|
import copy |
|
import platform |
|
import random |
|
from functools import partial |
|
|
|
import numpy as np |
|
from mmcv.parallel import collate |
|
from mmcv.runner import get_dist_info |
|
from mmcv.utils import Registry, build_from_cfg |
|
from mmcv.utils.parrots_wrapper import DataLoader, PoolDataLoader |
|
from torch.utils.data import DistributedSampler |
|
|
|
if platform.system() != 'Windows': |
|
|
|
import resource |
|
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE) |
|
hard_limit = rlimit[1] |
|
soft_limit = min(4096, hard_limit) |
|
resource.setrlimit(resource.RLIMIT_NOFILE, (soft_limit, hard_limit)) |
|
|
|
DATASETS = Registry('dataset') |
|
PIPELINES = Registry('pipeline') |
|
|
|
|
|
def _concat_dataset(cfg, default_args=None): |
|
"""Build :obj:`ConcatDataset by.""" |
|
from .dataset_wrappers import ConcatDataset |
|
img_dir = cfg['img_dir'] |
|
ann_dir = cfg.get('ann_dir', None) |
|
split = cfg.get('split', None) |
|
num_img_dir = len(img_dir) if isinstance(img_dir, (list, tuple)) else 1 |
|
if ann_dir is not None: |
|
num_ann_dir = len(ann_dir) if isinstance(ann_dir, (list, tuple)) else 1 |
|
else: |
|
num_ann_dir = 0 |
|
if split is not None: |
|
num_split = len(split) if isinstance(split, (list, tuple)) else 1 |
|
else: |
|
num_split = 0 |
|
if num_img_dir > 1: |
|
assert num_img_dir == num_ann_dir or num_ann_dir == 0 |
|
assert num_img_dir == num_split or num_split == 0 |
|
else: |
|
assert num_split == num_ann_dir or num_ann_dir <= 1 |
|
num_dset = max(num_split, num_img_dir) |
|
|
|
datasets = [] |
|
for i in range(num_dset): |
|
data_cfg = copy.deepcopy(cfg) |
|
if isinstance(img_dir, (list, tuple)): |
|
data_cfg['img_dir'] = img_dir[i] |
|
if isinstance(ann_dir, (list, tuple)): |
|
data_cfg['ann_dir'] = ann_dir[i] |
|
if isinstance(split, (list, tuple)): |
|
data_cfg['split'] = split[i] |
|
datasets.append(build_dataset(data_cfg, default_args)) |
|
|
|
return ConcatDataset(datasets) |
|
|
|
|
|
def build_dataset(cfg, default_args=None): |
|
"""Build datasets.""" |
|
from .dataset_wrappers import ConcatDataset, RepeatDataset |
|
if isinstance(cfg, (list, tuple)): |
|
dataset = ConcatDataset([build_dataset(c, default_args) for c in cfg]) |
|
elif cfg['type'] == 'RepeatDataset': |
|
dataset = RepeatDataset( |
|
build_dataset(cfg['dataset'], default_args), cfg['times']) |
|
elif isinstance(cfg.get('img_dir'), (list, tuple)) or isinstance( |
|
cfg.get('split', None), (list, tuple)): |
|
dataset = _concat_dataset(cfg, default_args) |
|
else: |
|
dataset = build_from_cfg(cfg, DATASETS, default_args) |
|
|
|
return dataset |
|
|
|
|
|
def build_dataloader(dataset, |
|
samples_per_gpu, |
|
workers_per_gpu, |
|
num_gpus=1, |
|
dist=True, |
|
shuffle=True, |
|
seed=None, |
|
drop_last=False, |
|
pin_memory=True, |
|
dataloader_type='PoolDataLoader', |
|
**kwargs): |
|
"""Build PyTorch DataLoader. |
|
|
|
In distributed training, each GPU/process has a dataloader. |
|
In non-distributed training, there is only one dataloader for all GPUs. |
|
|
|
Args: |
|
dataset (Dataset): A PyTorch dataset. |
|
samples_per_gpu (int): Number of training samples on each GPU, i.e., |
|
batch size of each GPU. |
|
workers_per_gpu (int): How many subprocesses to use for data loading |
|
for each GPU. |
|
num_gpus (int): Number of GPUs. Only used in non-distributed training. |
|
dist (bool): Distributed training/test or not. Default: True. |
|
shuffle (bool): Whether to shuffle the data at every epoch. |
|
Default: True. |
|
seed (int | None): Seed to be used. Default: None. |
|
drop_last (bool): Whether to drop the last incomplete batch in epoch. |
|
Default: False |
|
pin_memory (bool): Whether to use pin_memory in DataLoader. |
|
Default: True |
|
dataloader_type (str): Type of dataloader. Default: 'PoolDataLoader' |
|
kwargs: any keyword argument to be used to initialize DataLoader |
|
|
|
Returns: |
|
DataLoader: A PyTorch dataloader. |
|
""" |
|
rank, world_size = get_dist_info() |
|
if dist: |
|
sampler = DistributedSampler( |
|
dataset, world_size, rank, shuffle=shuffle) |
|
shuffle = False |
|
batch_size = samples_per_gpu |
|
num_workers = workers_per_gpu |
|
else: |
|
sampler = None |
|
batch_size = num_gpus * samples_per_gpu |
|
num_workers = num_gpus * workers_per_gpu |
|
|
|
init_fn = partial( |
|
worker_init_fn, num_workers=num_workers, rank=rank, |
|
seed=seed) if seed is not None else None |
|
|
|
assert dataloader_type in ( |
|
'DataLoader', |
|
'PoolDataLoader'), f'unsupported dataloader {dataloader_type}' |
|
|
|
if dataloader_type == 'PoolDataLoader': |
|
dataloader = PoolDataLoader |
|
elif dataloader_type == 'DataLoader': |
|
dataloader = DataLoader |
|
|
|
data_loader = dataloader( |
|
dataset, |
|
batch_size=batch_size, |
|
sampler=sampler, |
|
num_workers=num_workers, |
|
collate_fn=partial(collate, samples_per_gpu=samples_per_gpu), |
|
pin_memory=pin_memory, |
|
shuffle=shuffle, |
|
worker_init_fn=init_fn, |
|
drop_last=drop_last, |
|
**kwargs) |
|
|
|
return data_loader |
|
|
|
|
|
def worker_init_fn(worker_id, num_workers, rank, seed): |
|
"""Worker init func for dataloader. |
|
|
|
The seed of each worker equals to num_worker * rank + worker_id + user_seed |
|
|
|
Args: |
|
worker_id (int): Worker id. |
|
num_workers (int): Number of workers. |
|
rank (int): The rank of current process. |
|
seed (int): The random seed to use. |
|
""" |
|
|
|
worker_seed = num_workers * rank + worker_id + seed |
|
np.random.seed(worker_seed) |
|
random.seed(worker_seed) |
|
|