firs-try
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- first-try.zip +3 -0
- first-try/_stable_baselines3_version +1 -0
- first-try/data +94 -0
- first-try/policy.optimizer.pth +3 -0
- first-try/policy.pth +3 -0
- first-try/pytorch_variables.pth +3 -0
- first-try/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 233.04 +/- 17.51
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff4b42bea70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff4b42beb00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff4b42beb90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff4b42bec20>", "_build": "<function ActorCriticPolicy._build at 0x7ff4b42becb0>", "forward": "<function ActorCriticPolicy.forward at 0x7ff4b42bed40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff4b42bedd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff4b42bee60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff4b42beef0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff4b42bef80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff4b4244050>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff4b4283cf0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651733306.758816, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMzwjpcsyu6E8y1OaLccrb/+7063gHPuAAAgD8AAIA/dlidPiPyqT8TUoY+VT2qvtlR3j7daZG9AAAAAAAAAABm1oG9cT1duYaYrLuEkVU1gnS9u79zxrQAAIA/AACAP5rHxTwfJee5XbXJOqKkvjTKOmi78kXruQAAgD8AAIA/MwxKPeq5mz6t8ai9uW1NvuqAUj2D06q7AAAAAAAAAACNh9u9SCfbut4tjrzD6IM8+yuqu/7FZT0AAAAAAACAPwb5Ib42Mzm8XdLqvBMkQ7tIaKI9sEwhPAAAgD8AAIA/c60KvhEBqj4MK7g880B4vsZ6C75qOyS9AAAAAAAAAACznwm9j8ZhunWAlrkE9ZY0llJFOsx8rzgAAIA/AACAP7rKOr5DlBW8KV+GOXYvQDecw4A9mUiguAAAgD8AAIA/lS6Vvo9xjT92IFa+sJTevk3s375NcFg9AAAAAAAAAADGcAm+7KvYOpLv3Ds0gce5QkyMvIpsrzoAAIA/AACAPwCACbxcYx66yyvyuqQ/YrZlyqG6kKIMOgAAgD8AAIA/w4pRvqE65Lw1Rpy8+lcuuzfrTD7OKQY8AACAPwAAgD+zFc299mxXujWwwLs2Oi824CGPO+UhoLUAAIA/AACAP2bcE7yPIni6RCIUusCNTba9vxo7NVK3NQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIipElcyxEYkCUhpRSlIwBbJRN6AOMAXSUR0CBBFzvqkdndX2UKGgGaAloD0MIjo8WZwxWWECUhpRSlGgVTegDaBZHQIEEagPEsJ91fZQoaAZoCWgPQwjEIRtIF2xjQJSGlFKUaBVN6ANoFkdAgQUx+KCQLnV9lChoBmgJaA9DCNSa5h2nP2BAlIaUUpRoFU3oA2gWR0CBCUrbxmTUdX2UKGgGaAloD0MIgGPPnstNU0CUhpRSlGgVTegDaBZHQIEhaGWUr091fZQoaAZoCWgPQwgcmrLTD4BgQJSGlFKUaBVN6ANoFkdAgSOcpLEk0XV9lChoBmgJaA9DCFVoIJbNEWBAlIaUUpRoFU3oA2gWR0CBLCIu5BkadX2UKGgGaAloD0MIGNLhIQy+ZECUhpRSlGgVTegDaBZHQIEz+9QGfPJ1fZQoaAZoCWgPQwi54XfTrQJjQJSGlFKUaBVN6ANoFkdAgV2BOP/7znV9lChoBmgJaA9DCHcrS3SWBGNAlIaUUpRoFU3oA2gWR0CBXcNOuaF3dX2UKGgGaAloD0MIWg70UFtjZUCUhpRSlGgVTegDaBZHQIFkC1Cw8nx1fZQoaAZoCWgPQwhXQ+Iey6ViQJSGlFKUaBVN6ANoFkdAgW4lsguAZ3V9lChoBmgJaA9DCGQfZFkwTWNAlIaUUpRoFU3oA2gWR0CBcB2ys0YTdX2UKGgGaAloD0MIE4HqH8SZYkCUhpRSlGgVTegDaBZHQIF1HrrxAjZ1fZQoaAZoCWgPQwjqdvaVh2dlQJSGlFKUaBVN6ANoFkdAgb4o6r/823V9lChoBmgJaA9DCMEaZ9ORZGRAlIaUUpRoFU3oA2gWR0CBvg38XN1RdX2UKGgGaAloD0MIeT4D6s04KECUhpRSlGgVTRsBaBZHQIHTMNz8xbl1fZQoaAZoCWgPQwgOEMzRY9ZiQJSGlFKUaBVN6ANoFkdAgdsHOSntOXV9lChoBmgJaA9DCDqSy39IrF9AlIaUUpRoFU3oA2gWR0CB2w/dIoVmdX2UKGgGaAloD0MIa0jcY2mLYECUhpRSlGgVTegDaBZHQIHb1Pk7wKB1fZQoaAZoCWgPQwjKMsSxro9lQJSGlFKUaBVN6ANoFkdAgeAWRJVbRnV9lChoBmgJaA9DCL5LqUvGvV1AlIaUUpRoFU3oA2gWR0CB+7wZOzppdX2UKGgGaAloD0MIv51EhP9zYUCUhpRSlGgVTegDaBZHQIH+J/smfGx1fZQoaAZoCWgPQwgbvoV146diQJSGlFKUaBVN6ANoFkdAggfLEk0JnnV9lChoBmgJaA9DCGpPyTkxqmVAlIaUUpRoFU3oA2gWR0CCEEzposZpdX2UKGgGaAloD0MIFf4Mb9Y+X0CUhpRSlGgVTegDaBZHQII5ZVXFLnN1fZQoaAZoCWgPQwg6z9iXbDNiQJSGlFKUaBVN6ANoFkdAgjmj1f3N93V9lChoBmgJaA9DCMybw7XaQGFAlIaUUpRoFU3oA2gWR0CCP4df9gnddX2UKGgGaAloD0MIkKSkh6HmXkCUhpRSlGgVTegDaBZHQIJKBGBnSOR1fZQoaAZoCWgPQwhj0t9L4YhfQJSGlFKUaBVN6ANoFkdAgk6GG/N7jXV9lChoBmgJaA9DCEGasWg6UF1AlIaUUpRoFU3oA2gWR0CClfDEWIoFdX2UKGgGaAloD0MIYAFMGThmV0CUhpRSlGgVTegDaBZHQIKV1KIznA91fZQoaAZoCWgPQwg+srlqnk8yQJSGlFKUaBVNAAFoFkdAgpvImw7kn3V9lChoBmgJaA9DCMqK4eqARGBAlIaUUpRoFU3oA2gWR0CCp7SE12q2dX2UKGgGaAloD0MIdy0hH3QHZECUhpRSlGgVTegDaBZHQIKt8r08NhF1fZQoaAZoCWgPQwguq7AZ4KJjQJSGlFKUaBVN6ANoFkdAgq3464lQdnV9lChoBmgJaA9DCO6yX3e6gWNAlIaUUpRoFU3oA2gWR0CCrqM85jpcdX2UKGgGaAloD0MILT4FwPjCYUCUhpRSlGgVTegDaBZHQIKyNeQdS2p1fZQoaAZoCWgPQwizCMVW0A1gQJSGlFKUaBVN6ANoFkdAgskW0qpcX3V9lChoBmgJaA9DCCOERxtHNExAlIaUUpRoFUuvaBZHQILKDSG8Emp1fZQoaAZoCWgPQwhdMSO8PU5dQJSGlFKUaBVN6ANoFkdAgss7vPTodXV9lChoBmgJaA9DCHXkSGfgkWVAlIaUUpRoFU3oA2gWR0CC07Os1baAdX2UKGgGaAloD0MI36Y/+5F3UkCUhpRSlGgVTegDaBZHQILbKp3os7N1fZQoaAZoCWgPQwi94NOcvFxJQJSGlFKUaBVLqGgWR0CC4qQ176YWdX2UKGgGaAloD0MIEEHV6NUaZECUhpRSlGgVTegDaBZHQIMAHzlLeyl1fZQoaAZoCWgPQwjtmSUB6m9iQJSGlFKUaBVN6ANoFkdAgwBRkEs8PnV9lChoBmgJaA9DCHUEcLP4zGFAlIaUUpRoFU3oA2gWR0CDEINFz+3pdX2UKGgGaAloD0MIpfPhWYJOYkCUhpRSlGgVTegDaBZHQIMVUs8PnSx1fZQoaAZoCWgPQwit9xvtuGBfQJSGlFKUaBVN6ANoFkdAg16w6p5u63V9lChoBmgJaA9DCIrJG2DmK2JAlIaUUpRoFU3oA2gWR0CDXpT0g8r7dX2UKGgGaAloD0MImuleJ3VuZUCUhpRSlGgVTegDaBZHQINlVNL127p1fZQoaAZoCWgPQwjiBKbTuiBjQJSGlFKUaBVN6ANoFkdAg3Jjebd8A3V9lChoBmgJaA9DCOQuwhTlt2NAlIaUUpRoFU3oA2gWR0CDePcVxjridX2UKGgGaAloD0MIjZqvko+eYUCUhpRSlGgVTegDaBZHQIN4/rrxAjZ1fZQoaAZoCWgPQwhfXoB9dHNeQJSGlFKUaBVN6ANoFkdAg3nLVWjoIXV9lChoBmgJaA9DCFcG1QYnDmVAlIaUUpRoFU3oA2gWR0CDl72QGOdYdX2UKGgGaAloD0MIkEqxo3EAX0CUhpRSlGgVTegDaBZHQIOY37BO58V1fZQoaAZoCWgPQwgv4dBbvO1hQJSGlFKUaBVN6ANoFkdAg6N/oaDPGHV9lChoBmgJaA9DCNuHvOXqDGNAlIaUUpRoFU3oA2gWR0CDrAX4TK1YdX2UKGgGaAloD0MI7bd2oqSKZkCUhpRSlGgVTegDaBZHQIO0QWLxZuB1fZQoaAZoCWgPQwgXY2AdR/VhQJSGlFKUaBVN6ANoFkdAg9QLRrrPdHV9lChoBmgJaA9DCDyGx34Wp2BAlIaUUpRoFU3oA2gWR0CD1EaMJhOQdX2UKGgGaAloD0MIQNzVq8j3WkCUhpRSlGgVTegDaBZHQIPlNJz1bq11fZQoaAZoCWgPQwhIqBlSRbZaQJSGlFKUaBVN6ANoFkdAg+ou2AoXsXV9lChoBmgJaA9DCKzJU1bTz11AlIaUUpRoFU3oA2gWR0CD/Bt65XlsdX2UKGgGaAloD0MIo8ubw7X1XECUhpRSlGgVTegDaBZHQIP7/ta6jFh1fZQoaAZoCWgPQwiz8PW1rvhmQJSGlFKUaBVN6ANoFkdAhDngOJ+DvnV9lChoBmgJaA9DCMegE0KHwGNAlIaUUpRoFU3oA2gWR0CERrWe6I3zdX2UKGgGaAloD0MISphp+1cDYUCUhpRSlGgVTegDaBZHQIRNQc5sCT51fZQoaAZoCWgPQwhPXI5XoFZjQJSGlFKUaBVN6ANoFkdAhE1IgNgBtHV9lChoBmgJaA9DCEs9C0J5bGJAlIaUUpRoFU3oA2gWR0CETfrdFfAsdX2UKGgGaAloD0MI0xOWeEA5YECUhpRSlGgVTegDaBZHQIRqE3VCojx1fZQoaAZoCWgPQwgA/5QqUZ1gQJSGlFKUaBVN6ANoFkdAhGsg5BC2MXV9lChoBmgJaA9DCFb0h2YeWWRAlIaUUpRoFU3oA2gWR0CEdU1AJLM+dX2UKGgGaAloD0MI3soSneW0YECUhpRSlGgVTegDaBZHQIR9n974SHx1fZQoaAZoCWgPQwh/MzFdiN5cQJSGlFKUaBVN6ANoFkdAhIWRmbsniXV9lChoBmgJaA9DCJs6j4r/n2ZAlIaUUpRoFU3oA2gWR0CEpQfDDTBqdX2UKGgGaAloD0MIEJIFTOCwYUCUhpRSlGgVTegDaBZHQISlSO/+Kj11fZQoaAZoCWgPQwietdsuNOhRQJSGlFKUaBVL9WgWR0CErTxHXmNjdX2UKGgGaAloD0MIcRx4tdxoWUCUhpRSlGgVTegDaBZHQIS2xlcyFf11fZQoaAZoCWgPQwj5TWGlgidjQJSGlFKUaBVN6ANoFkdAhLvicf/3nXV9lChoBmgJaA9DCGiu00jLyWZAlIaUUpRoFU3oA2gWR0CEzszyBkI5dX2UKGgGaAloD0MIOrLyy2AHYUCUhpRSlGgVTegDaBZHQITOsdFOO811fZQoaAZoCWgPQwhPWU3XEzpiQJSGlFKUaBVN6ANoFkdAhQ1YKpkwvnV9lChoBmgJaA9DCIdtizIbEmRAlIaUUpRoFU3oA2gWR0CFGoI+nqFAdX2UKGgGaAloD0MIjliLT4GoYECUhpRSlGgVTegDaBZHQIUhSOYIBzV1fZQoaAZoCWgPQwj8AQ8MIKJgQJSGlFKUaBVN6ANoFkdAhSFQ176YV3V9lChoBmgJaA9DCAirsYS1I1hAlIaUUpRoFU3oA2gWR0CFIgcENe+mdX2UKGgGaAloD0MIVtRgGoapSUCUhpRSlGgVS+9oFkdAhTF+Il+mWXV9lChoBmgJaA9DCPHZOjjYcF1AlIaUUpRoFU3oA2gWR0CFQC1tO2y+dX2UKGgGaAloD0MIMEs7NZfFZECUhpRSlGgVTegDaBZHQIVBRL/S6Ud1fZQoaAZoCWgPQwhK7UW0nW9lQJSGlFKUaBVN6ANoFkdAhUw3a8Hv+nV9lChoBmgJaA9DCBl1rb1Pi2BAlIaUUpRoFU3oA2gWR0CFVNK9wm3OdX2UKGgGaAloD0MIovDZOrgvYkCUhpRSlGgVTegDaBZHQIWAwWpIczZ1fZQoaAZoCWgPQwjb+BOVDVZgQJSGlFKUaBVN6ANoFkdAhYEMm4RVZXV9lChoBmgJaA9DCOXS+IVXGmVAlIaUUpRoFU3oA2gWR0CFiWUUwi7kdX2UKGgGaAloD0MIZ7RVSWSRXkCUhpRSlGgVTegDaBZHQIWS6qIacZt1fZQoaAZoCWgPQwinWguz0CFjQJSGlFKUaBVN6ANoFkdAhZgIouwos3V9lChoBmgJaA9DCCveyDxyRGNAlIaUUpRoFU3oA2gWR0CFqrsMy8BddX2UKGgGaAloD0MIxJWzd0bcY0CUhpRSlGgVTegDaBZHQIWqnxYq5LB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
first-try.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8d7f3d94491bb9a5f33872654b969c4be720b9b4c26c76dd3e1730679049a6b
|
3 |
+
size 144043
|
first-try/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
first-try/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff4b42bea70>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff4b42beb00>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff4b42beb90>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff4b42bec20>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff4b42becb0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff4b42bed40>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff4b42bedd0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff4b42bee60>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff4b42beef0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff4b42bef80>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff4b4244050>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7ff4b4283cf0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651733306.758816,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMzwjpcsyu6E8y1OaLccrb/+7063gHPuAAAgD8AAIA/dlidPiPyqT8TUoY+VT2qvtlR3j7daZG9AAAAAAAAAABm1oG9cT1duYaYrLuEkVU1gnS9u79zxrQAAIA/AACAP5rHxTwfJee5XbXJOqKkvjTKOmi78kXruQAAgD8AAIA/MwxKPeq5mz6t8ai9uW1NvuqAUj2D06q7AAAAAAAAAACNh9u9SCfbut4tjrzD6IM8+yuqu/7FZT0AAAAAAACAPwb5Ib42Mzm8XdLqvBMkQ7tIaKI9sEwhPAAAgD8AAIA/c60KvhEBqj4MK7g880B4vsZ6C75qOyS9AAAAAAAAAACznwm9j8ZhunWAlrkE9ZY0llJFOsx8rzgAAIA/AACAP7rKOr5DlBW8KV+GOXYvQDecw4A9mUiguAAAgD8AAIA/lS6Vvo9xjT92IFa+sJTevk3s375NcFg9AAAAAAAAAADGcAm+7KvYOpLv3Ds0gce5QkyMvIpsrzoAAIA/AACAPwCACbxcYx66yyvyuqQ/YrZlyqG6kKIMOgAAgD8AAIA/w4pRvqE65Lw1Rpy8+lcuuzfrTD7OKQY8AACAPwAAgD+zFc299mxXujWwwLs2Oi824CGPO+UhoLUAAIA/AACAP2bcE7yPIni6RCIUusCNTba9vxo7NVK3NQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIipElcyxEYkCUhpRSlIwBbJRN6AOMAXSUR0CBBFzvqkdndX2UKGgGaAloD0MIjo8WZwxWWECUhpRSlGgVTegDaBZHQIEEagPEsJ91fZQoaAZoCWgPQwjEIRtIF2xjQJSGlFKUaBVN6ANoFkdAgQUx+KCQLnV9lChoBmgJaA9DCNSa5h2nP2BAlIaUUpRoFU3oA2gWR0CBCUrbxmTUdX2UKGgGaAloD0MIgGPPnstNU0CUhpRSlGgVTegDaBZHQIEhaGWUr091fZQoaAZoCWgPQwgcmrLTD4BgQJSGlFKUaBVN6ANoFkdAgSOcpLEk0XV9lChoBmgJaA9DCFVoIJbNEWBAlIaUUpRoFU3oA2gWR0CBLCIu5BkadX2UKGgGaAloD0MIGNLhIQy+ZECUhpRSlGgVTegDaBZHQIEz+9QGfPJ1fZQoaAZoCWgPQwi54XfTrQJjQJSGlFKUaBVN6ANoFkdAgV2BOP/7znV9lChoBmgJaA9DCHcrS3SWBGNAlIaUUpRoFU3oA2gWR0CBXcNOuaF3dX2UKGgGaAloD0MIWg70UFtjZUCUhpRSlGgVTegDaBZHQIFkC1Cw8nx1fZQoaAZoCWgPQwhXQ+Iey6ViQJSGlFKUaBVN6ANoFkdAgW4lsguAZ3V9lChoBmgJaA9DCGQfZFkwTWNAlIaUUpRoFU3oA2gWR0CBcB2ys0YTdX2UKGgGaAloD0MIE4HqH8SZYkCUhpRSlGgVTegDaBZHQIF1HrrxAjZ1fZQoaAZoCWgPQwjqdvaVh2dlQJSGlFKUaBVN6ANoFkdAgb4o6r/823V9lChoBmgJaA9DCMEaZ9ORZGRAlIaUUpRoFU3oA2gWR0CBvg38XN1RdX2UKGgGaAloD0MIeT4D6s04KECUhpRSlGgVTRsBaBZHQIHTMNz8xbl1fZQoaAZoCWgPQwgOEMzRY9ZiQJSGlFKUaBVN6ANoFkdAgdsHOSntOXV9lChoBmgJaA9DCDqSy39IrF9AlIaUUpRoFU3oA2gWR0CB2w/dIoVmdX2UKGgGaAloD0MIa0jcY2mLYECUhpRSlGgVTegDaBZHQIHb1Pk7wKB1fZQoaAZoCWgPQwjKMsSxro9lQJSGlFKUaBVN6ANoFkdAgeAWRJVbRnV9lChoBmgJaA9DCL5LqUvGvV1AlIaUUpRoFU3oA2gWR0CB+7wZOzppdX2UKGgGaAloD0MIv51EhP9zYUCUhpRSlGgVTegDaBZHQIH+J/smfGx1fZQoaAZoCWgPQwgbvoV146diQJSGlFKUaBVN6ANoFkdAggfLEk0JnnV9lChoBmgJaA9DCGpPyTkxqmVAlIaUUpRoFU3oA2gWR0CCEEzposZpdX2UKGgGaAloD0MIFf4Mb9Y+X0CUhpRSlGgVTegDaBZHQII5ZVXFLnN1fZQoaAZoCWgPQwg6z9iXbDNiQJSGlFKUaBVN6ANoFkdAgjmj1f3N93V9lChoBmgJaA9DCMybw7XaQGFAlIaUUpRoFU3oA2gWR0CCP4df9gnddX2UKGgGaAloD0MIkKSkh6HmXkCUhpRSlGgVTegDaBZHQIJKBGBnSOR1fZQoaAZoCWgPQwhj0t9L4YhfQJSGlFKUaBVN6ANoFkdAgk6GG/N7jXV9lChoBmgJaA9DCEGasWg6UF1AlIaUUpRoFU3oA2gWR0CClfDEWIoFdX2UKGgGaAloD0MIYAFMGThmV0CUhpRSlGgVTegDaBZHQIKV1KIznA91fZQoaAZoCWgPQwg+srlqnk8yQJSGlFKUaBVNAAFoFkdAgpvImw7kn3V9lChoBmgJaA9DCMqK4eqARGBAlIaUUpRoFU3oA2gWR0CCp7SE12q2dX2UKGgGaAloD0MIdy0hH3QHZECUhpRSlGgVTegDaBZHQIKt8r08NhF1fZQoaAZoCWgPQwguq7AZ4KJjQJSGlFKUaBVN6ANoFkdAgq3464lQdnV9lChoBmgJaA9DCO6yX3e6gWNAlIaUUpRoFU3oA2gWR0CCrqM85jpcdX2UKGgGaAloD0MILT4FwPjCYUCUhpRSlGgVTegDaBZHQIKyNeQdS2p1fZQoaAZoCWgPQwizCMVW0A1gQJSGlFKUaBVN6ANoFkdAgskW0qpcX3V9lChoBmgJaA9DCCOERxtHNExAlIaUUpRoFUuvaBZHQILKDSG8Emp1fZQoaAZoCWgPQwhdMSO8PU5dQJSGlFKUaBVN6ANoFkdAgss7vPTodXV9lChoBmgJaA9DCHXkSGfgkWVAlIaUUpRoFU3oA2gWR0CC07Os1baAdX2UKGgGaAloD0MI36Y/+5F3UkCUhpRSlGgVTegDaBZHQILbKp3os7N1fZQoaAZoCWgPQwi94NOcvFxJQJSGlFKUaBVLqGgWR0CC4qQ176YWdX2UKGgGaAloD0MIEEHV6NUaZECUhpRSlGgVTegDaBZHQIMAHzlLeyl1fZQoaAZoCWgPQwjtmSUB6m9iQJSGlFKUaBVN6ANoFkdAgwBRkEs8PnV9lChoBmgJaA9DCHUEcLP4zGFAlIaUUpRoFU3oA2gWR0CDEINFz+3pdX2UKGgGaAloD0MIpfPhWYJOYkCUhpRSlGgVTegDaBZHQIMVUs8PnSx1fZQoaAZoCWgPQwit9xvtuGBfQJSGlFKUaBVN6ANoFkdAg16w6p5u63V9lChoBmgJaA9DCIrJG2DmK2JAlIaUUpRoFU3oA2gWR0CDXpT0g8r7dX2UKGgGaAloD0MImuleJ3VuZUCUhpRSlGgVTegDaBZHQINlVNL127p1fZQoaAZoCWgPQwjiBKbTuiBjQJSGlFKUaBVN6ANoFkdAg3Jjebd8A3V9lChoBmgJaA9DCOQuwhTlt2NAlIaUUpRoFU3oA2gWR0CDePcVxjridX2UKGgGaAloD0MIjZqvko+eYUCUhpRSlGgVTegDaBZHQIN4/rrxAjZ1fZQoaAZoCWgPQwhfXoB9dHNeQJSGlFKUaBVN6ANoFkdAg3nLVWjoIXV9lChoBmgJaA9DCFcG1QYnDmVAlIaUUpRoFU3oA2gWR0CDl72QGOdYdX2UKGgGaAloD0MIkEqxo3EAX0CUhpRSlGgVTegDaBZHQIOY37BO58V1fZQoaAZoCWgPQwgv4dBbvO1hQJSGlFKUaBVN6ANoFkdAg6N/oaDPGHV9lChoBmgJaA9DCNuHvOXqDGNAlIaUUpRoFU3oA2gWR0CDrAX4TK1YdX2UKGgGaAloD0MI7bd2oqSKZkCUhpRSlGgVTegDaBZHQIO0QWLxZuB1fZQoaAZoCWgPQwgXY2AdR/VhQJSGlFKUaBVN6ANoFkdAg9QLRrrPdHV9lChoBmgJaA9DCDyGx34Wp2BAlIaUUpRoFU3oA2gWR0CD1EaMJhOQdX2UKGgGaAloD0MIQNzVq8j3WkCUhpRSlGgVTegDaBZHQIPlNJz1bq11fZQoaAZoCWgPQwhIqBlSRbZaQJSGlFKUaBVN6ANoFkdAg+ou2AoXsXV9lChoBmgJaA9DCKzJU1bTz11AlIaUUpRoFU3oA2gWR0CD/Bt65XlsdX2UKGgGaAloD0MIo8ubw7X1XECUhpRSlGgVTegDaBZHQIP7/ta6jFh1fZQoaAZoCWgPQwiz8PW1rvhmQJSGlFKUaBVN6ANoFkdAhDngOJ+DvnV9lChoBmgJaA9DCMegE0KHwGNAlIaUUpRoFU3oA2gWR0CERrWe6I3zdX2UKGgGaAloD0MISphp+1cDYUCUhpRSlGgVTegDaBZHQIRNQc5sCT51fZQoaAZoCWgPQwhPXI5XoFZjQJSGlFKUaBVN6ANoFkdAhE1IgNgBtHV9lChoBmgJaA9DCEs9C0J5bGJAlIaUUpRoFU3oA2gWR0CETfrdFfAsdX2UKGgGaAloD0MI0xOWeEA5YECUhpRSlGgVTegDaBZHQIRqE3VCojx1fZQoaAZoCWgPQwgA/5QqUZ1gQJSGlFKUaBVN6ANoFkdAhGsg5BC2MXV9lChoBmgJaA9DCFb0h2YeWWRAlIaUUpRoFU3oA2gWR0CEdU1AJLM+dX2UKGgGaAloD0MI3soSneW0YECUhpRSlGgVTegDaBZHQIR9n974SHx1fZQoaAZoCWgPQwh/MzFdiN5cQJSGlFKUaBVN6ANoFkdAhIWRmbsniXV9lChoBmgJaA9DCJs6j4r/n2ZAlIaUUpRoFU3oA2gWR0CEpQfDDTBqdX2UKGgGaAloD0MIEJIFTOCwYUCUhpRSlGgVTegDaBZHQISlSO/+Kj11fZQoaAZoCWgPQwietdsuNOhRQJSGlFKUaBVL9WgWR0CErTxHXmNjdX2UKGgGaAloD0MIcRx4tdxoWUCUhpRSlGgVTegDaBZHQIS2xlcyFf11fZQoaAZoCWgPQwj5TWGlgidjQJSGlFKUaBVN6ANoFkdAhLvicf/3nXV9lChoBmgJaA9DCGiu00jLyWZAlIaUUpRoFU3oA2gWR0CEzszyBkI5dX2UKGgGaAloD0MIOrLyy2AHYUCUhpRSlGgVTegDaBZHQITOsdFOO811fZQoaAZoCWgPQwhPWU3XEzpiQJSGlFKUaBVN6ANoFkdAhQ1YKpkwvnV9lChoBmgJaA9DCIdtizIbEmRAlIaUUpRoFU3oA2gWR0CFGoI+nqFAdX2UKGgGaAloD0MIjliLT4GoYECUhpRSlGgVTegDaBZHQIUhSOYIBzV1fZQoaAZoCWgPQwj8AQ8MIKJgQJSGlFKUaBVN6ANoFkdAhSFQ176YV3V9lChoBmgJaA9DCAirsYS1I1hAlIaUUpRoFU3oA2gWR0CFIgcENe+mdX2UKGgGaAloD0MIVtRgGoapSUCUhpRSlGgVS+9oFkdAhTF+Il+mWXV9lChoBmgJaA9DCPHZOjjYcF1AlIaUUpRoFU3oA2gWR0CFQC1tO2y+dX2UKGgGaAloD0MIMEs7NZfFZECUhpRSlGgVTegDaBZHQIVBRL/S6Ud1fZQoaAZoCWgPQwhK7UW0nW9lQJSGlFKUaBVN6ANoFkdAhUw3a8Hv+nV9lChoBmgJaA9DCBl1rb1Pi2BAlIaUUpRoFU3oA2gWR0CFVNK9wm3OdX2UKGgGaAloD0MIovDZOrgvYkCUhpRSlGgVTegDaBZHQIWAwWpIczZ1fZQoaAZoCWgPQwjb+BOVDVZgQJSGlFKUaBVN6ANoFkdAhYEMm4RVZXV9lChoBmgJaA9DCOXS+IVXGmVAlIaUUpRoFU3oA2gWR0CFiWUUwi7kdX2UKGgGaAloD0MIZ7RVSWSRXkCUhpRSlGgVTegDaBZHQIWS6qIacZt1fZQoaAZoCWgPQwinWguz0CFjQJSGlFKUaBVN6ANoFkdAhZgIouwos3V9lChoBmgJaA9DCCveyDxyRGNAlIaUUpRoFU3oA2gWR0CFqrsMy8BddX2UKGgGaAloD0MIxJWzd0bcY0CUhpRSlGgVTegDaBZHQIWqnxYq5LB1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
first-try/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff70df271bf7708a3109cd643e311bde15d7ee00c995eb18a8177484b508b4fa
|
3 |
+
size 84829
|
first-try/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d33bedba74b7aa93b3013d4d0ca5bdef1de7b3afa134be075eec5a7f932cca0b
|
3 |
+
size 43201
|
first-try/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
first-try/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ad7ae6cdfb38ab4d3d2499d01eb2badf553405804f978b2fd92f6d38cd37892
|
3 |
+
size 256685
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 233.03968277362864, "std_reward": 17.511220388410294, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T07:12:14.167065"}
|