|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from mmcv.cnn import ConvModule, build_activation_layer, build_norm_layer |
|
|
|
from ..builder import HEADS |
|
from .decode_head import BaseDecodeHead |
|
|
|
|
|
class DCM(nn.Module): |
|
"""Dynamic Convolutional Module used in DMNet. |
|
|
|
Args: |
|
filter_size (int): The filter size of generated convolution kernel |
|
used in Dynamic Convolutional Module. |
|
fusion (bool): Add one conv to fuse DCM output feature. |
|
in_channels (int): Input channels. |
|
channels (int): Channels after modules, before conv_seg. |
|
conv_cfg (dict | None): Config of conv layers. |
|
norm_cfg (dict | None): Config of norm layers. |
|
act_cfg (dict): Config of activation layers. |
|
""" |
|
|
|
def __init__(self, filter_size, fusion, in_channels, channels, conv_cfg, |
|
norm_cfg, act_cfg): |
|
super(DCM, self).__init__() |
|
self.filter_size = filter_size |
|
self.fusion = fusion |
|
self.in_channels = in_channels |
|
self.channels = channels |
|
self.conv_cfg = conv_cfg |
|
self.norm_cfg = norm_cfg |
|
self.act_cfg = act_cfg |
|
self.filter_gen_conv = nn.Conv2d(self.in_channels, self.channels, 1, 1, |
|
0) |
|
|
|
self.input_redu_conv = ConvModule( |
|
self.in_channels, |
|
self.channels, |
|
1, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
act_cfg=self.act_cfg) |
|
|
|
if self.norm_cfg is not None: |
|
self.norm = build_norm_layer(self.norm_cfg, self.channels)[1] |
|
else: |
|
self.norm = None |
|
self.activate = build_activation_layer(self.act_cfg) |
|
|
|
if self.fusion: |
|
self.fusion_conv = ConvModule( |
|
self.channels, |
|
self.channels, |
|
1, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
act_cfg=self.act_cfg) |
|
|
|
def forward(self, x): |
|
"""Forward function.""" |
|
generted_filter = self.filter_gen_conv( |
|
F.adaptive_avg_pool2d(x, self.filter_size)) |
|
x = self.input_redu_conv(x) |
|
b, c, h, w = x.shape |
|
|
|
x = x.view(1, b * c, h, w) |
|
|
|
generted_filter = generted_filter.view(b * c, 1, self.filter_size, |
|
self.filter_size) |
|
pad = (self.filter_size - 1) // 2 |
|
if (self.filter_size - 1) % 2 == 0: |
|
p2d = (pad, pad, pad, pad) |
|
else: |
|
p2d = (pad + 1, pad, pad + 1, pad) |
|
x = F.pad(input=x, pad=p2d, mode='constant', value=0) |
|
|
|
output = F.conv2d(input=x, weight=generted_filter, groups=b * c) |
|
|
|
output = output.view(b, c, h, w) |
|
if self.norm is not None: |
|
output = self.norm(output) |
|
output = self.activate(output) |
|
|
|
if self.fusion: |
|
output = self.fusion_conv(output) |
|
|
|
return output |
|
|
|
|
|
@HEADS.register_module() |
|
class DMHead(BaseDecodeHead): |
|
"""Dynamic Multi-scale Filters for Semantic Segmentation. |
|
|
|
This head is the implementation of |
|
`DMNet <https://openaccess.thecvf.com/content_ICCV_2019/papers/\ |
|
He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_\ |
|
ICCV_2019_paper.pdf>`_. |
|
|
|
Args: |
|
filter_sizes (tuple[int]): The size of generated convolutional filters |
|
used in Dynamic Convolutional Module. Default: (1, 3, 5, 7). |
|
fusion (bool): Add one conv to fuse DCM output feature. |
|
""" |
|
|
|
def __init__(self, filter_sizes=(1, 3, 5, 7), fusion=False, **kwargs): |
|
super(DMHead, self).__init__(**kwargs) |
|
assert isinstance(filter_sizes, (list, tuple)) |
|
self.filter_sizes = filter_sizes |
|
self.fusion = fusion |
|
dcm_modules = [] |
|
for filter_size in self.filter_sizes: |
|
dcm_modules.append( |
|
DCM(filter_size, |
|
self.fusion, |
|
self.in_channels, |
|
self.channels, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
act_cfg=self.act_cfg)) |
|
self.dcm_modules = nn.ModuleList(dcm_modules) |
|
self.bottleneck = ConvModule( |
|
self.in_channels + len(filter_sizes) * self.channels, |
|
self.channels, |
|
3, |
|
padding=1, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
act_cfg=self.act_cfg) |
|
|
|
def forward(self, inputs): |
|
"""Forward function.""" |
|
x = self._transform_inputs(inputs) |
|
dcm_outs = [x] |
|
for dcm_module in self.dcm_modules: |
|
dcm_outs.append(dcm_module(x)) |
|
dcm_outs = torch.cat(dcm_outs, dim=1) |
|
output = self.bottleneck(dcm_outs) |
|
output = self.cls_seg(output) |
|
return output |
|
|