End of training
Browse files- README.md +19 -18
- model.safetensors +1 -1
README.md
CHANGED
@@ -5,7 +5,6 @@ tags:
|
|
5 |
- generated_from_trainer
|
6 |
metrics:
|
7 |
- accuracy
|
8 |
-
- f1
|
9 |
- precision
|
10 |
- recall
|
11 |
model-index:
|
@@ -20,10 +19,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
20 |
|
21 |
This model is a fine-tuned version of [Salesforce/codet5p-770m](https://huggingface.co/Salesforce/codet5p-770m) on an unknown dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 0.
|
24 |
-
- Accuracy: 0.
|
25 |
-
-
|
26 |
-
- Precision: 0.
|
27 |
- Recall: 0.7667
|
28 |
|
29 |
## Model description
|
@@ -44,28 +43,30 @@ More information needed
|
|
44 |
|
45 |
The following hyperparameters were used during training:
|
46 |
- learning_rate: 2e-05
|
47 |
-
- train_batch_size:
|
48 |
-
- eval_batch_size:
|
49 |
- seed: 4711
|
50 |
-
- gradient_accumulation_steps:
|
51 |
- total_train_batch_size: 32
|
52 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
53 |
- lr_scheduler_type: linear
|
54 |
-
- num_epochs:
|
55 |
- mixed_precision_training: Native AMP
|
56 |
|
57 |
### Training results
|
58 |
|
59 |
-
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
60 |
-
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
|
|
|
|
64 |
|
65 |
|
66 |
### Framework versions
|
67 |
|
68 |
-
- Transformers 4.
|
69 |
-
- Pytorch 2.
|
70 |
-
- Datasets 2.
|
71 |
-
- Tokenizers 0.15.
|
|
|
5 |
- generated_from_trainer
|
6 |
metrics:
|
7 |
- accuracy
|
|
|
8 |
- precision
|
9 |
- recall
|
10 |
model-index:
|
|
|
19 |
|
20 |
This model is a fine-tuned version of [Salesforce/codet5p-770m](https://huggingface.co/Salesforce/codet5p-770m) on an unknown dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.5699
|
23 |
+
- Accuracy: 0.7505
|
24 |
+
- Roc Auc: 0.7509
|
25 |
+
- Precision: 0.7343
|
26 |
- Recall: 0.7667
|
27 |
|
28 |
## Model description
|
|
|
43 |
|
44 |
The following hyperparameters were used during training:
|
45 |
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 8
|
47 |
+
- eval_batch_size: 8
|
48 |
- seed: 4711
|
49 |
+
- gradient_accumulation_steps: 4
|
50 |
- total_train_batch_size: 32
|
51 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
- lr_scheduler_type: linear
|
53 |
+
- num_epochs: 5
|
54 |
- mixed_precision_training: Native AMP
|
55 |
|
56 |
### Training results
|
57 |
|
58 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Roc Auc | Precision | Recall |
|
59 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------:|:---------:|:------:|
|
60 |
+
| 0.6826 | 1.0 | 996 | 0.5735 | 0.6923 | 0.6925 | 0.6791 | 0.7014 |
|
61 |
+
| 0.528 | 2.0 | 1993 | 0.4960 | 0.7191 | 0.7211 | 0.6785 | 0.8078 |
|
62 |
+
| 0.4308 | 3.0 | 2989 | 0.4821 | 0.7415 | 0.7419 | 0.7234 | 0.7621 |
|
63 |
+
| 0.3495 | 4.0 | 3986 | 0.5010 | 0.7455 | 0.7463 | 0.7217 | 0.7795 |
|
64 |
+
| 0.2731 | 5.0 | 4980 | 0.5699 | 0.7505 | 0.7509 | 0.7343 | 0.7667 |
|
65 |
|
66 |
|
67 |
### Framework versions
|
68 |
|
69 |
+
- Transformers 4.37.2
|
70 |
+
- Pytorch 2.2.0+cu121
|
71 |
+
- Datasets 2.17.1
|
72 |
+
- Tokenizers 0.15.2
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2954832960
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:27af42cad0c5200b164bb118515387ea55e89c701b267951b4dff50b41a1911d
|
3 |
size 2954832960
|