|
import argparse |
|
from functools import partial |
|
|
|
import mmcv |
|
import numpy as np |
|
import onnxruntime as rt |
|
import torch |
|
import torch._C |
|
import torch.serialization |
|
from mmcv.onnx import register_extra_symbolics |
|
from mmcv.runner import load_checkpoint |
|
from torch import nn |
|
|
|
from mmseg.models import build_segmentor |
|
|
|
torch.manual_seed(3) |
|
|
|
|
|
def _convert_batchnorm(module): |
|
module_output = module |
|
if isinstance(module, torch.nn.SyncBatchNorm): |
|
module_output = torch.nn.BatchNorm2d(module.num_features, module.eps, |
|
module.momentum, module.affine, |
|
module.track_running_stats) |
|
if module.affine: |
|
module_output.weight.data = module.weight.data.clone().detach() |
|
module_output.bias.data = module.bias.data.clone().detach() |
|
|
|
module_output.weight.requires_grad = module.weight.requires_grad |
|
module_output.bias.requires_grad = module.bias.requires_grad |
|
module_output.running_mean = module.running_mean |
|
module_output.running_var = module.running_var |
|
module_output.num_batches_tracked = module.num_batches_tracked |
|
for name, child in module.named_children(): |
|
module_output.add_module(name, _convert_batchnorm(child)) |
|
del module |
|
return module_output |
|
|
|
|
|
def _demo_mm_inputs(input_shape, num_classes): |
|
"""Create a superset of inputs needed to run test or train batches. |
|
|
|
Args: |
|
input_shape (tuple): |
|
input batch dimensions |
|
num_classes (int): |
|
number of semantic classes |
|
""" |
|
(N, C, H, W) = input_shape |
|
rng = np.random.RandomState(0) |
|
imgs = rng.rand(*input_shape) |
|
segs = rng.randint( |
|
low=0, high=num_classes - 1, size=(N, 1, H, W)).astype(np.uint8) |
|
img_metas = [{ |
|
'img_shape': (H, W, C), |
|
'ori_shape': (H, W, C), |
|
'pad_shape': (H, W, C), |
|
'filename': '<demo>.png', |
|
'scale_factor': 1.0, |
|
'flip': False, |
|
} for _ in range(N)] |
|
mm_inputs = { |
|
'imgs': torch.FloatTensor(imgs).requires_grad_(True), |
|
'img_metas': img_metas, |
|
'gt_semantic_seg': torch.LongTensor(segs) |
|
} |
|
return mm_inputs |
|
|
|
|
|
def pytorch2onnx(model, |
|
input_shape, |
|
opset_version=11, |
|
show=False, |
|
output_file='tmp.onnx', |
|
verify=False): |
|
"""Export Pytorch model to ONNX model and verify the outputs are same |
|
between Pytorch and ONNX. |
|
|
|
Args: |
|
model (nn.Module): Pytorch model we want to export. |
|
input_shape (tuple): Use this input shape to construct |
|
the corresponding dummy input and execute the model. |
|
opset_version (int): The onnx op version. Default: 11. |
|
show (bool): Whether print the computation graph. Default: False. |
|
output_file (string): The path to where we store the output ONNX model. |
|
Default: `tmp.onnx`. |
|
verify (bool): Whether compare the outputs between Pytorch and ONNX. |
|
Default: False. |
|
""" |
|
model.cpu().eval() |
|
|
|
if isinstance(model.decode_head, nn.ModuleList): |
|
num_classes = model.decode_head[-1].num_classes |
|
else: |
|
num_classes = model.decode_head.num_classes |
|
|
|
mm_inputs = _demo_mm_inputs(input_shape, num_classes) |
|
|
|
imgs = mm_inputs.pop('imgs') |
|
img_metas = mm_inputs.pop('img_metas') |
|
|
|
img_list = [img[None, :] for img in imgs] |
|
img_meta_list = [[img_meta] for img_meta in img_metas] |
|
|
|
|
|
origin_forward = model.forward |
|
model.forward = partial( |
|
model.forward, img_metas=img_meta_list, return_loss=False) |
|
|
|
register_extra_symbolics(opset_version) |
|
with torch.no_grad(): |
|
torch.onnx.export( |
|
model, (img_list, ), |
|
output_file, |
|
export_params=True, |
|
keep_initializers_as_inputs=True, |
|
verbose=show, |
|
opset_version=opset_version) |
|
print(f'Successfully exported ONNX model: {output_file}') |
|
model.forward = origin_forward |
|
|
|
if verify: |
|
|
|
import onnx |
|
onnx_model = onnx.load(output_file) |
|
onnx.checker.check_model(onnx_model) |
|
|
|
|
|
|
|
pytorch_result = model(img_list, img_meta_list, return_loss=False)[0] |
|
|
|
|
|
input_all = [node.name for node in onnx_model.graph.input] |
|
input_initializer = [ |
|
node.name for node in onnx_model.graph.initializer |
|
] |
|
net_feed_input = list(set(input_all) - set(input_initializer)) |
|
assert (len(net_feed_input) == 1) |
|
sess = rt.InferenceSession(output_file) |
|
onnx_result = sess.run( |
|
None, {net_feed_input[0]: img_list[0].detach().numpy()})[0] |
|
if not np.allclose(pytorch_result, onnx_result): |
|
raise ValueError( |
|
'The outputs are different between Pytorch and ONNX') |
|
print('The outputs are same between Pytorch and ONNX') |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description='Convert MMSeg to ONNX') |
|
parser.add_argument('config', help='test config file path') |
|
parser.add_argument('--checkpoint', help='checkpoint file', default=None) |
|
parser.add_argument('--show', action='store_true', help='show onnx graph') |
|
parser.add_argument( |
|
'--verify', action='store_true', help='verify the onnx model') |
|
parser.add_argument('--output-file', type=str, default='tmp.onnx') |
|
parser.add_argument('--opset-version', type=int, default=11) |
|
parser.add_argument( |
|
'--shape', |
|
type=int, |
|
nargs='+', |
|
default=[256, 256], |
|
help='input image size') |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
if __name__ == '__main__': |
|
args = parse_args() |
|
|
|
if len(args.shape) == 1: |
|
input_shape = (1, 3, args.shape[0], args.shape[0]) |
|
elif len(args.shape) == 2: |
|
input_shape = ( |
|
1, |
|
3, |
|
) + tuple(args.shape) |
|
else: |
|
raise ValueError('invalid input shape') |
|
|
|
cfg = mmcv.Config.fromfile(args.config) |
|
cfg.model.pretrained = None |
|
|
|
|
|
cfg.model.train_cfg = None |
|
segmentor = build_segmentor( |
|
cfg.model, train_cfg=None, test_cfg=cfg.get('test_cfg')) |
|
|
|
segmentor = _convert_batchnorm(segmentor) |
|
|
|
if args.checkpoint: |
|
load_checkpoint(segmentor, args.checkpoint, map_location='cpu') |
|
|
|
|
|
pytorch2onnx( |
|
segmentor, |
|
input_shape, |
|
opset_version=args.opset_version, |
|
show=args.show, |
|
output_file=args.output_file, |
|
verify=args.verify) |
|
|