|
import torch |
|
import torch.nn as nn |
|
from mmcv.cnn import (ConvModule, DepthwiseSeparableConvModule, constant_init, |
|
kaiming_init) |
|
from torch.nn.modules.batchnorm import _BatchNorm |
|
|
|
from mmseg.models.decode_heads.psp_head import PPM |
|
from mmseg.ops import resize |
|
from ..builder import BACKBONES |
|
from ..utils.inverted_residual import InvertedResidual |
|
|
|
|
|
class LearningToDownsample(nn.Module): |
|
"""Learning to downsample module. |
|
|
|
Args: |
|
in_channels (int): Number of input channels. |
|
dw_channels (tuple[int]): Number of output channels of the first and |
|
the second depthwise conv (dwconv) layers. |
|
out_channels (int): Number of output channels of the whole |
|
'learning to downsample' module. |
|
conv_cfg (dict | None): Config of conv layers. Default: None |
|
norm_cfg (dict | None): Config of norm layers. Default: |
|
dict(type='BN') |
|
act_cfg (dict): Config of activation layers. Default: |
|
dict(type='ReLU') |
|
""" |
|
|
|
def __init__(self, |
|
in_channels, |
|
dw_channels, |
|
out_channels, |
|
conv_cfg=None, |
|
norm_cfg=dict(type='BN'), |
|
act_cfg=dict(type='ReLU')): |
|
super(LearningToDownsample, self).__init__() |
|
self.conv_cfg = conv_cfg |
|
self.norm_cfg = norm_cfg |
|
self.act_cfg = act_cfg |
|
dw_channels1 = dw_channels[0] |
|
dw_channels2 = dw_channels[1] |
|
|
|
self.conv = ConvModule( |
|
in_channels, |
|
dw_channels1, |
|
3, |
|
stride=2, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
act_cfg=self.act_cfg) |
|
self.dsconv1 = DepthwiseSeparableConvModule( |
|
dw_channels1, |
|
dw_channels2, |
|
kernel_size=3, |
|
stride=2, |
|
padding=1, |
|
norm_cfg=self.norm_cfg) |
|
self.dsconv2 = DepthwiseSeparableConvModule( |
|
dw_channels2, |
|
out_channels, |
|
kernel_size=3, |
|
stride=2, |
|
padding=1, |
|
norm_cfg=self.norm_cfg) |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
x = self.dsconv1(x) |
|
x = self.dsconv2(x) |
|
return x |
|
|
|
|
|
class GlobalFeatureExtractor(nn.Module): |
|
"""Global feature extractor module. |
|
|
|
Args: |
|
in_channels (int): Number of input channels of the GFE module. |
|
Default: 64 |
|
block_channels (tuple[int]): Tuple of ints. Each int specifies the |
|
number of output channels of each Inverted Residual module. |
|
Default: (64, 96, 128) |
|
out_channels(int): Number of output channels of the GFE module. |
|
Default: 128 |
|
expand_ratio (int): Adjusts number of channels of the hidden layer |
|
in InvertedResidual by this amount. |
|
Default: 6 |
|
num_blocks (tuple[int]): Tuple of ints. Each int specifies the |
|
number of times each Inverted Residual module is repeated. |
|
The repeated Inverted Residual modules are called a 'group'. |
|
Default: (3, 3, 3) |
|
strides (tuple[int]): Tuple of ints. Each int specifies |
|
the downsampling factor of each 'group'. |
|
Default: (2, 2, 1) |
|
pool_scales (tuple[int]): Tuple of ints. Each int specifies |
|
the parameter required in 'global average pooling' within PPM. |
|
Default: (1, 2, 3, 6) |
|
conv_cfg (dict | None): Config of conv layers. Default: None |
|
norm_cfg (dict | None): Config of norm layers. Default: |
|
dict(type='BN') |
|
act_cfg (dict): Config of activation layers. Default: |
|
dict(type='ReLU') |
|
align_corners (bool): align_corners argument of F.interpolate. |
|
Default: False |
|
""" |
|
|
|
def __init__(self, |
|
in_channels=64, |
|
block_channels=(64, 96, 128), |
|
out_channels=128, |
|
expand_ratio=6, |
|
num_blocks=(3, 3, 3), |
|
strides=(2, 2, 1), |
|
pool_scales=(1, 2, 3, 6), |
|
conv_cfg=None, |
|
norm_cfg=dict(type='BN'), |
|
act_cfg=dict(type='ReLU'), |
|
align_corners=False): |
|
super(GlobalFeatureExtractor, self).__init__() |
|
self.conv_cfg = conv_cfg |
|
self.norm_cfg = norm_cfg |
|
self.act_cfg = act_cfg |
|
assert len(block_channels) == len(num_blocks) == 3 |
|
self.bottleneck1 = self._make_layer(in_channels, block_channels[0], |
|
num_blocks[0], strides[0], |
|
expand_ratio) |
|
self.bottleneck2 = self._make_layer(block_channels[0], |
|
block_channels[1], num_blocks[1], |
|
strides[1], expand_ratio) |
|
self.bottleneck3 = self._make_layer(block_channels[1], |
|
block_channels[2], num_blocks[2], |
|
strides[2], expand_ratio) |
|
self.ppm = PPM( |
|
pool_scales, |
|
block_channels[2], |
|
block_channels[2] // 4, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
act_cfg=self.act_cfg, |
|
align_corners=align_corners) |
|
self.out = ConvModule( |
|
block_channels[2] * 2, |
|
out_channels, |
|
1, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
act_cfg=self.act_cfg) |
|
|
|
def _make_layer(self, |
|
in_channels, |
|
out_channels, |
|
blocks, |
|
stride=1, |
|
expand_ratio=6): |
|
layers = [ |
|
InvertedResidual( |
|
in_channels, |
|
out_channels, |
|
stride, |
|
expand_ratio, |
|
norm_cfg=self.norm_cfg) |
|
] |
|
for i in range(1, blocks): |
|
layers.append( |
|
InvertedResidual( |
|
out_channels, |
|
out_channels, |
|
1, |
|
expand_ratio, |
|
norm_cfg=self.norm_cfg)) |
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
x = self.bottleneck1(x) |
|
x = self.bottleneck2(x) |
|
x = self.bottleneck3(x) |
|
x = torch.cat([x, *self.ppm(x)], dim=1) |
|
x = self.out(x) |
|
return x |
|
|
|
|
|
class FeatureFusionModule(nn.Module): |
|
"""Feature fusion module. |
|
|
|
Args: |
|
higher_in_channels (int): Number of input channels of the |
|
higher-resolution branch. |
|
lower_in_channels (int): Number of input channels of the |
|
lower-resolution branch. |
|
out_channels (int): Number of output channels. |
|
conv_cfg (dict | None): Config of conv layers. Default: None |
|
norm_cfg (dict | None): Config of norm layers. Default: |
|
dict(type='BN') |
|
act_cfg (dict): Config of activation layers. Default: |
|
dict(type='ReLU') |
|
align_corners (bool): align_corners argument of F.interpolate. |
|
Default: False |
|
""" |
|
|
|
def __init__(self, |
|
higher_in_channels, |
|
lower_in_channels, |
|
out_channels, |
|
conv_cfg=None, |
|
norm_cfg=dict(type='BN'), |
|
act_cfg=dict(type='ReLU'), |
|
align_corners=False): |
|
super(FeatureFusionModule, self).__init__() |
|
self.conv_cfg = conv_cfg |
|
self.norm_cfg = norm_cfg |
|
self.act_cfg = act_cfg |
|
self.align_corners = align_corners |
|
self.dwconv = ConvModule( |
|
lower_in_channels, |
|
out_channels, |
|
1, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
act_cfg=self.act_cfg) |
|
self.conv_lower_res = ConvModule( |
|
out_channels, |
|
out_channels, |
|
1, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
act_cfg=None) |
|
self.conv_higher_res = ConvModule( |
|
higher_in_channels, |
|
out_channels, |
|
1, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
act_cfg=None) |
|
self.relu = nn.ReLU(True) |
|
|
|
def forward(self, higher_res_feature, lower_res_feature): |
|
lower_res_feature = resize( |
|
lower_res_feature, |
|
size=higher_res_feature.size()[2:], |
|
mode='bilinear', |
|
align_corners=self.align_corners) |
|
lower_res_feature = self.dwconv(lower_res_feature) |
|
lower_res_feature = self.conv_lower_res(lower_res_feature) |
|
|
|
higher_res_feature = self.conv_higher_res(higher_res_feature) |
|
out = higher_res_feature + lower_res_feature |
|
return self.relu(out) |
|
|
|
|
|
@BACKBONES.register_module() |
|
class FastSCNN(nn.Module): |
|
"""Fast-SCNN Backbone. |
|
|
|
Args: |
|
in_channels (int): Number of input image channels. Default: 3. |
|
downsample_dw_channels (tuple[int]): Number of output channels after |
|
the first conv layer & the second conv layer in |
|
Learning-To-Downsample (LTD) module. |
|
Default: (32, 48). |
|
global_in_channels (int): Number of input channels of |
|
Global Feature Extractor(GFE). |
|
Equal to number of output channels of LTD. |
|
Default: 64. |
|
global_block_channels (tuple[int]): Tuple of integers that describe |
|
the output channels for each of the MobileNet-v2 bottleneck |
|
residual blocks in GFE. |
|
Default: (64, 96, 128). |
|
global_block_strides (tuple[int]): Tuple of integers |
|
that describe the strides (downsampling factors) for each of the |
|
MobileNet-v2 bottleneck residual blocks in GFE. |
|
Default: (2, 2, 1). |
|
global_out_channels (int): Number of output channels of GFE. |
|
Default: 128. |
|
higher_in_channels (int): Number of input channels of the higher |
|
resolution branch in FFM. |
|
Equal to global_in_channels. |
|
Default: 64. |
|
lower_in_channels (int): Number of input channels of the lower |
|
resolution branch in FFM. |
|
Equal to global_out_channels. |
|
Default: 128. |
|
fusion_out_channels (int): Number of output channels of FFM. |
|
Default: 128. |
|
out_indices (tuple): Tuple of indices of list |
|
[higher_res_features, lower_res_features, fusion_output]. |
|
Often set to (0,1,2) to enable aux. heads. |
|
Default: (0, 1, 2). |
|
conv_cfg (dict | None): Config of conv layers. Default: None |
|
norm_cfg (dict | None): Config of norm layers. Default: |
|
dict(type='BN') |
|
act_cfg (dict): Config of activation layers. Default: |
|
dict(type='ReLU') |
|
align_corners (bool): align_corners argument of F.interpolate. |
|
Default: False |
|
""" |
|
|
|
def __init__(self, |
|
in_channels=3, |
|
downsample_dw_channels=(32, 48), |
|
global_in_channels=64, |
|
global_block_channels=(64, 96, 128), |
|
global_block_strides=(2, 2, 1), |
|
global_out_channels=128, |
|
higher_in_channels=64, |
|
lower_in_channels=128, |
|
fusion_out_channels=128, |
|
out_indices=(0, 1, 2), |
|
conv_cfg=None, |
|
norm_cfg=dict(type='BN'), |
|
act_cfg=dict(type='ReLU'), |
|
align_corners=False): |
|
|
|
super(FastSCNN, self).__init__() |
|
if global_in_channels != higher_in_channels: |
|
raise AssertionError('Global Input Channels must be the same \ |
|
with Higher Input Channels!') |
|
elif global_out_channels != lower_in_channels: |
|
raise AssertionError('Global Output Channels must be the same \ |
|
with Lower Input Channels!') |
|
|
|
self.in_channels = in_channels |
|
self.downsample_dw_channels1 = downsample_dw_channels[0] |
|
self.downsample_dw_channels2 = downsample_dw_channels[1] |
|
self.global_in_channels = global_in_channels |
|
self.global_block_channels = global_block_channels |
|
self.global_block_strides = global_block_strides |
|
self.global_out_channels = global_out_channels |
|
self.higher_in_channels = higher_in_channels |
|
self.lower_in_channels = lower_in_channels |
|
self.fusion_out_channels = fusion_out_channels |
|
self.out_indices = out_indices |
|
self.conv_cfg = conv_cfg |
|
self.norm_cfg = norm_cfg |
|
self.act_cfg = act_cfg |
|
self.align_corners = align_corners |
|
self.learning_to_downsample = LearningToDownsample( |
|
in_channels, |
|
downsample_dw_channels, |
|
global_in_channels, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
act_cfg=self.act_cfg) |
|
self.global_feature_extractor = GlobalFeatureExtractor( |
|
global_in_channels, |
|
global_block_channels, |
|
global_out_channels, |
|
strides=self.global_block_strides, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
act_cfg=self.act_cfg, |
|
align_corners=self.align_corners) |
|
self.feature_fusion = FeatureFusionModule( |
|
higher_in_channels, |
|
lower_in_channels, |
|
fusion_out_channels, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
act_cfg=self.act_cfg, |
|
align_corners=self.align_corners) |
|
|
|
def init_weights(self, pretrained=None): |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
kaiming_init(m) |
|
elif isinstance(m, (_BatchNorm, nn.GroupNorm)): |
|
constant_init(m, 1) |
|
|
|
def forward(self, x): |
|
higher_res_features = self.learning_to_downsample(x) |
|
lower_res_features = self.global_feature_extractor(higher_res_features) |
|
fusion_output = self.feature_fusion(higher_res_features, |
|
lower_res_features) |
|
|
|
outs = [higher_res_features, lower_res_features, fusion_output] |
|
outs = [outs[i] for i in self.out_indices] |
|
return tuple(outs) |
|
|