mcanoglu commited on
Commit
c198817
1 Parent(s): a6d5996

End of training

Browse files
Files changed (2) hide show
  1. README.md +19 -18
  2. model.safetensors +1 -1
README.md CHANGED
@@ -5,7 +5,6 @@ tags:
5
  - generated_from_trainer
6
  metrics:
7
  - accuracy
8
- - f1
9
  - precision
10
  - recall
11
  model-index:
@@ -20,10 +19,10 @@ should probably proofread and complete it, then remove this comment. -->
20
 
21
  This model is a fine-tuned version of [Salesforce/codet5p-770m](https://huggingface.co/Salesforce/codet5p-770m) on an unknown dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 0.4831
24
- - Accuracy: 0.7337
25
- - F1: 0.7377
26
- - Precision: 0.7108
27
  - Recall: 0.7667
28
 
29
  ## Model description
@@ -44,28 +43,30 @@ More information needed
44
 
45
  The following hyperparameters were used during training:
46
  - learning_rate: 2e-05
47
- - train_batch_size: 2
48
- - eval_batch_size: 2
49
  - seed: 4711
50
- - gradient_accumulation_steps: 16
51
  - total_train_batch_size: 32
52
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
  - lr_scheduler_type: linear
54
- - num_epochs: 3
55
  - mixed_precision_training: Native AMP
56
 
57
  ### Training results
58
 
59
- | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
60
- |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
61
- | 0.6813 | 1.0 | 996 | 0.5630 | 0.6898 | 0.6580 | 0.7128 | 0.6110 |
62
- | 0.5483 | 2.0 | 1992 | 0.5040 | 0.7103 | 0.7071 | 0.6986 | 0.7158 |
63
- | 0.4502 | 3.0 | 2988 | 0.4831 | 0.7337 | 0.7377 | 0.7108 | 0.7667 |
 
 
64
 
65
 
66
  ### Framework versions
67
 
68
- - Transformers 4.36.2
69
- - Pytorch 2.1.2+cu121
70
- - Datasets 2.16.1
71
- - Tokenizers 0.15.0
 
5
  - generated_from_trainer
6
  metrics:
7
  - accuracy
 
8
  - precision
9
  - recall
10
  model-index:
 
19
 
20
  This model is a fine-tuned version of [Salesforce/codet5p-770m](https://huggingface.co/Salesforce/codet5p-770m) on an unknown dataset.
21
  It achieves the following results on the evaluation set:
22
+ - Loss: 0.5699
23
+ - Accuracy: 0.7505
24
+ - Roc Auc: 0.7509
25
+ - Precision: 0.7343
26
  - Recall: 0.7667
27
 
28
  ## Model description
 
43
 
44
  The following hyperparameters were used during training:
45
  - learning_rate: 2e-05
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
  - seed: 4711
49
+ - gradient_accumulation_steps: 4
50
  - total_train_batch_size: 32
51
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
  - lr_scheduler_type: linear
53
+ - num_epochs: 5
54
  - mixed_precision_training: Native AMP
55
 
56
  ### Training results
57
 
58
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Roc Auc | Precision | Recall |
59
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------:|:---------:|:------:|
60
+ | 0.6826 | 1.0 | 996 | 0.5735 | 0.6923 | 0.6925 | 0.6791 | 0.7014 |
61
+ | 0.528 | 2.0 | 1993 | 0.4960 | 0.7191 | 0.7211 | 0.6785 | 0.8078 |
62
+ | 0.4308 | 3.0 | 2989 | 0.4821 | 0.7415 | 0.7419 | 0.7234 | 0.7621 |
63
+ | 0.3495 | 4.0 | 3986 | 0.5010 | 0.7455 | 0.7463 | 0.7217 | 0.7795 |
64
+ | 0.2731 | 5.0 | 4980 | 0.5699 | 0.7505 | 0.7509 | 0.7343 | 0.7667 |
65
 
66
 
67
  ### Framework versions
68
 
69
+ - Transformers 4.37.2
70
+ - Pytorch 2.2.0+cu121
71
+ - Datasets 2.17.1
72
+ - Tokenizers 0.15.2
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2a8d14c55f9ccb715eea2386b1c85fb595bb1f5680d82e84f07642ee50757f86
3
  size 2954832960
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27af42cad0c5200b164bb118515387ea55e89c701b267951b4dff50b41a1911d
3
  size 2954832960