ppo-LunarLander-v2 / config.json
mecusorin's picture
Testing the waters with Stable-Baselines3
affb711
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1e2ff418c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1e2ff41950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1e2ff419e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1e2ff41a70>", "_build": "<function ActorCriticPolicy._build at 0x7f1e2ff41b00>", "forward": "<function ActorCriticPolicy.forward at 0x7f1e2ff41b90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1e2ff41c20>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1e2ff41cb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1e2ff41d40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1e2ff41dd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1e2ff41e60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1e2ff0e810>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1654236471.4366572, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAGhBvPkOzKz3CTxq78DqRua0XyD4F0aa4AACAPwAAgD9NCWg+cUocPD+eQjvASSM5BjmcPX79ZboAAIA/AACAPwAuNjyPEn+6DSPQO2Iw/TfHGPU6TmmsNgAAgD8AAIA/zf6IPI/RBz8Cj308v67EvggJrD3p4LG9AAAAAAAAAADmsTk+j4oZvN5o0jsdm725JHqEvRianroAAIA/AACAP3og2D7vC6m9NXl+uq2XCDhmGYy95lLIOQAAgD8AAIA/ZoAGvEjHqrrnGwg8SjqvNM8lijq0N64zAACAPwAAgD/aDdG9wxUjus7H8TwilnG5z82GO0g9Y7gAAIA/AAAAAMMdm74tfBo+lbGcPXL7Sb5oK3E8E916vAAAAAAAAAAAzRIXPfbkQrpASiu7C6mlvLuFmLoy4pC9AAAAAAAAgD9mA0296MeoPhOgzj1ZYay+NRofPvU/Vj0AAAAAAAAAALM9Nz6Y54c+knq1Pcrrj752IDK+6GQ8PgAAAAAAAAAAzYVkPY+CNrpYfLu709GRtptQEjtdugQ2AACAPwAAgD+a0YW7Dwg2PQjOH72lMCG++woSPqXmC74AAAAAAAAAAH1cqD6PGgu66vMNO0Cu+rhZDg+7TkMAugAAgD8AAIA/zQtivRQgtLqVheu6tbXptX9EWToimgY6AACAPwAAgD+UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIR1UTRN0cWECUhpRSlIwBbJRN6AOMAXSUR0CMjjJmukk9dX2UKGgGaAloD0MITZ6ymq6ZWUCUhpRSlGgVTegDaBZHQIyXI3T/hl11fZQoaAZoCWgPQwguqdpugv5TQJSGlFKUaBVN6ANoFkdAjKa47Rv3rXV9lChoBmgJaA9DCBwHXi13g2VAlIaUUpRoFU3oA2gWR0CMqOpNsWO7dX2UKGgGaAloD0MIdv7tst+CYUCUhpRSlGgVTegDaBZHQIzdZQ1rIo51fZQoaAZoCWgPQwjuJ2N8mOFCQJSGlFKUaBVN6ANoFkdAjN4E+xGDtnV9lChoBmgJaA9DCEiHhzB+RFdAlIaUUpRoFU3oA2gWR0CM32QNCqp+dX2UKGgGaAloD0MIoImw4em0X0CUhpRSlGgVTegDaBZHQIzmHEn9ehR1fZQoaAZoCWgPQwg/U69bBCpAQJSGlFKUaBVL3mgWR0CM7OSUTtb+dX2UKGgGaAloD0MInlxTIDPuY0CUhpRSlGgVTegDaBZHQIzyU8FINEx1fZQoaAZoCWgPQwj3jhoTYoRXQJSGlFKUaBVN6ANoFkdAjPNFotcv/XV9lChoBmgJaA9DCNgsl43O3FhAlIaUUpRoFU3oA2gWR0CM9AlYU34sdX2UKGgGaAloD0MIZAeVuA6OY0CUhpRSlGgVTegDaBZHQIz5PuPV/c51fZQoaAZoCWgPQwigihu3GBthQJSGlFKUaBVN6ANoFkdAjP2hRQ79ynV9lChoBmgJaA9DCKG5TiOtMWJAlIaUUpRoFU3oA2gWR0CNBlU0elsQdX2UKGgGaAloD0MImyDqPoCkYUCUhpRSlGgVTegDaBZHQI0KoY1pCa91fZQoaAZoCWgPQwiEgHwJFc9dQJSGlFKUaBVN6ANoFkdAjRxZ5Rjz7XV9lChoBmgJaA9DCIRLx5xnZC9AlIaUUpRoFUuxaBZHQI005mK64Dt1fZQoaAZoCWgPQwgtzEI7p/hTQJSGlFKUaBVN6ANoFkdAjTibHZK3/nV9lChoBmgJaA9DCONxUS0iTFNAlIaUUpRoFU3oA2gWR0CNQQV2Rq46dX2UKGgGaAloD0MIbolccAb+V0CUhpRSlGgVTegDaBZHQI1PW8274BV1fZQoaAZoCWgPQwiTxJJy959bQJSGlFKUaBVN6ANoFkdAjWCibc45tHV9lChoBmgJaA9DCGt/Z3v00FlAlIaUUpRoFU3oA2gWR0CNYTZzPrv9dX2UKGgGaAloD0MIh2u1h73ZVUCUhpRSlGgVTegDaBZHQI1inTodMkB1fZQoaAZoCWgPQwieQUP/BHZjQJSGlFKUaBVN6ANoFkdAjY7bqY7aI3V9lChoBmgJaA9DCJn091J4D1xAlIaUUpRoFU3oA2gWR0CNlcC17Y03dX2UKGgGaAloD0MI2JyDZ0ImZECUhpRSlGgVTegDaBZHQI2bHaews5J1fZQoaAZoCWgPQwhYyFwZVFteQJSGlFKUaBVN6ANoFkdAjZvuOCGvfXV9lChoBmgJaA9DCEs/4ezWR1xAlIaUUpRoFU3oA2gWR0CNnKG2TgVHdX2UKGgGaAloD0MIfsSvWMN9VECUhpRSlGgVTegDaBZHQI2hr4N7SiN1fZQoaAZoCWgPQwhJY7SOqnJEQJSGlFKUaBVL72gWR0CNpcol2NeddX2UKGgGaAloD0MI4IJsWb77XkCUhpRSlGgVTegDaBZHQI2l5TXJ5mh1fZQoaAZoCWgPQwgbZJKRs5A2QJSGlFKUaBVLzWgWR0CNp4Tkhib2dX2UKGgGaAloD0MIX3mQniLUYUCUhpRSlGgVTegDaBZHQI2uA80UGml1fZQoaAZoCWgPQwhE4EigweJbQJSGlFKUaBVN6ANoFkdAjbImf5DZ13V9lChoBmgJaA9DCPz+zYuT0WFAlIaUUpRoFU3oA2gWR0CN3lSncclxdX2UKGgGaAloD0MI3+LhPQeGX0CUhpRSlGgVTegDaBZHQI3iXZdv8651fZQoaAZoCWgPQwhqUDQP4CBjQJSGlFKUaBVN6ANoFkdAjep3/xUedXV9lChoBmgJaA9DCLVwWYXNnV1AlIaUUpRoFU3oA2gWR0CN91yJbdJrdX2UKGgGaAloD0MIclDCTNtzSMCUhpRSlGgVS9JoFkdAjfq3i704BHV9lChoBmgJaA9DCJOP3QVKGhbAlIaUUpRoFUu9aBZHQI4CZXXAdn11fZQoaAZoCWgPQwhW73A7NKldQJSGlFKUaBVN6ANoFkdAjgYL0z0pVnV9lChoBmgJaA9DCMU6Vb5n8mNAlIaUUpRoFU3oA2gWR0COBohC+lCUdX2UKGgGaAloD0MIcefCSC/wXECUhpRSlGgVTegDaBZHQI48O8AaNuN1fZQoaAZoCWgPQwirJR3l4KZgQJSGlFKUaBVN6ANoFkdAjkFLMs6JZXV9lChoBmgJaA9DCKUyxRwESltAlIaUUpRoFU3oA2gWR0COQh9H+ZPVdX2UKGgGaAloD0MInMWLhaHwYkCUhpRSlGgVTegDaBZHQI5CzxZuAI91fZQoaAZoCWgPQwjZd0XwP91gQJSGlFKUaBVN6ANoFkdAjkfB8QZn+XV9lChoBmgJaA9DCML3/gbtZ0rAlIaUUpRoFUvxaBZHQI5Kq9XcQAd1fZQoaAZoCWgPQwgpz7wc9gxkQJSGlFKUaBVN6ANoFkdAjkuBIFvAGnV9lChoBmgJaA9DCJ25h4Tv+VtAlIaUUpRoFU3oA2gWR0COS5uTibUgdX2UKGgGaAloD0MIPEz75v79U0CUhpRSlGgVTegDaBZHQI5ND6vaDf51fZQoaAZoCWgPQwgQ7PgvENNdQJSGlFKUaBVN6ANoFkdAjlKT2OAAhnV9lChoBmgJaA9DCCMRGsHGoFtAlIaUUpRoFU3oA2gWR0COVj9JjDsMdX2UKGgGaAloD0MIeGLWi6GYQ0CUhpRSlGgVS+5oFkdAjljXlCCz1XV9lChoBmgJaA9DCAVpxqLphChAlIaUUpRoFUvraBZHQI5ZKKcd5pt1fZQoaAZoCWgPQwibqntkc/UjQJSGlFKUaBVLwmgWR0COWZIfbKzSdX2UKGgGaAloD0MIr7K2KR4nRECUhpRSlGgVS9toFkdAjmcF5GBnSXV9lChoBmgJaA9DCDbNO07RJ0HAlIaUUpRoFUuSaBZHQI5niUJOWSl1fZQoaAZoCWgPQwgQd/UqMvZbQJSGlFKUaBVN6ANoFkdAjnweRYA80XV9lChoBmgJaA9DCIbkZOJW1VhAlIaUUpRoFU3oA2gWR0COkgYKpkwwdX2UKGgGaAloD0MI68TleAXDYECUhpRSlGgVTegDaBZHQI6VyT0QK8d1fZQoaAZoCWgPQwj5SiAldqteQJSGlFKUaBVN6ANoFkdAjp3Cy6cy33V9lChoBmgJaA9DCBE5fT1fZlRAlIaUUpRoFU3oA2gWR0COoU704BFNdX2UKGgGaAloD0MIIhecwV95YUCUhpRSlGgVTegDaBZHQI7VpAfMfRx1fZQoaAZoCWgPQwjeHoSAfCdaQJSGlFKUaBVN6ANoFkdAjtpn+AEt/XV9lChoBmgJaA9DCBhftMcLkVpAlIaUUpRoFU3oA2gWR0CO5PLMcIZ7dX2UKGgGaAloD0MIPBIvT+euW0CUhpRSlGgVTegDaBZHQI7mE50bLlp1fZQoaAZoCWgPQwgI46dxb1NiQJSGlFKUaBVN6ANoFkdAjuYypBHCoHV9lChoBmgJaA9DCAHChxItilFAlIaUUpRoFU3oA2gWR0CO585IYm9hdX2UKGgGaAloD0MI0SNGzy0nYUCUhpRSlGgVTegDaBZHQI7yfdXT3Ix1fZQoaAZoCWgPQwjMY83IoPdhQJSGlFKUaBVN6ANoFkdAjvXf642CNHV9lChoBmgJaA9DCMv0S8RbVlVAlIaUUpRoFU3oA2gWR0CO9jWNFSbZdX2UKGgGaAloD0MIe6NWmL7CYkCUhpRSlGgVTegDaBZHQI8FvL1VYIV1fZQoaAZoCWgPQwgLDcSymUpiQJSGlFKUaBVN6ANoFkdAjwZNoi9qUXV9lChoBmgJaA9DCEs6ysFsCFJAlIaUUpRoFU3oA2gWR0CPGmoVEd/8dX2UKGgGaAloD0MI7Bfshm32WkCUhpRSlGgVTegDaBZHQI8wvRXwLE11fZQoaAZoCWgPQwiyaDo7GcxYQJSGlFKUaBVN6ANoFkdAjzTTxoZhrnV9lChoBmgJaA9DCO+oMSHm4mZAlIaUUpRoFU1SA2gWR0CPPS/5+H8CdX2UKGgGaAloD0MI76zddiGbYUCUhpRSlGgVTegDaBZHQI89oppeu3d1fZQoaAZoCWgPQwinlNdKaABhQJSGlFKUaBVN6ANoFkdAj0Fb9AHE/HV9lChoBmgJaA9DCCasjbETB1hAlIaUUpRoFU3oA2gWR0CPfCx/ustDdX2UKGgGaAloD0MITMRb598DXUCUhpRSlGgVTegDaBZHQI+Ja6xxDLN1fZQoaAZoCWgPQwii7gOQ2vhfQJSGlFKUaBVN6ANoFkdAj4qZFocrAnV9lChoBmgJaA9DCDwUBfpE515AlIaUUpRoFU3oA2gWR0CPiruhsZYQdX2UKGgGaAloD0MIwCZr1MNZYECUhpRSlGgVTegDaBZHQI+MuXZ5AyF1fZQoaAZoCWgPQwgSTaCIRQZhQJSGlFKUaBVN6ANoFkdAj5j0iY9gW3V9lChoBmgJaA9DCC4B+KdUe2ZAlIaUUpRoFU3oA2gWR0CPnGP7N0NjdX2UKGgGaAloD0MICmXh62suXUCUhpRSlGgVTegDaBZHQI+cvL9uP3l1fZQoaAZoCWgPQwg8UKc8ujlPQJSGlFKUaBVLzGgWR0CPoc0F8ohIdX2UKGgGaAloD0MInrEv2XhQBcCUhpRSlGgVS/5oFkdAj6j4kNWluXV9lChoBmgJaA9DCB0CRwINp1VAlIaUUpRoFU3oA2gWR0CPrBgYxcmjdX2UKGgGaAloD0MIFm2Oc5teZUCUhpRSlGgVTegDaBZHQI+spUedTYN1fZQoaAZoCWgPQwjLg/QUuTtlQJSGlFKUaBVN6ANoFkdAj76kmplz2nV9lChoBmgJaA9DCOwTQDGyoD5AlIaUUpRoFU0DAWgWR0CPyS0WM0gsdX2UKGgGaAloD0MIU7RyLzCDXECUhpRSlGgVTegDaBZHQI/SAG0NSZV1fZQoaAZoCWgPQwhBnIcTGEplQJSGlFKUaBVN6ANoFkdAj9WGS6lLvnV9lChoBmgJaA9DCOjbgqW6y11AlIaUUpRoFU3oA2gWR0CP3KLCN0eVdX2UKGgGaAloD0MILLgf8EBZYUCUhpRSlGgVTegDaBZHQI/c/xMFlkJ1fZQoaAZoCWgPQwiWQ4tsZ/dgQJSGlFKUaBVN6ANoFkdAj+AKyOaOP3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}