mclarknc commited on
Commit
06fd2f6
1 Parent(s): 1654d7b

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 273.18 +/- 23.61
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff8f32ec440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff8f32ec4d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff8f32ec560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff8f32ec5f0>", "_build": "<function ActorCriticPolicy._build at 0x7ff8f32ec680>", "forward": "<function ActorCriticPolicy.forward at 0x7ff8f32ec710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff8f32ec7a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff8f32ec830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff8f32ec8c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff8f32ec950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff8f32ec9e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff8f333f450>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1666186858921551059, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrZNbsVhOw+AF4vOgUYsL70xwq8DTHXPAAAAAAAAAAAzeCuuwfKaz7Ckba9Y9KavnEG8b3xLUG9AAAAAAAAAABmnKc8XLh8O/3y6LyjNI6+bz6wvCMBVj0AAAAAAAAAAE0XfL1QEoU/cOmEvSIewr5MuwG+0vMtPQAAAAAAAAAAszYQPZX1Iz4tJSI8GrCsvn5yBbz6rZO9AAAAAAAAAABzhzC+xmqIP/wDxL4fMbu+pdCQvstcUr4AAAAAAAAAAEblcD7Ev8w+s+oEvwZuor7zFw++UXcgvgAAAAAAAAAAAAC/Oe6lvz1/CSi8jh+5vjopSj2FhNg8AAAAAAAAAAAzt3E9XMMDunxkozUVN0gwy02busCBurQAAIA/AACAP7r4Db41uHg/mdI/vqZRr74JalG+eC8OPQAAAAAAAAAAzXTdO1qKUD7mMl09dL+fvjupJLyIseI8AAAAAAAAAABz6Aw+d5jCPvURW77yyZG+lYMzvRExhr0AAAAAAAAAAA24tr0DoyW8FTSlu7qXvDxJtVo9uBe4uAAAAAAAAIA/83nBvQy0hz8mgda9QCTJvne6C76L8LS9AAAAAAAAAADNBoi9QTOMPwB+q73bYeK+Vrwzvl6pLb0AAAAAAAAAAM3Mozj7ALA/PR96PBVjvr4VCfu7QpaivQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIT+W0p+QvcUCUhpRSlIwBbJRNCAGMAXSUR0CY542Zy+6AdX2UKGgGaAloD0MIk1FlGPclb0CUhpRSlGgVS/VoFkdAmOgBUNrj53V9lChoBmgJaA9DCLWoT3KHHnFAlIaUUpRoFUv7aBZHQJjoLcIqslt1fZQoaAZoCWgPQwhyiSMPxHFvQJSGlFKUaBVL7mgWR0CY6OcPOIIodX2UKGgGaAloD0MIelbSiu+NckCUhpRSlGgVS9NoFkdAmOkRujynUHV9lChoBmgJaA9DCEikbfwJlW5AlIaUUpRoFUvXaBZHQJjpe/h2nsN1fZQoaAZoCWgPQwgptKz7R6xwQJSGlFKUaBVL52gWR0CY6gbfxc3VdX2UKGgGaAloD0MIYto399fFcECUhpRSlGgVS9VoFkdAmOo0GZ/kNnV9lChoBmgJaA9DCMAF2bI8ZHFAlIaUUpRoFU0eAWgWR0CY6jXnQpnZdX2UKGgGaAloD0MIOgg6WlX+bUCUhpRSlGgVS+xoFkdAmOpjJIUah3V9lChoBmgJaA9DCPci2o5pwHJAlIaUUpRoFUv6aBZHQJjqdggHNX51fZQoaAZoCWgPQwiYFYp0/zVzQJSGlFKUaBVL3mgWR0CY6yhUBGQTdX2UKGgGaAloD0MIS3hCr7+acECUhpRSlGgVS/1oFkdAmOulR1oxpXV9lChoBmgJaA9DCKg1zTtOGXFAlIaUUpRoFU0AAWgWR0CY7DmZ3LV4dX2UKGgGaAloD0MIX2Is0682b0CUhpRSlGgVS/ZoFkdAmOy8g2ZRbnV9lChoBmgJaA9DCKIo0CeyW3JAlIaUUpRoFUvkaBZHQJjtAbwSamZ1fZQoaAZoCWgPQwhi2jf3l65yQJSGlFKUaBVL8mgWR0CY7XSncclxdX2UKGgGaAloD0MIucSRB6JBckCUhpRSlGgVS9BoFkdAmO4cOLBKtnV9lChoBmgJaA9DCAnf+xu073JAlIaUUpRoFU0UAWgWR0CY7v5IpYs/dX2UKGgGaAloD0MIK6G7JM5Qc0CUhpRSlGgVS/1oFkdAmO8u938n/nV9lChoBmgJaA9DCPHxCdk5qXJAlIaUUpRoFUvsaBZHQJjvUtYjjaR1fZQoaAZoCWgPQwhFEOfhhA1yQJSGlFKUaBVL5mgWR0CY7769kBjndX2UKGgGaAloD0MIRpiiXNohc0CUhpRSlGgVTT4BaBZHQJjv8w35vcd1fZQoaAZoCWgPQwgYfJqTFyFwQJSGlFKUaBVL6GgWR0CY7/4HX2/SdX2UKGgGaAloD0MIWKg1zXtQcECUhpRSlGgVS+toFkdAmPAPybx3FHV9lChoBmgJaA9DCCOfVzy163JAlIaUUpRoFU0NAWgWR0CY8QZJTVDsdX2UKGgGaAloD0MIYmpLHeQpc0CUhpRSlGgVTRMBaBZHQJjxQAbQ1Jl1fZQoaAZoCWgPQwiuD+uNmn9yQJSGlFKUaBVNCwFoFkdAmPHNeD3/P3V9lChoBmgJaA9DCDfHuU24Am5AlIaUUpRoFU0LAWgWR0CY8lKrJbMYdX2UKGgGaAloD0MIK8O4G8SBcUCUhpRSlGgVS+FoFkdAmPJhU70WdnV9lChoBmgJaA9DCOUn1T4dz21AlIaUUpRoFUv6aBZHQJjyetMfzSV1fZQoaAZoCWgPQwhTzaylQLNwQJSGlFKUaBVL9WgWR0CY8xbSqlxfdX2UKGgGaAloD0MIm3KFd7ntbkCUhpRSlGgVS/NoFkdAmQbwNTcZcnV9lChoBmgJaA9DCK685H9yKXNAlIaUUpRoFU0ZAWgWR0CZB0Wp6yB1dX2UKGgGaAloD0MIR6zFp4BTcUCUhpRSlGgVS/hoFkdAmQf93W4EwHV9lChoBmgJaA9DCMrC19d6cHJAlIaUUpRoFUvxaBZHQJkH/i5uqFR1fZQoaAZoCWgPQwjZ0TjUL2NxQJSGlFKUaBVL4GgWR0CZCEqJMxoJdX2UKGgGaAloD0MIJ02DonnBckCUhpRSlGgVS/poFkdAmQha2fChvnV9lChoBmgJaA9DCNjviXXqL3BAlIaUUpRoFUvqaBZHQJkIWPCEYfp1fZQoaAZoCWgPQwj+gXLbPjtwQJSGlFKUaBVL+WgWR0CZCObXpW3jdX2UKGgGaAloD0MIAYdQpeapckCUhpRSlGgVTQEBaBZHQJkJKCsfaHt1fZQoaAZoCWgPQwgWvVMB92hVQJSGlFKUaBVLnmgWR0CZCTnlnyuqdX2UKGgGaAloD0MIn5EIjWB/bkCUhpRSlGgVTRABaBZHQJkKkZbY9Pl1fZQoaAZoCWgPQwiv0AfL2JNxQJSGlFKUaBVNCQFoFkdAmQqj3Ehq03V9lChoBmgJaA9DCNJRDmYTFHNAlIaUUpRoFUvzaBZHQJkKrJmukk91fZQoaAZoCWgPQwjHSWHeY6JwQJSGlFKUaBVL32gWR0CZCrISUTtcdX2UKGgGaAloD0MIGVdcHJXbckCUhpRSlGgVS/VoFkdAmQtC7TUiIXV9lChoBmgJaA9DCF+3CIx1F3FAlIaUUpRoFUvXaBZHQJkLSb9ZRsN1fZQoaAZoCWgPQwiARBMoohRzQJSGlFKUaBVL4GgWR0CZDHSFGoaUdX2UKGgGaAloD0MIzHoxlFO+cECUhpRSlGgVS+FoFkdAmQ1tLxqfvnV9lChoBmgJaA9DCFRVaCAWbHFAlIaUUpRoFUvZaBZHQJkNhq59Vm11fZQoaAZoCWgPQwg4LuOmxrhxQJSGlFKUaBVL1mgWR0CZDYTMaCL/dX2UKGgGaAloD0MIMxXikThmckCUhpRSlGgVS/poFkdAmQ4MM3IdVHV9lChoBmgJaA9DCAUyO4uerHJAlIaUUpRoFUvvaBZHQJkOH4593KV1fZQoaAZoCWgPQwht/fSf9WdyQJSGlFKUaBVNLAFoFkdAmQ6ySJTESHV9lChoBmgJaA9DCHOEDOTZYXBAlIaUUpRoFUvxaBZHQJkPN5s0pEx1fZQoaAZoCWgPQwgdOdIZmCVxQJSGlFKUaBVNBQFoFkdAmQ+1HBk7OnV9lChoBmgJaA9DCN14d2TsD3BAlIaUUpRoFU0gAWgWR0CZECRPoFFEdX2UKGgGaAloD0MI226Cb5pqbkCUhpRSlGgVS+VoFkdAmRB3nMdLhHV9lChoBmgJaA9DCLXf2olSpXFAlIaUUpRoFUvvaBZHQJkQmgh8pkR1fZQoaAZoCWgPQwi5pdWQ+IByQJSGlFKUaBVL+WgWR0CZEOv1lGwzdX2UKGgGaAloD0MIHAbzVwjBcECUhpRSlGgVS/FoFkdAmRFYLCvX9XV9lChoBmgJaA9DCEHxY8zd0HFAlIaUUpRoFU0QAWgWR0CZEW4mCyyEdX2UKGgGaAloD0MIeH+8V62fcECUhpRSlGgVTQYBaBZHQJkRykO7QLN1fZQoaAZoCWgPQwgTDOcaZuBxQJSGlFKUaBVL8GgWR0CZEniwjdHldX2UKGgGaAloD0MIA7Fs5hDhbkCUhpRSlGgVS99oFkdAmRMNKujh1nV9lChoBmgJaA9DCEqyDkeX/HNAlIaUUpRoFUvZaBZHQJkTefjCHh11fZQoaAZoCWgPQwhAijpzj/1tQJSGlFKUaBVL+GgWR0CZE7gRK6FudX2UKGgGaAloD0MI3bOu0fIOc0CUhpRSlGgVTRYBaBZHQJkUXFm4Ajp1fZQoaAZoCWgPQwgRVfgzfFNyQJSGlFKUaBVL+2gWR0CZFGMZxaPkdX2UKGgGaAloD0MIWKt2TYhycUCUhpRSlGgVS/xoFkdAmRTnW8RL9XV9lChoBmgJaA9DCI48EFkkyHFAlIaUUpRoFUvzaBZHQJkVk11nuiN1fZQoaAZoCWgPQwhdjIF1HF5zQJSGlFKUaBVL4mgWR0CZFnPykKu0dX2UKGgGaAloD0MIYtuizAbKcECUhpRSlGgVS/doFkdAmRaBuwX67HV9lChoBmgJaA9DCJbtQ96yb3JAlIaUUpRoFU0nAWgWR0CZFo2xIJ7cdX2UKGgGaAloD0MIOj5anHHYcECUhpRSlGgVS95oFkdAmRbjwlSjxnV9lChoBmgJaA9DCHLChNHscnJAlIaUUpRoFUvoaBZHQJkXC8M/hVF1fZQoaAZoCWgPQwhFSN3O/jZyQJSGlFKUaBVNEwFoFkdAmRdRY7q6fHV9lChoBmgJaA9DCM6njlXKb21AlIaUUpRoFU05AWgWR0CZF8wK0D2bdX2UKGgGaAloD0MIKGTnbWwtb0CUhpRSlGgVS/VoFkdAmRfa4MF2V3V9lChoBmgJaA9DCDTY1HnUG25AlIaUUpRoFUveaBZHQJkY+wB5ooN1fZQoaAZoCWgPQwhnDd5XJSlxQJSGlFKUaBVNBgFoFkdAmRj5xrBTGnV9lChoBmgJaA9DCBH+RdAYnXJAlIaUUpRoFUv1aBZHQJkZKqDK5kN1fZQoaAZoCWgPQwgaxAd2vBtzQJSGlFKUaBVL+GgWR0CZGdf779AHdX2UKGgGaAloD0MI7PgvEARvbkCUhpRSlGgVS+1oFkdAmRo8M3IdVHV9lChoBmgJaA9DCJjArbv5XXFAlIaUUpRoFU0RAWgWR0CZGykLQXyidX2UKGgGaAloD0MIL1G9NXDEcECUhpRSlGgVTQgBaBZHQJkbkTGo73h1fZQoaAZoCWgPQwgjnuxmRqZvQJSGlFKUaBVNAQFoFkdAmRwQ0CRwInV9lChoBmgJaA9DCKxSeqaX7G1AlIaUUpRoFUv6aBZHQJkcy8yvcJt1fZQoaAZoCWgPQwhhNCvbh7lwQJSGlFKUaBVL5mgWR0CZHNvpyIYWdX2UKGgGaAloD0MIahfTTHfMcECUhpRSlGgVTQoBaBZHQJkdRFKCg9N1fZQoaAZoCWgPQwgXDK65I+9vQJSGlFKUaBVNFAFoFkdAmR10U9IPLHV9lChoBmgJaA9DCBFXzt4ZwW1AlIaUUpRoFU0FAWgWR0CZHYfQa72+dX2UKGgGaAloD0MIUfUrnQ8VcECUhpRSlGgVTQIBaBZHQJkd38ZUDMh1fZQoaAZoCWgPQwjcZFQZxhpvQJSGlFKUaBVNDAFoFkdAmR6DjJdSl3V9lChoBmgJaA9DCOfHX1rUTnJAlIaUUpRoFUvzaBZHQJkfHN2TxG51fZQoaAZoCWgPQwgjL2tiQaZwQJSGlFKUaBVL2GgWR0CZH0+o99tudX2UKGgGaAloD0MINPPkmoLGcECUhpRSlGgVS/5oFkdAmR9bHhjvu3V9lChoBmgJaA9DCJqZmZkZK3NAlIaUUpRoFU0xAWgWR0CZH27VJ+UhdX2UKGgGaAloD0MIejVAaSieb0CUhpRSlGgVS+poFkdAmSAUZzgdfnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 372, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo_LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e30993307be488836e8ccedaf3e28ca636cfa9d7e11656157b476edf188ec5fb
3
+ size 147068
ppo_LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo_LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff8f32ec440>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff8f32ec4d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff8f32ec560>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff8f32ec5f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ff8f32ec680>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ff8f32ec710>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff8f32ec7a0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ff8f32ec830>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff8f32ec8c0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff8f32ec950>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff8f32ec9e0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7ff8f333f450>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1666186858921551059,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrZNbsVhOw+AF4vOgUYsL70xwq8DTHXPAAAAAAAAAAAzeCuuwfKaz7Ckba9Y9KavnEG8b3xLUG9AAAAAAAAAABmnKc8XLh8O/3y6LyjNI6+bz6wvCMBVj0AAAAAAAAAAE0XfL1QEoU/cOmEvSIewr5MuwG+0vMtPQAAAAAAAAAAszYQPZX1Iz4tJSI8GrCsvn5yBbz6rZO9AAAAAAAAAABzhzC+xmqIP/wDxL4fMbu+pdCQvstcUr4AAAAAAAAAAEblcD7Ev8w+s+oEvwZuor7zFw++UXcgvgAAAAAAAAAAAAC/Oe6lvz1/CSi8jh+5vjopSj2FhNg8AAAAAAAAAAAzt3E9XMMDunxkozUVN0gwy02busCBurQAAIA/AACAP7r4Db41uHg/mdI/vqZRr74JalG+eC8OPQAAAAAAAAAAzXTdO1qKUD7mMl09dL+fvjupJLyIseI8AAAAAAAAAABz6Aw+d5jCPvURW77yyZG+lYMzvRExhr0AAAAAAAAAAA24tr0DoyW8FTSlu7qXvDxJtVo9uBe4uAAAAAAAAIA/83nBvQy0hz8mgda9QCTJvne6C76L8LS9AAAAAAAAAADNBoi9QTOMPwB+q73bYeK+Vrwzvl6pLb0AAAAAAAAAAM3Mozj7ALA/PR96PBVjvr4VCfu7QpaivQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVPRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIT+W0p+QvcUCUhpRSlIwBbJRNCAGMAXSUR0CY542Zy+6AdX2UKGgGaAloD0MIk1FlGPclb0CUhpRSlGgVS/VoFkdAmOgBUNrj53V9lChoBmgJaA9DCLWoT3KHHnFAlIaUUpRoFUv7aBZHQJjoLcIqslt1fZQoaAZoCWgPQwhyiSMPxHFvQJSGlFKUaBVL7mgWR0CY6OcPOIIodX2UKGgGaAloD0MIelbSiu+NckCUhpRSlGgVS9NoFkdAmOkRujynUHV9lChoBmgJaA9DCEikbfwJlW5AlIaUUpRoFUvXaBZHQJjpe/h2nsN1fZQoaAZoCWgPQwgptKz7R6xwQJSGlFKUaBVL52gWR0CY6gbfxc3VdX2UKGgGaAloD0MIYto399fFcECUhpRSlGgVS9VoFkdAmOo0GZ/kNnV9lChoBmgJaA9DCMAF2bI8ZHFAlIaUUpRoFU0eAWgWR0CY6jXnQpnZdX2UKGgGaAloD0MIOgg6WlX+bUCUhpRSlGgVS+xoFkdAmOpjJIUah3V9lChoBmgJaA9DCPci2o5pwHJAlIaUUpRoFUv6aBZHQJjqdggHNX51fZQoaAZoCWgPQwiYFYp0/zVzQJSGlFKUaBVL3mgWR0CY6yhUBGQTdX2UKGgGaAloD0MIS3hCr7+acECUhpRSlGgVS/1oFkdAmOulR1oxpXV9lChoBmgJaA9DCKg1zTtOGXFAlIaUUpRoFU0AAWgWR0CY7DmZ3LV4dX2UKGgGaAloD0MIX2Is0682b0CUhpRSlGgVS/ZoFkdAmOy8g2ZRbnV9lChoBmgJaA9DCKIo0CeyW3JAlIaUUpRoFUvkaBZHQJjtAbwSamZ1fZQoaAZoCWgPQwhi2jf3l65yQJSGlFKUaBVL8mgWR0CY7XSncclxdX2UKGgGaAloD0MIucSRB6JBckCUhpRSlGgVS9BoFkdAmO4cOLBKtnV9lChoBmgJaA9DCAnf+xu073JAlIaUUpRoFU0UAWgWR0CY7v5IpYs/dX2UKGgGaAloD0MIK6G7JM5Qc0CUhpRSlGgVS/1oFkdAmO8u938n/nV9lChoBmgJaA9DCPHxCdk5qXJAlIaUUpRoFUvsaBZHQJjvUtYjjaR1fZQoaAZoCWgPQwhFEOfhhA1yQJSGlFKUaBVL5mgWR0CY7769kBjndX2UKGgGaAloD0MIRpiiXNohc0CUhpRSlGgVTT4BaBZHQJjv8w35vcd1fZQoaAZoCWgPQwgYfJqTFyFwQJSGlFKUaBVL6GgWR0CY7/4HX2/SdX2UKGgGaAloD0MIWKg1zXtQcECUhpRSlGgVS+toFkdAmPAPybx3FHV9lChoBmgJaA9DCCOfVzy163JAlIaUUpRoFU0NAWgWR0CY8QZJTVDsdX2UKGgGaAloD0MIYmpLHeQpc0CUhpRSlGgVTRMBaBZHQJjxQAbQ1Jl1fZQoaAZoCWgPQwiuD+uNmn9yQJSGlFKUaBVNCwFoFkdAmPHNeD3/P3V9lChoBmgJaA9DCDfHuU24Am5AlIaUUpRoFU0LAWgWR0CY8lKrJbMYdX2UKGgGaAloD0MIK8O4G8SBcUCUhpRSlGgVS+FoFkdAmPJhU70WdnV9lChoBmgJaA9DCOUn1T4dz21AlIaUUpRoFUv6aBZHQJjyetMfzSV1fZQoaAZoCWgPQwhTzaylQLNwQJSGlFKUaBVL9WgWR0CY8xbSqlxfdX2UKGgGaAloD0MIm3KFd7ntbkCUhpRSlGgVS/NoFkdAmQbwNTcZcnV9lChoBmgJaA9DCK685H9yKXNAlIaUUpRoFU0ZAWgWR0CZB0Wp6yB1dX2UKGgGaAloD0MIR6zFp4BTcUCUhpRSlGgVS/hoFkdAmQf93W4EwHV9lChoBmgJaA9DCMrC19d6cHJAlIaUUpRoFUvxaBZHQJkH/i5uqFR1fZQoaAZoCWgPQwjZ0TjUL2NxQJSGlFKUaBVL4GgWR0CZCEqJMxoJdX2UKGgGaAloD0MIJ02DonnBckCUhpRSlGgVS/poFkdAmQha2fChvnV9lChoBmgJaA9DCNjviXXqL3BAlIaUUpRoFUvqaBZHQJkIWPCEYfp1fZQoaAZoCWgPQwj+gXLbPjtwQJSGlFKUaBVL+WgWR0CZCObXpW3jdX2UKGgGaAloD0MIAYdQpeapckCUhpRSlGgVTQEBaBZHQJkJKCsfaHt1fZQoaAZoCWgPQwgWvVMB92hVQJSGlFKUaBVLnmgWR0CZCTnlnyuqdX2UKGgGaAloD0MIn5EIjWB/bkCUhpRSlGgVTRABaBZHQJkKkZbY9Pl1fZQoaAZoCWgPQwiv0AfL2JNxQJSGlFKUaBVNCQFoFkdAmQqj3Ehq03V9lChoBmgJaA9DCNJRDmYTFHNAlIaUUpRoFUvzaBZHQJkKrJmukk91fZQoaAZoCWgPQwjHSWHeY6JwQJSGlFKUaBVL32gWR0CZCrISUTtcdX2UKGgGaAloD0MIGVdcHJXbckCUhpRSlGgVS/VoFkdAmQtC7TUiIXV9lChoBmgJaA9DCF+3CIx1F3FAlIaUUpRoFUvXaBZHQJkLSb9ZRsN1fZQoaAZoCWgPQwiARBMoohRzQJSGlFKUaBVL4GgWR0CZDHSFGoaUdX2UKGgGaAloD0MIzHoxlFO+cECUhpRSlGgVS+FoFkdAmQ1tLxqfvnV9lChoBmgJaA9DCFRVaCAWbHFAlIaUUpRoFUvZaBZHQJkNhq59Vm11fZQoaAZoCWgPQwg4LuOmxrhxQJSGlFKUaBVL1mgWR0CZDYTMaCL/dX2UKGgGaAloD0MIMxXikThmckCUhpRSlGgVS/poFkdAmQ4MM3IdVHV9lChoBmgJaA9DCAUyO4uerHJAlIaUUpRoFUvvaBZHQJkOH4593KV1fZQoaAZoCWgPQwht/fSf9WdyQJSGlFKUaBVNLAFoFkdAmQ6ySJTESHV9lChoBmgJaA9DCHOEDOTZYXBAlIaUUpRoFUvxaBZHQJkPN5s0pEx1fZQoaAZoCWgPQwgdOdIZmCVxQJSGlFKUaBVNBQFoFkdAmQ+1HBk7OnV9lChoBmgJaA9DCN14d2TsD3BAlIaUUpRoFU0gAWgWR0CZECRPoFFEdX2UKGgGaAloD0MI226Cb5pqbkCUhpRSlGgVS+VoFkdAmRB3nMdLhHV9lChoBmgJaA9DCLXf2olSpXFAlIaUUpRoFUvvaBZHQJkQmgh8pkR1fZQoaAZoCWgPQwi5pdWQ+IByQJSGlFKUaBVL+WgWR0CZEOv1lGwzdX2UKGgGaAloD0MIHAbzVwjBcECUhpRSlGgVS/FoFkdAmRFYLCvX9XV9lChoBmgJaA9DCEHxY8zd0HFAlIaUUpRoFU0QAWgWR0CZEW4mCyyEdX2UKGgGaAloD0MIeH+8V62fcECUhpRSlGgVTQYBaBZHQJkRykO7QLN1fZQoaAZoCWgPQwgTDOcaZuBxQJSGlFKUaBVL8GgWR0CZEniwjdHldX2UKGgGaAloD0MIA7Fs5hDhbkCUhpRSlGgVS99oFkdAmRMNKujh1nV9lChoBmgJaA9DCEqyDkeX/HNAlIaUUpRoFUvZaBZHQJkTefjCHh11fZQoaAZoCWgPQwhAijpzj/1tQJSGlFKUaBVL+GgWR0CZE7gRK6FudX2UKGgGaAloD0MI3bOu0fIOc0CUhpRSlGgVTRYBaBZHQJkUXFm4Ajp1fZQoaAZoCWgPQwgRVfgzfFNyQJSGlFKUaBVL+2gWR0CZFGMZxaPkdX2UKGgGaAloD0MIWKt2TYhycUCUhpRSlGgVS/xoFkdAmRTnW8RL9XV9lChoBmgJaA9DCI48EFkkyHFAlIaUUpRoFUvzaBZHQJkVk11nuiN1fZQoaAZoCWgPQwhdjIF1HF5zQJSGlFKUaBVL4mgWR0CZFnPykKu0dX2UKGgGaAloD0MIYtuizAbKcECUhpRSlGgVS/doFkdAmRaBuwX67HV9lChoBmgJaA9DCJbtQ96yb3JAlIaUUpRoFU0nAWgWR0CZFo2xIJ7cdX2UKGgGaAloD0MIOj5anHHYcECUhpRSlGgVS95oFkdAmRbjwlSjxnV9lChoBmgJaA9DCHLChNHscnJAlIaUUpRoFUvoaBZHQJkXC8M/hVF1fZQoaAZoCWgPQwhFSN3O/jZyQJSGlFKUaBVNEwFoFkdAmRdRY7q6fHV9lChoBmgJaA9DCM6njlXKb21AlIaUUpRoFU05AWgWR0CZF8wK0D2bdX2UKGgGaAloD0MIKGTnbWwtb0CUhpRSlGgVS/VoFkdAmRfa4MF2V3V9lChoBmgJaA9DCDTY1HnUG25AlIaUUpRoFUveaBZHQJkY+wB5ooN1fZQoaAZoCWgPQwhnDd5XJSlxQJSGlFKUaBVNBgFoFkdAmRj5xrBTGnV9lChoBmgJaA9DCBH+RdAYnXJAlIaUUpRoFUv1aBZHQJkZKqDK5kN1fZQoaAZoCWgPQwgaxAd2vBtzQJSGlFKUaBVL+GgWR0CZGdf779AHdX2UKGgGaAloD0MI7PgvEARvbkCUhpRSlGgVS+1oFkdAmRo8M3IdVHV9lChoBmgJaA9DCJjArbv5XXFAlIaUUpRoFU0RAWgWR0CZGykLQXyidX2UKGgGaAloD0MIL1G9NXDEcECUhpRSlGgVTQgBaBZHQJkbkTGo73h1fZQoaAZoCWgPQwgjnuxmRqZvQJSGlFKUaBVNAQFoFkdAmRwQ0CRwInV9lChoBmgJaA9DCKxSeqaX7G1AlIaUUpRoFUv6aBZHQJkcy8yvcJt1fZQoaAZoCWgPQwhhNCvbh7lwQJSGlFKUaBVL5mgWR0CZHNvpyIYWdX2UKGgGaAloD0MIahfTTHfMcECUhpRSlGgVTQoBaBZHQJkdRFKCg9N1fZQoaAZoCWgPQwgXDK65I+9vQJSGlFKUaBVNFAFoFkdAmR10U9IPLHV9lChoBmgJaA9DCBFXzt4ZwW1AlIaUUpRoFU0FAWgWR0CZHYfQa72+dX2UKGgGaAloD0MIUfUrnQ8VcECUhpRSlGgVTQIBaBZHQJkd38ZUDMh1fZQoaAZoCWgPQwjcZFQZxhpvQJSGlFKUaBVNDAFoFkdAmR6DjJdSl3V9lChoBmgJaA9DCOfHX1rUTnJAlIaUUpRoFUvzaBZHQJkfHN2TxG51fZQoaAZoCWgPQwgjL2tiQaZwQJSGlFKUaBVL2GgWR0CZH0+o99tudX2UKGgGaAloD0MINPPkmoLGcECUhpRSlGgVS/5oFkdAmR9bHhjvu3V9lChoBmgJaA9DCJqZmZkZK3NAlIaUUpRoFU0xAWgWR0CZH27VJ+UhdX2UKGgGaAloD0MIejVAaSieb0CUhpRSlGgVS+poFkdAmSAUZzgdfnVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 372,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo_LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49167fe533f83a150e323636baf7de5975ce60a7230319525a583b68b857138e
3
+ size 87865
ppo_LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9666d6989d594eeabfb56e3358f58a0dbec062f915bbfd39c339a553e74e335
3
+ size 43201
ppo_LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo_LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.7.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (237 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 273.18466613352246, "std_reward": 23.60943642507461, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-10-19T14:02:52.412411"}