mccoole commited on
Commit
c9b8f62
·
1 Parent(s): 4a7ea5d

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -0
README.md ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - wikisql
7
+ model-index:
8
+ - name: t5-small-finetuned-wikisql
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # t5-small-finetuned-wikisql
16
+
17
+ This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wikisql dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.1246
20
+ - Rouge2 Precision: 0.8182
21
+ - Rouge2 Recall: 0.7261
22
+ - Rouge2 Fmeasure: 0.7623
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 5e-05
42
+ - train_batch_size: 16
43
+ - eval_batch_size: 16
44
+ - seed: 42
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - num_epochs: 5
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
52
+ |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:|
53
+ | 0.1953 | 1.0 | 4049 | 0.1574 | 0.7938 | 0.7035 | 0.7389 |
54
+ | 0.1644 | 2.0 | 8098 | 0.1375 | 0.8082 | 0.7167 | 0.7527 |
55
+ | 0.1517 | 3.0 | 12147 | 0.1296 | 0.8141 | 0.7223 | 0.7584 |
56
+ | 0.146 | 4.0 | 16196 | 0.1256 | 0.817 | 0.7254 | 0.7614 |
57
+ | 0.1413 | 5.0 | 20245 | 0.1246 | 0.8182 | 0.7261 | 0.7623 |
58
+
59
+
60
+ ### Framework versions
61
+
62
+ - Transformers 4.26.0
63
+ - Pytorch 2.0.1+cu118
64
+ - Datasets 2.13.1
65
+ - Tokenizers 0.13.3