import torch | |
from mmseg.models import FPN | |
def test_fpn(): | |
in_channels = [256, 512, 1024, 2048] | |
inputs = [ | |
torch.randn(1, c, 56 // 2**i, 56 // 2**i) | |
for i, c in enumerate(in_channels) | |
] | |
fpn = FPN(in_channels, 256, len(in_channels)) | |
outputs = fpn(inputs) | |
assert outputs[0].shape == torch.Size([1, 256, 56, 56]) | |
assert outputs[1].shape == torch.Size([1, 256, 28, 28]) | |
assert outputs[2].shape == torch.Size([1, 256, 14, 14]) | |
assert outputs[3].shape == torch.Size([1, 256, 7, 7]) | |