Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
mccaly's picture
Upload 660 files
b13b124
raw
history blame
16.5 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
import math
from .helpers import load_pretrained
from .layers import DropPath, to_2tuple, trunc_normal_
from ..builder import BACKBONES
from mmcv.cnn import build_norm_layer
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic',
'mean': (0.485, 0.456, 0.406), 'std': (0.229, 0.224, 0.225),
'first_conv': '', 'classifier': 'head',
**kwargs
}
default_cfgs = {
# patch models
'vit_small_patch16_224': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/vit_small_p16_224-15ec54c9.pth',
),
'vit_base_patch16_224': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth',
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
#pretrained_finetune='pretrain/VIT_base_224_ReLeM.pth'
),
'vit_base_patch16_384': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_384-83fb41ba.pth',
input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0),
'vit_base_patch32_384': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p32_384-830016f5.pth',
input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0),
'vit_large_patch16_224': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_224-4ee7a4dc.pth',
input_size=(3, 224, 224), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0),
'vit_large_patch16_384': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_384-b3be5167.pth',
input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0),
'vit_large_patch32_384': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p32_384-9b920ba8.pth',
input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0),
'vit_base_patch16_224_in21k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch16_224_in21k-e5005f0a.pth',
num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
'vit_huge_patch16_224': _cfg(),
'vit_huge_patch32_384': _cfg(input_size=(3, 384, 384)),
# hybrid models
'vit_small_resnet26d_224': _cfg(),
'vit_small_resnet50d_s3_224': _cfg(),
'vit_base_resnet26d_224': _cfg(),
'vit_base_resnet50d_224': _cfg(),
'deit_base_distilled_path16_384': _cfg(
input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0,
pretrained_finetune='pretrained_model/deit_base_distilled_patch16_384.pth'
)
}
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
q, k, v = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x):
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class PatchEmbed(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x):
B, C, H, W = x.shape
# FIXME look at relaxing size constraints
assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
# x = F.interpolate(x, size=2*x.shape[-1], mode='bilinear', align_corners=True)
x = self.proj(x)
return x
class HybridEmbed(nn.Module):
""" CNN Feature Map Embedding
Extract feature map from CNN, flatten, project to embedding dim.
"""
def __init__(self, backbone, img_size=224, feature_size=None, in_chans=3, embed_dim=768):
super().__init__()
assert isinstance(backbone, nn.Module)
img_size = to_2tuple(img_size)
self.img_size = img_size
self.backbone = backbone
if feature_size is None:
with torch.no_grad():
# FIXME this is hacky, but most reliable way of determining the exact dim of the output feature
# map for all networks, the feature metadata has reliable channel and stride info, but using
# stride to calc feature dim requires info about padding of each stage that isn't captured.
training = backbone.training
if training:
backbone.eval()
o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))[-1]
feature_size = o.shape[-2:]
feature_dim = o.shape[1]
backbone.train(training)
else:
feature_size = to_2tuple(feature_size)
feature_dim = self.backbone.feature_info.channels()[-1]
self.num_patches = feature_size[0] * feature_size[1]
self.proj = nn.Linear(feature_dim, embed_dim)
def forward(self, x):
x = self.backbone(x)[-1]
x = x.flatten(2).transpose(1, 2)
x = self.proj(x)
return x
class Conv_MLA(nn.Module):
def __init__(self, in_channels=1024, mla_channels=256, norm_cfg=None):
super(Conv_MLA, self).__init__()
self.mla_p2_1x1 = nn.Sequential(nn.Conv2d(in_channels, mla_channels, 1, bias=False), build_norm_layer(norm_cfg, mla_channels)[1], nn.ReLU())
self.mla_p3_1x1 = nn.Sequential(nn.Conv2d(in_channels, mla_channels, 1, bias=False), build_norm_layer(norm_cfg, mla_channels)[1], nn.ReLU())
self.mla_p4_1x1 = nn.Sequential(nn.Conv2d(in_channels, mla_channels, 1, bias=False), build_norm_layer(norm_cfg, mla_channels)[1], nn.ReLU())
self.mla_p5_1x1 = nn.Sequential(nn.Conv2d(in_channels, mla_channels, 1, bias=False), build_norm_layer(norm_cfg, mla_channels)[1], nn.ReLU())
self.mla_p2 = nn.Sequential(nn.Conv2d(mla_channels, mla_channels, 3, padding=1, bias=False), build_norm_layer(norm_cfg, mla_channels)[1], nn.ReLU())
self.mla_p3 = nn.Sequential(nn.Conv2d(mla_channels, mla_channels, 3, padding=1, bias=False), build_norm_layer(norm_cfg, mla_channels)[1], nn.ReLU())
self.mla_p4 = nn.Sequential(nn.Conv2d(mla_channels, mla_channels, 3, padding=1, bias=False), build_norm_layer(norm_cfg, mla_channels)[1], nn.ReLU())
self.mla_p5 = nn.Sequential(nn.Conv2d(mla_channels, mla_channels, 3, padding=1, bias=False), build_norm_layer(norm_cfg, mla_channels)[1], nn.ReLU())
def to_2D(self, x):
n, hw, c = x.shape
h=w = int(math.sqrt(hw))
x = x.transpose(1,2).reshape(n, c, h, w)
return x
def forward(self, res2, res3, res4, res5):
res2 = self.to_2D(res2)
res3 = self.to_2D(res3)
res4 = self.to_2D(res4)
res5 = self.to_2D(res5)
mla_p5_1x1 = self.mla_p5_1x1(res5)
mla_p4_1x1 = self.mla_p4_1x1(res4)
mla_p3_1x1 = self.mla_p3_1x1(res3)
mla_p2_1x1 = self.mla_p2_1x1(res2)
mla_p4_plus = mla_p5_1x1 + mla_p4_1x1
mla_p3_plus = mla_p4_plus + mla_p3_1x1
mla_p2_plus = mla_p3_plus + mla_p2_1x1
mla_p5 = self.mla_p5(mla_p5_1x1)
mla_p4 = self.mla_p4(mla_p4_plus)
mla_p3 = self.mla_p3(mla_p3_plus)
mla_p2 = self.mla_p2(mla_p2_plus)
return mla_p2, mla_p3, mla_p4, mla_p5
@BACKBONES.register_module()
class VIT_MLA(nn.Module):
""" Vision Transformer with support for patch or hybrid CNN input stage
"""
def __init__(self, model_name='vit_large_patch16_384', img_size=384, patch_size=16, in_chans=3, embed_dim=1024, depth=24,
num_heads=16, num_classes=19, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0.1, attn_drop_rate=0.,
drop_path_rate=0., hybrid_backbone=None, norm_layer=partial(nn.LayerNorm, eps=1e-6), norm_cfg=None,
pos_embed_interp=False, random_init=False, align_corners=False, mla_channels=256,
mla_index=(5,11,17,23), pretrain_weights=None, **kwargs):
super(VIT_MLA, self).__init__(**kwargs)
self.model_name = model_name
self.img_size = img_size
self.patch_size = patch_size
self.in_chans = in_chans
self.embed_dim = embed_dim
self.depth = depth
self.num_heads = num_heads
self.num_classes = num_classes
self.mlp_ratio = mlp_ratio
self.qkv_bias = qkv_bias
self.qk_scale = qk_scale
self.drop_rate = drop_rate
self.attn_drop_rate = attn_drop_rate
self.drop_path_rate = drop_path_rate
self.hybrid_backbone = hybrid_backbone
self.norm_layer = norm_layer
self.norm_cfg = norm_cfg
self.pos_embed_interp = pos_embed_interp
self.random_init = random_init
self.align_corners = align_corners
self.mla_channels = mla_channels
self.mla_index = mla_index
self.pretrain_weights = pretrain_weights
self.num_stages = self.depth
self.out_indices= tuple(range(self.num_stages))
if self.hybrid_backbone is not None:
self.patch_embed = HybridEmbed(
self.hybrid_backbone, img_size=self.img_size, in_chans=self.in_chans, embed_dim=self.embed_dim)
else:
self.patch_embed = PatchEmbed(
img_size=self.img_size, patch_size=self.patch_size, in_chans=self.in_chans, embed_dim=self.embed_dim)
self.num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, self.num_patches + 1, self.embed_dim))
self.pos_drop = nn.Dropout(p=self.drop_rate)
dpr = [x.item() for x in torch.linspace(0, self.drop_path_rate, self.depth)] # stochastic depth decay rule
self.blocks = nn.ModuleList([
Block(
dim=self.embed_dim, num_heads=self.num_heads, mlp_ratio=self.mlp_ratio, qkv_bias=self.qkv_bias, qk_scale=self.qk_scale,
drop=self.drop_rate, attn_drop=self.attn_drop_rate, drop_path=dpr[i], norm_layer=self.norm_layer)
for i in range(self.depth)])
self.mla = Conv_MLA(in_channels=self.embed_dim, mla_channels=self.mla_channels, norm_cfg=self.norm_cfg)
self.norm_0 = norm_layer(self.embed_dim)
self.norm_1 = norm_layer(self.embed_dim)
self.norm_2 = norm_layer(self.embed_dim)
self.norm_3 = norm_layer(self.embed_dim)
# NOTE as per official impl, we could have a pre-logits representation dense layer + tanh here
#self.repr = nn.Linear(embed_dim, representation_size)
#self.repr_act = nn.Tanh()
trunc_normal_(self.pos_embed, std=.02)
trunc_normal_(self.cls_token, std=.02)
# self.apply(self._init_weights)
def init_weights(self, pretrained=None):
# nn.init.normal_(self.pos_embed, std=0.02)
# nn.init.zeros_(self.cls_token)
for m in self.modules():
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
if self.random_init == False:
self.default_cfg = default_cfgs[self.model_name]
if not self.pretrain_weights == None:
self.default_cfg['pretrained_finetune'] = self.pretrain_weights
if self.model_name in ['vit_small_patch16_224', 'vit_base_patch16_224']:
load_pretrained(self, num_classes=self.num_classes, in_chans=self.in_chans, pos_embed_interp=self.pos_embed_interp, num_patches=self.patch_embed.num_patches, align_corners=self.align_corners, filter_fn=self._conv_filter)
else:
load_pretrained(self, num_classes=self.num_classes, in_chans=self.in_chans, pos_embed_interp=self.pos_embed_interp, num_patches=self.patch_embed.num_patches, align_corners=self.align_corners)
else:
print('Initialize weight randomly')
@property
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
def _conv_filter(self, state_dict, patch_size=16):
""" convert patch embedding weight from manual patchify + linear proj to conv"""
out_dict = {}
for k, v in state_dict.items():
if 'patch_embed.proj.weight' in k:
v = v.reshape((v.shape[0], 3, patch_size, patch_size))
out_dict[k] = v
return out_dict
def forward(self, x):
B = x.shape[0]
x = self.patch_embed(x)
x = x.flatten(2).transpose(1, 2)
cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
x = torch.cat((cls_tokens, x), dim=1)
x = x + self.pos_embed
x = x[:,1:]
x = self.pos_drop(x)
outs = []
for i, blk in enumerate(self.blocks):
x = blk(x)
if i in self.out_indices:
outs.append(x)
c6 = self.norm_0(outs[self.mla_index[0]])
c12 = self.norm_1(outs[self.mla_index[1]])
c18 = self.norm_2(outs[self.mla_index[2]])
c24 = self.norm_3(outs[self.mla_index[3]])
p6, p12, p18, p24 = self.mla(c6, c12, c18, c24)
return (p6, p12, p18, p24)