|
import numpy as np |
|
|
|
from mmseg.core.evaluation import eval_metrics, mean_dice, mean_iou |
|
|
|
|
|
def get_confusion_matrix(pred_label, label, num_classes, ignore_index): |
|
"""Intersection over Union |
|
Args: |
|
pred_label (np.ndarray): 2D predict map |
|
label (np.ndarray): label 2D label map |
|
num_classes (int): number of categories |
|
ignore_index (int): index ignore in evaluation |
|
""" |
|
|
|
mask = (label != ignore_index) |
|
pred_label = pred_label[mask] |
|
label = label[mask] |
|
|
|
n = num_classes |
|
inds = n * label + pred_label |
|
|
|
mat = np.bincount(inds, minlength=n**2).reshape(n, n) |
|
|
|
return mat |
|
|
|
|
|
|
|
def legacy_mean_iou(results, gt_seg_maps, num_classes, ignore_index): |
|
num_imgs = len(results) |
|
assert len(gt_seg_maps) == num_imgs |
|
total_mat = np.zeros((num_classes, num_classes), dtype=np.float) |
|
for i in range(num_imgs): |
|
mat = get_confusion_matrix( |
|
results[i], gt_seg_maps[i], num_classes, ignore_index=ignore_index) |
|
total_mat += mat |
|
all_acc = np.diag(total_mat).sum() / total_mat.sum() |
|
acc = np.diag(total_mat) / total_mat.sum(axis=1) |
|
iou = np.diag(total_mat) / ( |
|
total_mat.sum(axis=1) + total_mat.sum(axis=0) - np.diag(total_mat)) |
|
|
|
return all_acc, acc, iou |
|
|
|
|
|
|
|
def legacy_mean_dice(results, gt_seg_maps, num_classes, ignore_index): |
|
num_imgs = len(results) |
|
assert len(gt_seg_maps) == num_imgs |
|
total_mat = np.zeros((num_classes, num_classes), dtype=np.float) |
|
for i in range(num_imgs): |
|
mat = get_confusion_matrix( |
|
results[i], gt_seg_maps[i], num_classes, ignore_index=ignore_index) |
|
total_mat += mat |
|
all_acc = np.diag(total_mat).sum() / total_mat.sum() |
|
acc = np.diag(total_mat) / total_mat.sum(axis=1) |
|
dice = 2 * np.diag(total_mat) / ( |
|
total_mat.sum(axis=1) + total_mat.sum(axis=0)) |
|
|
|
return all_acc, acc, dice |
|
|
|
|
|
def test_metrics(): |
|
pred_size = (10, 30, 30) |
|
num_classes = 19 |
|
ignore_index = 255 |
|
results = np.random.randint(0, num_classes, size=pred_size) |
|
label = np.random.randint(0, num_classes, size=pred_size) |
|
label[:, 2, 5:10] = ignore_index |
|
all_acc, acc, iou = eval_metrics( |
|
results, label, num_classes, ignore_index, metrics='mIoU') |
|
all_acc_l, acc_l, iou_l = legacy_mean_iou(results, label, num_classes, |
|
ignore_index) |
|
assert all_acc == all_acc_l |
|
assert np.allclose(acc, acc_l) |
|
assert np.allclose(iou, iou_l) |
|
|
|
all_acc, acc, dice = eval_metrics( |
|
results, label, num_classes, ignore_index, metrics='mDice') |
|
all_acc_l, acc_l, dice_l = legacy_mean_dice(results, label, num_classes, |
|
ignore_index) |
|
assert all_acc == all_acc_l |
|
assert np.allclose(acc, acc_l) |
|
assert np.allclose(dice, dice_l) |
|
|
|
all_acc, acc, iou, dice = eval_metrics( |
|
results, label, num_classes, ignore_index, metrics=['mIoU', 'mDice']) |
|
assert all_acc == all_acc_l |
|
assert np.allclose(acc, acc_l) |
|
assert np.allclose(iou, iou_l) |
|
assert np.allclose(dice, dice_l) |
|
|
|
results = np.random.randint(0, 5, size=pred_size) |
|
label = np.random.randint(0, 4, size=pred_size) |
|
all_acc, acc, iou = eval_metrics( |
|
results, |
|
label, |
|
num_classes, |
|
ignore_index=255, |
|
metrics='mIoU', |
|
nan_to_num=-1) |
|
assert acc[-1] == -1 |
|
assert iou[-1] == -1 |
|
|
|
all_acc, acc, dice = eval_metrics( |
|
results, |
|
label, |
|
num_classes, |
|
ignore_index=255, |
|
metrics='mDice', |
|
nan_to_num=-1) |
|
assert acc[-1] == -1 |
|
assert dice[-1] == -1 |
|
|
|
all_acc, acc, dice, iou = eval_metrics( |
|
results, |
|
label, |
|
num_classes, |
|
ignore_index=255, |
|
metrics=['mDice', 'mIoU'], |
|
nan_to_num=-1) |
|
assert acc[-1] == -1 |
|
assert dice[-1] == -1 |
|
assert iou[-1] == -1 |
|
|
|
|
|
def test_mean_iou(): |
|
pred_size = (10, 30, 30) |
|
num_classes = 19 |
|
ignore_index = 255 |
|
results = np.random.randint(0, num_classes, size=pred_size) |
|
label = np.random.randint(0, num_classes, size=pred_size) |
|
label[:, 2, 5:10] = ignore_index |
|
all_acc, acc, iou = mean_iou(results, label, num_classes, ignore_index) |
|
all_acc_l, acc_l, iou_l = legacy_mean_iou(results, label, num_classes, |
|
ignore_index) |
|
assert all_acc == all_acc_l |
|
assert np.allclose(acc, acc_l) |
|
assert np.allclose(iou, iou_l) |
|
|
|
results = np.random.randint(0, 5, size=pred_size) |
|
label = np.random.randint(0, 4, size=pred_size) |
|
all_acc, acc, iou = mean_iou( |
|
results, label, num_classes, ignore_index=255, nan_to_num=-1) |
|
assert acc[-1] == -1 |
|
assert iou[-1] == -1 |
|
|
|
|
|
def test_mean_dice(): |
|
pred_size = (10, 30, 30) |
|
num_classes = 19 |
|
ignore_index = 255 |
|
results = np.random.randint(0, num_classes, size=pred_size) |
|
label = np.random.randint(0, num_classes, size=pred_size) |
|
label[:, 2, 5:10] = ignore_index |
|
all_acc, acc, iou = mean_dice(results, label, num_classes, ignore_index) |
|
all_acc_l, acc_l, iou_l = legacy_mean_dice(results, label, num_classes, |
|
ignore_index) |
|
assert all_acc == all_acc_l |
|
assert np.allclose(acc, acc_l) |
|
assert np.allclose(iou, iou_l) |
|
|
|
results = np.random.randint(0, 5, size=pred_size) |
|
label = np.random.randint(0, 4, size=pred_size) |
|
all_acc, acc, iou = mean_dice( |
|
results, label, num_classes, ignore_index=255, nan_to_num=-1) |
|
assert acc[-1] == -1 |
|
assert iou[-1] == -1 |
|
|