|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from functools import partial |
|
import math |
|
|
|
from .helpers import load_pretrained |
|
from .layers import DropPath, to_2tuple, trunc_normal_ |
|
|
|
from ..builder import HEADS |
|
from .decode_head import BaseDecodeHead |
|
from ..backbones.vit import Block |
|
|
|
from mmcv.cnn import build_norm_layer |
|
|
|
|
|
@HEADS.register_module() |
|
class VisionTransformerUpHead(BaseDecodeHead): |
|
""" Vision Transformer with support for patch or hybrid CNN input stage |
|
""" |
|
def __init__(self, img_size=768, embed_dim=1024, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), norm_cfg=None, |
|
num_conv=1, upsampling_method='bilinear', num_upsampe_layer=1, **kwargs): |
|
super(VisionTransformerUpHead, self).__init__(**kwargs) |
|
self.img_size = img_size |
|
self.norm_cfg = norm_cfg |
|
self.num_conv = num_conv |
|
self.norm = norm_layer(embed_dim) |
|
self.upsampling_method = upsampling_method |
|
self.num_upsampe_layer = num_upsampe_layer |
|
|
|
out_channel=self.num_classes |
|
|
|
if self.num_conv==2: |
|
self.conv_0 = nn.Conv2d(embed_dim, 256, kernel_size=3, stride=1, padding=1) |
|
self.conv_1 = nn.Conv2d(256, out_channel, 1, 1) |
|
_, self.syncbn_fc_0 = build_norm_layer(self.norm_cfg, 256) |
|
|
|
elif self.num_conv==4: |
|
self.conv_0 = nn.Conv2d(embed_dim, 256, kernel_size=3, stride=1, padding=1) |
|
self.conv_1 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) |
|
self.conv_2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) |
|
self.conv_3 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) |
|
self.conv_4 = nn.Conv2d(256, out_channel, kernel_size=1, stride=1) |
|
|
|
_, self.syncbn_fc_0 = build_norm_layer(self.norm_cfg, 256) |
|
_, self.syncbn_fc_1 = build_norm_layer(self.norm_cfg, 256) |
|
_, self.syncbn_fc_2 = build_norm_layer(self.norm_cfg, 256) |
|
_, self.syncbn_fc_3 = build_norm_layer(self.norm_cfg, 256) |
|
|
|
|
|
|
|
def init_weights(self): |
|
for m in self.modules(): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
def forward(self, x): |
|
x = self._transform_inputs(x) |
|
if x.dim()==3: |
|
if x.shape[1] % 48 !=0: |
|
x = x[:,1:] |
|
x = self.norm(x) |
|
|
|
if self.upsampling_method=='bilinear': |
|
if x.dim()==3: |
|
n, hw, c = x.shape |
|
h=w = int(math.sqrt(hw)) |
|
x = x.transpose(1,2).reshape(n, c, h, w) |
|
|
|
if self.num_conv==2: |
|
if self.num_upsampe_layer==2: |
|
x = self.conv_0(x) |
|
x = self.syncbn_fc_0(x) |
|
x = F.relu(x,inplace=True) |
|
x = F.interpolate(x, size=x.shape[-1]*4, mode='bilinear', align_corners=self.align_corners) |
|
x = self.conv_1(x) |
|
x = F.interpolate(x, size=self.img_size, mode='bilinear', align_corners=self.align_corners) |
|
elif self.num_upsampe_layer==1: |
|
x = self.conv_0(x) |
|
x = self.syncbn_fc_0(x) |
|
x = F.relu(x,inplace=True) |
|
x = self.conv_1(x) |
|
x = F.interpolate(x, size=self.img_size, mode='bilinear', align_corners=self.align_corners) |
|
elif self.num_conv==4: |
|
if self.num_upsampe_layer==4: |
|
x = self.conv_0(x) |
|
x = self.syncbn_fc_0(x) |
|
x = F.relu(x,inplace=True) |
|
x = F.interpolate(x, size=x.shape[-1]*2, mode='bilinear', align_corners=self.align_corners) |
|
x = self.conv_1(x) |
|
x = self.syncbn_fc_1(x) |
|
x = F.relu(x,inplace=True) |
|
x = F.interpolate(x, size=x.shape[-1]*2, mode='bilinear', align_corners=self.align_corners) |
|
x = self.conv_2(x) |
|
x = self.syncbn_fc_2(x) |
|
x = F.relu(x,inplace=True) |
|
x = F.interpolate(x, size=x.shape[-1]*2, mode='bilinear', align_corners=self.align_corners) |
|
x = self.conv_3(x) |
|
x = self.syncbn_fc_3(x) |
|
x = F.relu(x,inplace=True) |
|
x = self.conv_4(x) |
|
x = F.interpolate(x, size=x.shape[-1]*2, mode='bilinear', align_corners=self.align_corners) |
|
|
|
return x |
|
|
|
|