experiment-files#storage-limits-of-experiment-snapshots
3
+
4
+ .ipynb_aml_checkpoints/
5
+ *.amltmp
6
+ *.amltemp
.amlignore.amltmp ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ ## This file was auto generated by the Azure Machine Learning Studio. Please do not remove.
2
+ ## Read more about the .amlignore file here: https://docs.microsoft.com/azure/machine-learning/how-to-save-write-experiment-files#storage-limits-of-experiment-snapshots
3
+
4
+ .ipynb_aml_checkpoints/
5
+ *.amltmp
6
+ *.amltemp
README.md CHANGED
@@ -18,7 +18,7 @@ should probably proofread and complete it, then remove this comment. -->
18
 
19
  This model is a fine-tuned version of [TheBloke/Mistral-7B-v0.1-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-v0.1-GPTQ) on the None dataset.
20
  It achieves the following results on the evaluation set:
21
- - Loss: 0.4527
22
 
23
  ## Model description
24
 
@@ -48,190 +48,212 @@ The following hyperparameters were used during training:
48
 
49
  ### Training results
50
 
51
- | Training Loss | Epoch | Step | Validation Loss |
52
- |:-------------:|:-----:|:----:|:---------------:|
53
- | 1.7543 | 0.03 | 50 | 0.9190 |
54
- | 0.8445 | 0.05 | 100 | 0.7860 |
55
- | 0.7819 | 0.07 | 150 | 0.7460 |
56
- | 0.7231 | 0.1 | 200 | 0.7147 |
57
- | 0.6985 | 0.12 | 250 | 0.6924 |
58
- | 0.6887 | 0.15 | 300 | 0.6823 |
59
- | 0.6836 | 0.17 | 350 | 0.6702 |
60
- | 0.6624 | 0.2 | 400 | 0.6574 |
61
- | 0.6712 | 0.23 | 450 | 0.6507 |
62
- | 0.6354 | 0.25 | 500 | 0.6417 |
63
- | 0.6089 | 0.28 | 550 | 0.6373 |
64
- | 0.6236 | 0.3 | 600 | 0.6284 |
65
- | 0.6161 | 0.33 | 650 | 0.6228 |
66
- | 0.6367 | 0.35 | 700 | 0.6152 |
67
- | 0.6329 | 0.38 | 750 | 0.6097 |
68
- | 0.5944 | 0.4 | 800 | 0.6076 |
69
- | 0.6036 | 0.42 | 850 | 0.6030 |
70
- | 0.5767 | 0.45 | 900 | 0.5989 |
71
- | 0.6079 | 0.47 | 950 | 0.5954 |
72
- | 0.5915 | 0.5 | 1000 | 0.5916 |
73
- | 0.5911 | 0.53 | 1050 | 0.5859 |
74
- | 0.5752 | 0.55 | 1100 | 0.5847 |
75
- | 0.5698 | 0.57 | 1150 | 0.5802 |
76
- | 0.5813 | 0.6 | 1200 | 0.5754 |
77
- | 0.5918 | 0.62 | 1250 | 0.5735 |
78
- | 0.5587 | 0.65 | 1300 | 0.5677 |
79
- | 0.5933 | 0.68 | 1350 | 0.5620 |
80
- | 0.5262 | 0.7 | 1400 | 0.5522 |
81
- | 0.5455 | 0.72 | 1450 | 0.5457 |
82
- | 0.5472 | 0.75 | 1500 | 0.5416 |
83
- | 0.536 | 0.78 | 1550 | 0.5400 |
84
- | 0.527 | 0.8 | 1600 | 0.5393 |
85
- | 0.5516 | 0.82 | 1650 | 0.5350 |
86
- | 0.5578 | 0.85 | 1700 | 0.5356 |
87
- | 0.5501 | 0.88 | 1750 | 0.5297 |
88
- | 0.5316 | 0.9 | 1800 | 0.5288 |
89
- | 0.5436 | 0.93 | 1850 | 0.5268 |
90
- | 0.514 | 0.95 | 1900 | 0.5295 |
91
- | 0.5249 | 0.97 | 1950 | 0.5246 |
92
- | 0.538 | 1.0 | 2000 | 0.5226 |
93
- | 0.4967 | 1.02 | 2050 | 0.5237 |
94
- | 0.4991 | 1.05 | 2100 | 0.5261 |
95
- | 0.5142 | 1.07 | 2150 | 0.5203 |
96
- | 0.4891 | 1.1 | 2200 | 0.5174 |
97
- | 0.5058 | 1.12 | 2250 | 0.5173 |
98
- | 0.4895 | 1.15 | 2300 | 0.5182 |
99
- | 0.4918 | 1.18 | 2350 | 0.5139 |
100
- | 0.485 | 1.2 | 2400 | 0.5091 |
101
- | 0.5173 | 1.23 | 2450 | 0.5121 |
102
- | 0.5021 | 1.25 | 2500 | 0.5116 |
103
- | 0.4834 | 1.27 | 2550 | 0.5097 |
104
- | 0.4754 | 1.3 | 2600 | 0.5137 |
105
- | 0.4907 | 1.32 | 2650 | 0.5059 |
106
- | 0.5155 | 1.35 | 2700 | 0.5051 |
107
- | 0.4965 | 1.38 | 2750 | 0.5050 |
108
- | 0.5148 | 1.4 | 2800 | 0.5043 |
109
- | 0.4709 | 1.43 | 2850 | 0.5032 |
110
- | 0.4864 | 1.45 | 2900 | 0.5037 |
111
- | 0.4794 | 1.48 | 2950 | 0.5029 |
112
- | 0.4803 | 1.5 | 3000 | 0.5012 |
113
- | 0.4843 | 1.52 | 3050 | 0.5017 |
114
- | 0.4726 | 1.55 | 3100 | 0.4984 |
115
- | 0.4773 | 1.57 | 3150 | 0.4968 |
116
- | 0.4673 | 1.6 | 3200 | 0.4995 |
117
- | 0.4803 | 1.62 | 3250 | 0.4990 |
118
- | 0.4926 | 1.65 | 3300 | 0.4965 |
119
- | 0.4814 | 1.68 | 3350 | 0.4973 |
120
- | 0.4714 | 1.7 | 3400 | 0.4930 |
121
- | 0.4797 | 1.73 | 3450 | 0.4903 |
122
- | 0.4807 | 1.75 | 3500 | 0.4932 |
123
- | 0.4815 | 1.77 | 3550 | 0.4888 |
124
- | 0.4852 | 1.8 | 3600 | 0.4874 |
125
- | 0.4802 | 1.82 | 3650 | 0.4887 |
126
- | 0.4701 | 1.85 | 3700 | 0.4897 |
127
- | 0.4572 | 1.88 | 3750 | 0.4873 |
128
- | 0.4469 | 1.9 | 3800 | 0.4878 |
129
- | 0.478 | 1.93 | 3850 | 0.4885 |
130
- | 0.4449 | 1.95 | 3900 | 0.4866 |
131
- | 0.4634 | 1.98 | 3950 | 0.4843 |
132
- | 0.4718 | 2.0 | 4000 | 0.4838 |
133
- | 0.4458 | 2.02 | 4050 | 0.4822 |
134
- | 0.461 | 2.05 | 4100 | 0.4801 |
135
- | 0.4247 | 2.08 | 4150 | 0.4856 |
136
- | 0.4325 | 2.1 | 4200 | 0.4830 |
137
- | 0.4354 | 2.12 | 4250 | 0.4827 |
138
- | 0.4313 | 2.15 | 4300 | 0.4807 |
139
- | 0.4753 | 2.17 | 4350 | 0.4812 |
140
- | 0.4442 | 2.2 | 4400 | 0.4833 |
141
- | 0.4431 | 2.23 | 4450 | 0.4851 |
142
- | 0.4485 | 2.25 | 4500 | 0.4815 |
143
- | 0.4416 | 2.27 | 4550 | 0.4813 |
144
- | 0.4613 | 2.3 | 4600 | 0.4777 |
145
- | 0.4121 | 2.33 | 4650 | 0.4775 |
146
- | 0.4311 | 2.35 | 4700 | 0.4768 |
147
- | 0.4532 | 2.38 | 4750 | 0.4765 |
148
- | 0.4342 | 2.4 | 4800 | 0.4781 |
149
- | 0.4189 | 2.42 | 4850 | 0.4743 |
150
- | 0.443 | 2.45 | 4900 | 0.4742 |
151
- | 0.4596 | 2.48 | 4950 | 0.4734 |
152
- | 0.4193 | 2.5 | 5000 | 0.4719 |
153
- | 0.4321 | 2.52 | 5050 | 0.4723 |
154
- | 0.4456 | 2.55 | 5100 | 0.4713 |
155
- | 0.4464 | 2.58 | 5150 | 0.4694 |
156
- | 0.4273 | 2.6 | 5200 | 0.4700 |
157
- | 0.4239 | 2.62 | 5250 | 0.4701 |
158
- | 0.4282 | 2.65 | 5300 | 0.4687 |
159
- | 0.4303 | 2.67 | 5350 | 0.4686 |
160
- | 0.4559 | 2.7 | 5400 | 0.4695 |
161
- | 0.4542 | 2.73 | 5450 | 0.4692 |
162
- | 0.4532 | 2.75 | 5500 | 0.4685 |
163
- | 0.4505 | 2.77 | 5550 | 0.4663 |
164
- | 0.4533 | 2.8 | 5600 | 0.4660 |
165
- | 0.4351 | 2.83 | 5650 | 0.4640 |
166
- | 0.4354 | 2.85 | 5700 | 0.4651 |
167
- | 0.4374 | 2.88 | 5750 | 0.4664 |
168
- | 0.4571 | 2.9 | 5800 | 0.4662 |
169
- | 0.4663 | 2.92 | 5850 | 0.4636 |
170
- | 0.4211 | 2.95 | 5900 | 0.4645 |
171
- | 0.4349 | 2.98 | 5950 | 0.4622 |
172
- | 0.4167 | 3.0 | 6000 | 0.4634 |
173
- | 0.4176 | 3.02 | 6050 | 0.4621 |
174
- | 0.4387 | 3.05 | 6100 | 0.4607 |
175
- | 0.395 | 3.08 | 6150 | 0.4638 |
176
- | 0.4186 | 3.1 | 6200 | 0.4623 |
177
- | 0.3993 | 3.12 | 6250 | 0.4622 |
178
- | 0.4009 | 3.15 | 6300 | 0.4631 |
179
- | 0.4033 | 3.17 | 6350 | 0.4640 |
180
- | 0.389 | 3.2 | 6400 | 0.4662 |
181
- | 0.4037 | 3.23 | 6450 | 0.4618 |
182
- | 0.4287 | 3.25 | 6500 | 0.4617 |
183
- | 0.3917 | 3.27 | 6550 | 0.4611 |
184
- | 0.3944 | 3.3 | 6600 | 0.4626 |
185
- | 0.4088 | 3.33 | 6650 | 0.4622 |
186
- | 0.4205 | 3.35 | 6700 | 0.4604 |
187
- | 0.4273 | 3.38 | 6750 | 0.4608 |
188
- | 0.4139 | 3.4 | 6800 | 0.4607 |
189
- | 0.3888 | 3.42 | 6850 | 0.4603 |
190
- | 0.4353 | 3.45 | 6900 | 0.4573 |
191
- | 0.4222 | 3.48 | 6950 | 0.4577 |
192
- | 0.4083 | 3.5 | 7000 | 0.4571 |
193
- | 0.4161 | 3.52 | 7050 | 0.4560 |
194
- | 0.3879 | 3.55 | 7100 | 0.4540 |
195
- | 0.3819 | 3.58 | 7150 | 0.4570 |
196
- | 0.4345 | 3.6 | 7200 | 0.4551 |
197
- | 0.4101 | 3.62 | 7250 | 0.4569 |
198
- | 0.4194 | 3.65 | 7300 | 0.4543 |
199
- | 0.4066 | 3.67 | 7350 | 0.4563 |
200
- | 0.4144 | 3.7 | 7400 | 0.4553 |
201
- | 0.4134 | 3.73 | 7450 | 0.4566 |
202
- | 0.3906 | 3.75 | 7500 | 0.4550 |
203
- | 0.4128 | 3.77 | 7550 | 0.4546 |
204
- | 0.4227 | 3.8 | 7600 | 0.4535 |
205
- | 0.4069 | 3.83 | 7650 | 0.4517 |
206
- | 0.3927 | 3.85 | 7700 | 0.4548 |
207
- | 0.3977 | 3.88 | 7750 | 0.4521 |
208
- | 0.4184 | 3.9 | 7800 | 0.4516 |
209
- | 0.3854 | 3.92 | 7850 | 0.4513 |
210
- | 0.4129 | 3.95 | 7900 | 0.4524 |
211
- | 0.3998 | 3.98 | 7950 | 0.4548 |
212
- | 0.4227 | 4.0 | 8000 | 0.4534 |
213
- | 0.3788 | 4.03 | 8050 | 0.4520 |
214
- | 0.3732 | 4.05 | 8100 | 0.4501 |
215
- | 0.375 | 4.08 | 8150 | 0.4565 |
216
- | 0.3845 | 4.1 | 8200 | 0.4515 |
217
- | 0.378 | 4.12 | 8250 | 0.4492 |
218
- | 0.3874 | 4.15 | 8300 | 0.4508 |
219
- | 0.3802 | 4.17 | 8350 | 0.4510 |
220
- | 0.3596 | 4.2 | 8400 | 0.4524 |
221
- | 0.4009 | 4.22 | 8450 | 0.4549 |
222
- | 0.4105 | 4.25 | 8500 | 0.4515 |
223
- | 0.3716 | 4.28 | 8550 | 0.4508 |
224
- | 0.3673 | 4.3 | 8600 | 0.4497 |
225
- | 0.3882 | 4.33 | 8650 | 0.4513 |
226
- | 0.375 | 4.35 | 8700 | 0.4524 |
227
- | 0.3654 | 4.38 | 8750 | 0.4503 |
228
- | 0.3983 | 4.4 | 8800 | 0.4509 |
229
- | 0.4067 | 4.42 | 8850 | 0.4487 |
230
- | 0.3966 | 4.45 | 8900 | 0.4519 |
231
- | 0.378 | 4.47 | 8950 | 0.4505 |
232
- | 0.3755 | 4.5 | 9000 | 0.4508 |
233
- | 0.3855 | 4.53 | 9050 | 0.4500 |
234
- | 0.3938 | 4.55 | 9100 | 0.4527 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
235
 
236
 
237
  ### Framework versions
 
18
 
19
  This model is a fine-tuned version of [TheBloke/Mistral-7B-v0.1-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-v0.1-GPTQ) on the None dataset.
20
  It achieves the following results on the evaluation set:
21
+ - Loss: 0.4471
22
 
23
  ## Model description
24
 
 
48
 
49
  ### Training results
50
 
51
+ | Training Loss | Epoch | Step | Validation Loss |
52
+ |:-------------:|:-----:|:-----:|:---------------:|
53
+ | 1.7543 | 0.03 | 50 | 0.9190 |
54
+ | 0.8445 | 0.05 | 100 | 0.7860 |
55
+ | 0.7819 | 0.07 | 150 | 0.7460 |
56
+ | 0.7231 | 0.1 | 200 | 0.7147 |
57
+ | 0.6985 | 0.12 | 250 | 0.6924 |
58
+ | 0.6887 | 0.15 | 300 | 0.6823 |
59
+ | 0.6836 | 0.17 | 350 | 0.6702 |
60
+ | 0.6624 | 0.2 | 400 | 0.6574 |
61
+ | 0.6712 | 0.23 | 450 | 0.6507 |
62
+ | 0.6354 | 0.25 | 500 | 0.6417 |
63
+ | 0.6089 | 0.28 | 550 | 0.6373 |
64
+ | 0.6236 | 0.3 | 600 | 0.6284 |
65
+ | 0.6161 | 0.33 | 650 | 0.6228 |
66
+ | 0.6367 | 0.35 | 700 | 0.6152 |
67
+ | 0.6329 | 0.38 | 750 | 0.6097 |
68
+ | 0.5944 | 0.4 | 800 | 0.6076 |
69
+ | 0.6036 | 0.42 | 850 | 0.6030 |
70
+ | 0.5767 | 0.45 | 900 | 0.5989 |
71
+ | 0.6079 | 0.47 | 950 | 0.5954 |
72
+ | 0.5915 | 0.5 | 1000 | 0.5916 |
73
+ | 0.5911 | 0.53 | 1050 | 0.5859 |
74
+ | 0.5752 | 0.55 | 1100 | 0.5847 |
75
+ | 0.5698 | 0.57 | 1150 | 0.5802 |
76
+ | 0.5813 | 0.6 | 1200 | 0.5754 |
77
+ | 0.5918 | 0.62 | 1250 | 0.5735 |
78
+ | 0.5587 | 0.65 | 1300 | 0.5677 |
79
+ | 0.5933 | 0.68 | 1350 | 0.5620 |
80
+ | 0.5262 | 0.7 | 1400 | 0.5522 |
81
+ | 0.5455 | 0.72 | 1450 | 0.5457 |
82
+ | 0.5472 | 0.75 | 1500 | 0.5416 |
83
+ | 0.536 | 0.78 | 1550 | 0.5400 |
84
+ | 0.527 | 0.8 | 1600 | 0.5393 |
85
+ | 0.5516 | 0.82 | 1650 | 0.5350 |
86
+ | 0.5578 | 0.85 | 1700 | 0.5356 |
87
+ | 0.5501 | 0.88 | 1750 | 0.5297 |
88
+ | 0.5316 | 0.9 | 1800 | 0.5288 |
89
+ | 0.5436 | 0.93 | 1850 | 0.5268 |
90
+ | 0.514 | 0.95 | 1900 | 0.5295 |
91
+ | 0.5249 | 0.97 | 1950 | 0.5246 |
92
+ | 0.538 | 1.0 | 2000 | 0.5226 |
93
+ | 0.4967 | 1.02 | 2050 | 0.5237 |
94
+ | 0.4991 | 1.05 | 2100 | 0.5261 |
95
+ | 0.5142 | 1.07 | 2150 | 0.5203 |
96
+ | 0.4891 | 1.1 | 2200 | 0.5174 |
97
+ | 0.5058 | 1.12 | 2250 | 0.5173 |
98
+ | 0.4895 | 1.15 | 2300 | 0.5182 |
99
+ | 0.4918 | 1.18 | 2350 | 0.5139 |
100
+ | 0.485 | 1.2 | 2400 | 0.5091 |
101
+ | 0.5173 | 1.23 | 2450 | 0.5121 |
102
+ | 0.5021 | 1.25 | 2500 | 0.5116 |
103
+ | 0.4834 | 1.27 | 2550 | 0.5097 |
104
+ | 0.4754 | 1.3 | 2600 | 0.5137 |
105
+ | 0.4907 | 1.32 | 2650 | 0.5059 |
106
+ | 0.5155 | 1.35 | 2700 | 0.5051 |
107
+ | 0.4965 | 1.38 | 2750 | 0.5050 |
108
+ | 0.5148 | 1.4 | 2800 | 0.5043 |
109
+ | 0.4709 | 1.43 | 2850 | 0.5032 |
110
+ | 0.4864 | 1.45 | 2900 | 0.5037 |
111
+ | 0.4794 | 1.48 | 2950 | 0.5029 |
112
+ | 0.4803 | 1.5 | 3000 | 0.5012 |
113
+ | 0.4843 | 1.52 | 3050 | 0.5017 |
114
+ | 0.4726 | 1.55 | 3100 | 0.4984 |
115
+ | 0.4773 | 1.57 | 3150 | 0.4968 |
116
+ | 0.4673 | 1.6 | 3200 | 0.4995 |
117
+ | 0.4803 | 1.62 | 3250 | 0.4990 |
118
+ | 0.4926 | 1.65 | 3300 | 0.4965 |
119
+ | 0.4814 | 1.68 | 3350 | 0.4973 |
120
+ | 0.4714 | 1.7 | 3400 | 0.4930 |
121
+ | 0.4797 | 1.73 | 3450 | 0.4903 |
122
+ | 0.4807 | 1.75 | 3500 | 0.4932 |
123
+ | 0.4815 | 1.77 | 3550 | 0.4888 |
124
+ | 0.4852 | 1.8 | 3600 | 0.4874 |
125
+ | 0.4802 | 1.82 | 3650 | 0.4887 |
126
+ | 0.4701 | 1.85 | 3700 | 0.4897 |
127
+ | 0.4572 | 1.88 | 3750 | 0.4873 |
128
+ | 0.4469 | 1.9 | 3800 | 0.4878 |
129
+ | 0.478 | 1.93 | 3850 | 0.4885 |
130
+ | 0.4449 | 1.95 | 3900 | 0.4866 |
131
+ | 0.4634 | 1.98 | 3950 | 0.4843 |
132
+ | 0.4718 | 2.0 | 4000 | 0.4838 |
133
+ | 0.4458 | 2.02 | 4050 | 0.4822 |
134
+ | 0.461 | 2.05 | 4100 | 0.4801 |
135
+ | 0.4247 | 2.08 | 4150 | 0.4856 |
136
+ | 0.4325 | 2.1 | 4200 | 0.4830 |
137
+ | 0.4354 | 2.12 | 4250 | 0.4827 |
138
+ | 0.4313 | 2.15 | 4300 | 0.4807 |
139
+ | 0.4753 | 2.17 | 4350 | 0.4812 |
140
+ | 0.4442 | 2.2 | 4400 | 0.4833 |
141
+ | 0.4431 | 2.23 | 4450 | 0.4851 |
142
+ | 0.4485 | 2.25 | 4500 | 0.4815 |
143
+ | 0.4416 | 2.27 | 4550 | 0.4813 |
144
+ | 0.4613 | 2.3 | 4600 | 0.4777 |
145
+ | 0.4121 | 2.33 | 4650 | 0.4775 |
146
+ | 0.4311 | 2.35 | 4700 | 0.4768 |
147
+ | 0.4532 | 2.38 | 4750 | 0.4765 |
148
+ | 0.4342 | 2.4 | 4800 | 0.4781 |
149
+ | 0.4189 | 2.42 | 4850 | 0.4743 |
150
+ | 0.443 | 2.45 | 4900 | 0.4742 |
151
+ | 0.4596 | 2.48 | 4950 | 0.4734 |
152
+ | 0.4193 | 2.5 | 5000 | 0.4719 |
153
+ | 0.4321 | 2.52 | 5050 | 0.4723 |
154
+ | 0.4456 | 2.55 | 5100 | 0.4713 |
155
+ | 0.4464 | 2.58 | 5150 | 0.4694 |
156
+ | 0.4273 | 2.6 | 5200 | 0.4700 |
157
+ | 0.4239 | 2.62 | 5250 | 0.4701 |
158
+ | 0.4282 | 2.65 | 5300 | 0.4687 |
159
+ | 0.4303 | 2.67 | 5350 | 0.4686 |
160
+ | 0.4559 | 2.7 | 5400 | 0.4695 |
161
+ | 0.4542 | 2.73 | 5450 | 0.4692 |
162
+ | 0.4532 | 2.75 | 5500 | 0.4685 |
163
+ | 0.4505 | 2.77 | 5550 | 0.4663 |
164
+ | 0.4533 | 2.8 | 5600 | 0.4660 |
165
+ | 0.4351 | 2.83 | 5650 | 0.4640 |
166
+ | 0.4354 | 2.85 | 5700 | 0.4651 |
167
+ | 0.4374 | 2.88 | 5750 | 0.4664 |
168
+ | 0.4571 | 2.9 | 5800 | 0.4662 |
169
+ | 0.4663 | 2.92 | 5850 | 0.4636 |
170
+ | 0.4211 | 2.95 | 5900 | 0.4645 |
171
+ | 0.4349 | 2.98 | 5950 | 0.4622 |
172
+ | 0.4167 | 3.0 | 6000 | 0.4634 |
173
+ | 0.4176 | 3.02 | 6050 | 0.4621 |
174
+ | 0.4387 | 3.05 | 6100 | 0.4607 |
175
+ | 0.395 | 3.08 | 6150 | 0.4638 |
176
+ | 0.4186 | 3.1 | 6200 | 0.4623 |
177
+ | 0.3993 | 3.12 | 6250 | 0.4622 |
178
+ | 0.4009 | 3.15 | 6300 | 0.4631 |
179
+ | 0.4033 | 3.17 | 6350 | 0.4640 |
180
+ | 0.389 | 3.2 | 6400 | 0.4662 |
181
+ | 0.4037 | 3.23 | 6450 | 0.4618 |
182
+ | 0.4287 | 3.25 | 6500 | 0.4617 |
183
+ | 0.3917 | 3.27 | 6550 | 0.4611 |
184
+ | 0.3944 | 3.3 | 6600 | 0.4626 |
185
+ | 0.4088 | 3.33 | 6650 | 0.4622 |
186
+ | 0.4205 | 3.35 | 6700 | 0.4604 |
187
+ | 0.4273 | 3.38 | 6750 | 0.4608 |
188
+ | 0.4139 | 3.4 | 6800 | 0.4607 |
189
+ | 0.3888 | 3.42 | 6850 | 0.4603 |
190
+ | 0.4353 | 3.45 | 6900 | 0.4573 |
191
+ | 0.4222 | 3.48 | 6950 | 0.4577 |
192
+ | 0.4083 | 3.5 | 7000 | 0.4571 |
193
+ | 0.4161 | 3.52 | 7050 | 0.4560 |
194
+ | 0.3879 | 3.55 | 7100 | 0.4540 |
195
+ | 0.3819 | 3.58 | 7150 | 0.4570 |
196
+ | 0.4345 | 3.6 | 7200 | 0.4551 |
197
+ | 0.4101 | 3.62 | 7250 | 0.4569 |
198
+ | 0.4194 | 3.65 | 7300 | 0.4543 |
199
+ | 0.4066 | 3.67 | 7350 | 0.4563 |
200
+ | 0.4144 | 3.7 | 7400 | 0.4553 |
201
+ | 0.4134 | 3.73 | 7450 | 0.4566 |
202
+ | 0.3906 | 3.75 | 7500 | 0.4550 |
203
+ | 0.4128 | 3.77 | 7550 | 0.4546 |
204
+ | 0.4227 | 3.8 | 7600 | 0.4535 |
205
+ | 0.4069 | 3.83 | 7650 | 0.4517 |
206
+ | 0.3927 | 3.85 | 7700 | 0.4548 |
207
+ | 0.3977 | 3.88 | 7750 | 0.4521 |
208
+ | 0.4184 | 3.9 | 7800 | 0.4516 |
209
+ | 0.3854 | 3.92 | 7850 | 0.4513 |
210
+ | 0.4129 | 3.95 | 7900 | 0.4524 |
211
+ | 0.3998 | 3.98 | 7950 | 0.4548 |
212
+ | 0.4227 | 4.0 | 8000 | 0.4534 |
213
+ | 0.3788 | 4.03 | 8050 | 0.4520 |
214
+ | 0.3732 | 4.05 | 8100 | 0.4501 |
215
+ | 0.375 | 4.08 | 8150 | 0.4565 |
216
+ | 0.3845 | 4.1 | 8200 | 0.4515 |
217
+ | 0.378 | 4.12 | 8250 | 0.4492 |
218
+ | 0.3874 | 4.15 | 8300 | 0.4508 |
219
+ | 0.3802 | 4.17 | 8350 | 0.4510 |
220
+ | 0.3596 | 4.2 | 8400 | 0.4524 |
221
+ | 0.4009 | 4.22 | 8450 | 0.4549 |
222
+ | 0.4105 | 4.25 | 8500 | 0.4515 |
223
+ | 0.3716 | 4.28 | 8550 | 0.4508 |
224
+ | 0.3673 | 4.3 | 8600 | 0.4497 |
225
+ | 0.3882 | 4.33 | 8650 | 0.4513 |
226
+ | 0.375 | 4.35 | 8700 | 0.4524 |
227
+ | 0.3654 | 4.38 | 8750 | 0.4503 |
228
+ | 0.3983 | 4.4 | 8800 | 0.4509 |
229
+ | 0.4067 | 4.42 | 8850 | 0.4487 |
230
+ | 0.3966 | 4.45 | 8900 | 0.4519 |
231
+ | 0.378 | 4.47 | 8950 | 0.4505 |
232
+ | 0.3755 | 4.5 | 9000 | 0.4508 |
233
+ | 0.3855 | 4.53 | 9050 | 0.4500 |
234
+ | 0.3938 | 4.55 | 9100 | 0.4527 |
235
+ | 0.3946 | 4.58 | 9150 | 0.4531 |
236
+ | 0.3752 | 4.6 | 9200 | 0.4506 |
237
+ | 0.3723 | 4.62 | 9250 | 0.4459 |
238
+ | 0.3704 | 4.65 | 9300 | 0.4467 |
239
+ | 0.3861 | 4.67 | 9350 | 0.4484 |
240
+ | 0.3965 | 4.7 | 9400 | 0.4481 |
241
+ | 0.3972 | 4.72 | 9450 | 0.4482 |
242
+ | 0.3917 | 4.75 | 9500 | 0.4447 |
243
+ | 0.3688 | 4.78 | 9550 | 0.4473 |
244
+ | 0.3861 | 4.8 | 9600 | 0.4491 |
245
+ | 0.3593 | 4.83 | 9650 | 0.4491 |
246
+ | 0.3916 | 4.85 | 9700 | 0.4432 |
247
+ | 0.3748 | 4.88 | 9750 | 0.4432 |
248
+ | 0.3921 | 4.9 | 9800 | 0.4459 |
249
+ | 0.3745 | 4.92 | 9850 | 0.4457 |
250
+ | 0.4002 | 4.95 | 9900 | 0.4443 |
251
+ | 0.3767 | 4.97 | 9950 | 0.4430 |
252
+ | 0.3537 | 5.0 | 10000 | 0.4470 |
253
+ | 0.3673 | 5.03 | 10050 | 0.4531 |
254
+ | 0.3506 | 5.05 | 10100 | 0.4474 |
255
+ | 0.3506 | 5.08 | 10150 | 0.4497 |
256
+ | 0.3622 | 5.1 | 10200 | 0.4471 |
257
 
258
 
259
  ### Framework versions
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:833a38f2dac78e02757fe5510f275a7217a04b933e6b739b46ab9dae1f4fcb6b
3
  size 109069176
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c277702c17c8fefe374d46870d7ccfd6bacbcd4584f30d2c7556fa1735437c3
3
  size 109069176
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c999347cd7233feb58c6450844581530c5797ee1474d5259832723b88117d3ca
3
  size 4664
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ffbce8ad9c7b216a25e0f662cc0cfa161b179c3d98e2e8ecb6860ed8d6a6e96b
3
  size 4664