mazeinmouse
commited on
Commit
·
b379aa1
1
Parent(s):
479cc24
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -2.88 +/- 0.45
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95bbfa5cab802333e30e7bd576e8b965467eba3ef310915174759df8901d551d
|
3 |
+
size 108159
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc34ff12950>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fc34ff07800>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1688618165081163270,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA7S22Pg4xobu0+xg/7S22Pg4xobu0+xg/7S22Pg4xobu0+xg/7S22Pg4xobu0+xg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAyF+Ev1NiZ7+rNN4/4XQzv3PxSj+oIKg/jztlP5QATr1v8LO/CqWlv0Wbnjwz1cw/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADtLbY+DjGhu7T7GD+JaJo7E7Q4uejiGTztLbY+DjGhu7T7GD+JaJo7E7Q4uejiGTztLbY+DjGhu7T7GD+JaJo7E7Q4uejiGTztLbY+DjGhu7T7GD+JaJo7E7Q4uejiGTyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.35581914 -0.00491918 0.5975907 ]\n [ 0.35581914 -0.00491918 0.5975907 ]\n [ 0.35581914 -0.00491918 0.5975907 ]\n [ 0.35581914 -0.00491918 0.5975907 ]]",
|
38 |
+
"desired_goal": "[[-1.034173 -0.90384406 1.7359823 ]\n [-0.7010022 0.7927467 1.3134966 ]\n [ 0.89544004 -0.05029352 -1.405775 ]\n [-1.2940991 0.01936115 1.6002563 ]]",
|
39 |
+
"observation": "[[ 3.5581914e-01 -4.9191779e-03 5.9759068e-01 4.7121686e-03\n -1.7614690e-04 9.3924776e-03]\n [ 3.5581914e-01 -4.9191779e-03 5.9759068e-01 4.7121686e-03\n -1.7614690e-04 9.3924776e-03]\n [ 3.5581914e-01 -4.9191779e-03 5.9759068e-01 4.7121686e-03\n -1.7614690e-04 9.3924776e-03]\n [ 3.5581914e-01 -4.9191779e-03 5.9759068e-01 4.7121686e-03\n -1.7614690e-04 9.3924776e-03]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAdAB0vdFu/b0iJjY9tQyQPamAsr1cDwk+92oIvqUt1L112mQ+hWOYvdlTEb5cQuo9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[-0.05957074 -0.12374652 0.04446996]\n [ 0.07033674 -0.08715946 0.13384765]\n [-0.13322054 -0.10360269 0.2234896 ]\n [-0.07440857 -0.14192142 0.11438438]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsVOsGoR5BMCUhpRSlIwBbJRLMowBdJRHQKjDjnPmgap1fZQoaAZoCWgPQwjvVwG+2xwFwJSGlFKUaBVLMmgWR0Cow1CXIEKWdX2UKGgGaAloD0MIfjhIiPKlBMCUhpRSlGgVSzJoFkdAqMMOZCv5g3V9lChoBmgJaA9DCGpoA7ABMQrAlIaUUpRoFUsyaBZHQKjCzBNVR1p1fZQoaAZoCWgPQwhVhnE3iJYBwJSGlFKUaBVLMmgWR0CoxJRWtEG8dX2UKGgGaAloD0MIPdF14QdHCMCUhpRSlGgVSzJoFkdAqMRWfTTfBXV9lChoBmgJaA9DCJCfjVw3BQDAlIaUUpRoFUsyaBZHQKjEFMRpUPx1fZQoaAZoCWgPQwgWTtL8MW0GwJSGlFKUaBVLMmgWR0Cow9J+tr9EdX2UKGgGaAloD0MI2SH+YUt/EMCUhpRSlGgVSzJoFkdAqMWEC1Z1WHV9lChoBmgJaA9DCBb4im69Jg3AlIaUUpRoFUsyaBZHQKjFRkIX0oV1fZQoaAZoCWgPQwhs66f/rJkDwJSGlFKUaBVLMmgWR0CoxQQeV9ncdX2UKGgGaAloD0MInz4Cf/hZA8CUhpRSlGgVSzJoFkdAqMTB3os7MnV9lChoBmgJaA9DCBxClZo9MATAlIaUUpRoFUsyaBZHQKjGlV7x/d91fZQoaAZoCWgPQwi1VN6OcBoQwJSGlFKUaBVLMmgWR0CoxlhddE9ddX2UKGgGaAloD0MIZM4z9iW7AsCUhpRSlGgVSzJoFkdAqMYW8yvcJ3V9lChoBmgJaA9DCMrBbAIMCwjAlIaUUpRoFUsyaBZHQKjF1ZZB9kV1fZQoaAZoCWgPQwiZR/5g4DkHwJSGlFKUaBVLMmgWR0CoyDe9rXUZdX2UKGgGaAloD0MIA7Fs5pAUCcCUhpRSlGgVSzJoFkdAqMf6lBQem3V9lChoBmgJaA9DCHQlAtU/yAnAlIaUUpRoFUsyaBZHQKjHuSbpeNV1fZQoaAZoCWgPQwhOKa+V0N0AwJSGlFKUaBVLMmgWR0Cox3d43WFwdX2UKGgGaAloD0MIGTxM++beA8CUhpRSlGgVSzJoFkdAqMm8EgW8AnV9lChoBmgJaA9DCMSww5j0dwrAlIaUUpRoFUsyaBZHQKjJfustCiR1fZQoaAZoCWgPQwjO3a6XpsgOwJSGlFKUaBVLMmgWR0CoyT2BSUC8dX2UKGgGaAloD0MIH2rbMAqCCsCUhpRSlGgVSzJoFkdAqMj71wo9cXV9lChoBmgJaA9DCHA/4IEBtBLAlIaUUpRoFUsyaBZHQKjLQx/ustF1fZQoaAZoCWgPQwi3YRQEjy8GwJSGlFKUaBVLMmgWR0CoywX7DVH4dX2UKGgGaAloD0MIzt4ZbVXyAsCUhpRSlGgVSzJoFkdAqMrEnPVurXV9lChoBmgJaA9DCO4/Mh06nQ3AlIaUUpRoFUsyaBZHQKjKgxbjcVR1fZQoaAZoCWgPQwiA2NKjqf4AwJSGlFKUaBVLMmgWR0CozPygwoLHdX2UKGgGaAloD0MIqruyCwZXB8CUhpRSlGgVSzJoFkdAqMy/ndO6/nV9lChoBmgJaA9DCJ/pJcYyPQLAlIaUUpRoFUsyaBZHQKjMfqNZNfx1fZQoaAZoCWgPQwjVWS2wx2QDwJSGlFKUaBVLMmgWR0CozDz/p+tsdX2UKGgGaAloD0MIjQ3d7A+kEMCUhpRSlGgVSzJoFkdAqM7KvHLidnV9lChoBmgJaA9DCNrLttPWeBHAlIaUUpRoFUsyaBZHQKjOjb/wRXh1fZQoaAZoCWgPQwifWn11VaADwJSGlFKUaBVLMmgWR0Cozkz7di2EdX2UKGgGaAloD0MIJQaBlUMLB8CUhpRSlGgVSzJoFkdAqM4La4+bE3V9lChoBmgJaA9DCJoHsMivXwfAlIaUUpRoFUsyaBZHQKjQj57gKnh1fZQoaAZoCWgPQwh+U1ipoAIHwJSGlFKUaBVLMmgWR0Co0FLE1l5GdX2UKGgGaAloD0MIidAINq7/BsCUhpRSlGgVSzJoFkdAqNASi7Ciy3V9lChoBmgJaA9DCLA4nPnVHAzAlIaUUpRoFUsyaBZHQKjP0Z88cMp1fZQoaAZoCWgPQwhFm+PcJjwJwJSGlFKUaBVLMmgWR0Co0lgxBVuKdX2UKGgGaAloD0MIGapiKv2EBcCUhpRSlGgVSzJoFkdAqNIbIHTqjnV9lChoBmgJaA9DCG8vaYzWEQDAlIaUUpRoFUsyaBZHQKjR2d/axot1fZQoaAZoCWgPQwjGounsZMAQwJSGlFKUaBVLMmgWR0Co0ZiUornUdX2UKGgGaAloD0MI2ClWDcJcBMCUhpRSlGgVSzJoFkdAqNP8b1h9cHV9lChoBmgJaA9DCCUIV0Ch3vi/lIaUUpRoFUsyaBZHQKjTvpsXSBt1fZQoaAZoCWgPQwgld9hEZu4CwJSGlFKUaBVLMmgWR0Co03zGYKIBdX2UKGgGaAloD0MIB+qURzcCBsCUhpRSlGgVSzJoFkdAqNM6tNi6QXV9lChoBmgJaA9DCJf+JalMUQfAlIaUUpRoFUsyaBZHQKjVAlByCFt1fZQoaAZoCWgPQwh6ceKrHaUDwJSGlFKUaBVLMmgWR0Co1MSYPXkHdX2UKGgGaAloD0MIvcXDew7MCMCUhpRSlGgVSzJoFkdAqNSCgIyCWnV9lChoBmgJaA9DCPq0iv7QzAHAlIaUUpRoFUsyaBZHQKjUQRf4REp1fZQoaAZoCWgPQwjOF3svvuj/v5SGlFKUaBVLMmgWR0Co1gcSGrS3dX2UKGgGaAloD0MIGxAhrpz9BsCUhpRSlGgVSzJoFkdAqNXJM36yjnV9lChoBmgJaA9DCANf0a3XNAPAlIaUUpRoFUsyaBZHQKjVh2FFlTZ1fZQoaAZoCWgPQwgTRUjdzj7/v5SGlFKUaBVLMmgWR0Co1UUjLSuydX2UKGgGaAloD0MI3T8WokPgDsCUhpRSlGgVSzJoFkdAqNcFgF5fMXV9lChoBmgJaA9DCIOI1LSLyQfAlIaUUpRoFUsyaBZHQKjWx5a/yoZ1fZQoaAZoCWgPQwj7eOi7W3kHwJSGlFKUaBVLMmgWR0Co1oVoYekpdX2UKGgGaAloD0MIdxVSflJtCcCUhpRSlGgVSzJoFkdAqNZDEUCaJHV9lChoBmgJaA9DCEUsYthhbAXAlIaUUpRoFUsyaBZHQKjYCpc5bQl1fZQoaAZoCWgPQwgSv2INF9kHwJSGlFKUaBVLMmgWR0Co18y9/SYxdX2UKGgGaAloD0MI1QPmIVO+CsCUhpRSlGgVSzJoFkdAqNeKjBVMmHV9lChoBmgJaA9DCHsTQ3IycQnAlIaUUpRoFUsyaBZHQKjXSD+zdDZ1fZQoaAZoCWgPQwh4l4v4TiwLwJSGlFKUaBVLMmgWR0Co2QljVhCudX2UKGgGaAloD0MITIkkehklCMCUhpRSlGgVSzJoFkdAqNjLgl4TsnV9lChoBmgJaA9DCFwhrMYSdgLAlIaUUpRoFUsyaBZHQKjYiXE61b91fZQoaAZoCWgPQwi0O6QYIIERwJSGlFKUaBVLMmgWR0Co2EcgQpWndX2UKGgGaAloD0MILJs5JLUwAsCUhpRSlGgVSzJoFkdAqNoRoEjgRHV9lChoBmgJaA9DCKpla32R8ATAlIaUUpRoFUsyaBZHQKjZ09Oh0yR1fZQoaAZoCWgPQwjwwtZs5eUGwJSGlFKUaBVLMmgWR0Co2ZHAymALdX2UKGgGaAloD0MItkjajT5mE8CUhpRSlGgVSzJoFkdAqNlPc8DB/XV9lChoBmgJaA9DCBlUG5yIXgfAlIaUUpRoFUsyaBZHQKjbEoOQQtl1fZQoaAZoCWgPQwhXBtUGJwIDwJSGlFKUaBVLMmgWR0Co2tSnLq2SdX2UKGgGaAloD0MIP6cgPxvZAsCUhpRSlGgVSzJoFkdAqNqTGecx03V9lChoBmgJaA9DCCqQ2Vn0bg7AlIaUUpRoFUsyaBZHQKjaULF4s3B1fZQoaAZoCWgPQwg+l6lJ8KYOwJSGlFKUaBVLMmgWR0Co3AoGyHEddX2UKGgGaAloD0MIiXyXUpdsB8CUhpRSlGgVSzJoFkdAqNvMRSP2f3V9lChoBmgJaA9DCM0jfzDwvAnAlIaUUpRoFUsyaBZHQKjbih3aBZp1fZQoaAZoCWgPQwgUJLa7BygFwJSGlFKUaBVLMmgWR0Co20fqgRK6dX2UKGgGaAloD0MIRmCsb2BSAsCUhpRSlGgVSzJoFkdAqN0UvAXVLHV9lChoBmgJaA9DCN1FmKJc+gbAlIaUUpRoFUsyaBZHQKjc1xQSBbx1fZQoaAZoCWgPQwhBKVq5F5gNwJSGlFKUaBVLMmgWR0Co3JUCRwIddX2UKGgGaAloD0MIOX8TChEwDMCUhpRSlGgVSzJoFkdAqNxS7oSteXV9lChoBmgJaA9DCCbhQh7BLQXAlIaUUpRoFUsyaBZHQKjeCiMYMv11fZQoaAZoCWgPQwiy1eWUgLgGwJSGlFKUaBVLMmgWR0Co3cxIatLddX2UKGgGaAloD0MIxQQ1fAsrBsCUhpRSlGgVSzJoFkdAqN2KIHkcTHV9lChoBmgJaA9DCHV2MjhKfgXAlIaUUpRoFUsyaBZHQKjdR8hLXcx1fZQoaAZoCWgPQwjAJQD/lOr8v5SGlFKUaBVLMmgWR0Co3wS+xnnMdX2UKGgGaAloD0MITz3S4LbWAMCUhpRSlGgVSzJoFkdAqN7G5Fw1i3V9lChoBmgJaA9DCIHR5c3hOgHAlIaUUpRoFUsyaBZHQKjehLbHp8p1fZQoaAZoCWgPQwjrjO+LS5UJwJSGlFKUaBVLMmgWR0Co3kJ5VwPzdX2UKGgGaAloD0MIWkV/aOZJA8CUhpRSlGgVSzJoFkdAqOAWzlcQiHV9lChoBmgJaA9DCBSzXgzlBArAlIaUUpRoFUsyaBZHQKjf2TQmeDp1fZQoaAZoCWgPQwgXuaerO2YSwJSGlFKUaBVLMmgWR0Co35cXm/34dX2UKGgGaAloD0MI9YO6SKH8FMCUhpRSlGgVSzJoFkdAqN9U1ZTya3V9lChoBmgJaA9DCOMan8n+uQTAlIaUUpRoFUsyaBZHQKjhI4RVZLZ1fZQoaAZoCWgPQwjzH9JvXwf7v5SGlFKUaBVLMmgWR0Co4OWo3rD7dX2UKGgGaAloD0MIbhXEQNeeBMCUhpRSlGgVSzJoFkdAqOCjxI8QqnV9lChoBmgJaA9DCOuLhLacKwPAlIaUUpRoFUsyaBZHQKjgYZv1lGx1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 50000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7918506c115d504ab6bcdf0e048cca2a13024e0b5ae3ecc15db69f052cb9badf
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4de1e540e675922ece067aa14f952e5094d3b2649191b4170280f3d811b257b9
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc34ff12950>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc34ff07800>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688618165081163270, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA7S22Pg4xobu0+xg/7S22Pg4xobu0+xg/7S22Pg4xobu0+xg/7S22Pg4xobu0+xg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAyF+Ev1NiZ7+rNN4/4XQzv3PxSj+oIKg/jztlP5QATr1v8LO/CqWlv0Wbnjwz1cw/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADtLbY+DjGhu7T7GD+JaJo7E7Q4uejiGTztLbY+DjGhu7T7GD+JaJo7E7Q4uejiGTztLbY+DjGhu7T7GD+JaJo7E7Q4uejiGTztLbY+DjGhu7T7GD+JaJo7E7Q4uejiGTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.35581914 -0.00491918 0.5975907 ]\n [ 0.35581914 -0.00491918 0.5975907 ]\n [ 0.35581914 -0.00491918 0.5975907 ]\n [ 0.35581914 -0.00491918 0.5975907 ]]", "desired_goal": "[[-1.034173 -0.90384406 1.7359823 ]\n [-0.7010022 0.7927467 1.3134966 ]\n [ 0.89544004 -0.05029352 -1.405775 ]\n [-1.2940991 0.01936115 1.6002563 ]]", "observation": "[[ 3.5581914e-01 -4.9191779e-03 5.9759068e-01 4.7121686e-03\n -1.7614690e-04 9.3924776e-03]\n [ 3.5581914e-01 -4.9191779e-03 5.9759068e-01 4.7121686e-03\n -1.7614690e-04 9.3924776e-03]\n [ 3.5581914e-01 -4.9191779e-03 5.9759068e-01 4.7121686e-03\n -1.7614690e-04 9.3924776e-03]\n [ 3.5581914e-01 -4.9191779e-03 5.9759068e-01 4.7121686e-03\n -1.7614690e-04 9.3924776e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAdAB0vdFu/b0iJjY9tQyQPamAsr1cDwk+92oIvqUt1L112mQ+hWOYvdlTEb5cQuo9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.05957074 -0.12374652 0.04446996]\n [ 0.07033674 -0.08715946 0.13384765]\n [-0.13322054 -0.10360269 0.2234896 ]\n [-0.07440857 -0.14192142 0.11438438]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsVOsGoR5BMCUhpRSlIwBbJRLMowBdJRHQKjDjnPmgap1fZQoaAZoCWgPQwjvVwG+2xwFwJSGlFKUaBVLMmgWR0Cow1CXIEKWdX2UKGgGaAloD0MIfjhIiPKlBMCUhpRSlGgVSzJoFkdAqMMOZCv5g3V9lChoBmgJaA9DCGpoA7ABMQrAlIaUUpRoFUsyaBZHQKjCzBNVR1p1fZQoaAZoCWgPQwhVhnE3iJYBwJSGlFKUaBVLMmgWR0CoxJRWtEG8dX2UKGgGaAloD0MIPdF14QdHCMCUhpRSlGgVSzJoFkdAqMRWfTTfBXV9lChoBmgJaA9DCJCfjVw3BQDAlIaUUpRoFUsyaBZHQKjEFMRpUPx1fZQoaAZoCWgPQwgWTtL8MW0GwJSGlFKUaBVLMmgWR0Cow9J+tr9EdX2UKGgGaAloD0MI2SH+YUt/EMCUhpRSlGgVSzJoFkdAqMWEC1Z1WHV9lChoBmgJaA9DCBb4im69Jg3AlIaUUpRoFUsyaBZHQKjFRkIX0oV1fZQoaAZoCWgPQwhs66f/rJkDwJSGlFKUaBVLMmgWR0CoxQQeV9ncdX2UKGgGaAloD0MInz4Cf/hZA8CUhpRSlGgVSzJoFkdAqMTB3os7MnV9lChoBmgJaA9DCBxClZo9MATAlIaUUpRoFUsyaBZHQKjGlV7x/d91fZQoaAZoCWgPQwi1VN6OcBoQwJSGlFKUaBVLMmgWR0CoxlhddE9ddX2UKGgGaAloD0MIZM4z9iW7AsCUhpRSlGgVSzJoFkdAqMYW8yvcJ3V9lChoBmgJaA9DCMrBbAIMCwjAlIaUUpRoFUsyaBZHQKjF1ZZB9kV1fZQoaAZoCWgPQwiZR/5g4DkHwJSGlFKUaBVLMmgWR0CoyDe9rXUZdX2UKGgGaAloD0MIA7Fs5pAUCcCUhpRSlGgVSzJoFkdAqMf6lBQem3V9lChoBmgJaA9DCHQlAtU/yAnAlIaUUpRoFUsyaBZHQKjHuSbpeNV1fZQoaAZoCWgPQwhOKa+V0N0AwJSGlFKUaBVLMmgWR0Cox3d43WFwdX2UKGgGaAloD0MIGTxM++beA8CUhpRSlGgVSzJoFkdAqMm8EgW8AnV9lChoBmgJaA9DCMSww5j0dwrAlIaUUpRoFUsyaBZHQKjJfustCiR1fZQoaAZoCWgPQwjO3a6XpsgOwJSGlFKUaBVLMmgWR0CoyT2BSUC8dX2UKGgGaAloD0MIH2rbMAqCCsCUhpRSlGgVSzJoFkdAqMj71wo9cXV9lChoBmgJaA9DCHA/4IEBtBLAlIaUUpRoFUsyaBZHQKjLQx/ustF1fZQoaAZoCWgPQwi3YRQEjy8GwJSGlFKUaBVLMmgWR0CoywX7DVH4dX2UKGgGaAloD0MIzt4ZbVXyAsCUhpRSlGgVSzJoFkdAqMrEnPVurXV9lChoBmgJaA9DCO4/Mh06nQ3AlIaUUpRoFUsyaBZHQKjKgxbjcVR1fZQoaAZoCWgPQwiA2NKjqf4AwJSGlFKUaBVLMmgWR0CozPygwoLHdX2UKGgGaAloD0MIqruyCwZXB8CUhpRSlGgVSzJoFkdAqMy/ndO6/nV9lChoBmgJaA9DCJ/pJcYyPQLAlIaUUpRoFUsyaBZHQKjMfqNZNfx1fZQoaAZoCWgPQwjVWS2wx2QDwJSGlFKUaBVLMmgWR0CozDz/p+tsdX2UKGgGaAloD0MIjQ3d7A+kEMCUhpRSlGgVSzJoFkdAqM7KvHLidnV9lChoBmgJaA9DCNrLttPWeBHAlIaUUpRoFUsyaBZHQKjOjb/wRXh1fZQoaAZoCWgPQwifWn11VaADwJSGlFKUaBVLMmgWR0Cozkz7di2EdX2UKGgGaAloD0MIJQaBlUMLB8CUhpRSlGgVSzJoFkdAqM4La4+bE3V9lChoBmgJaA9DCJoHsMivXwfAlIaUUpRoFUsyaBZHQKjQj57gKnh1fZQoaAZoCWgPQwh+U1ipoAIHwJSGlFKUaBVLMmgWR0Co0FLE1l5GdX2UKGgGaAloD0MIidAINq7/BsCUhpRSlGgVSzJoFkdAqNASi7Ciy3V9lChoBmgJaA9DCLA4nPnVHAzAlIaUUpRoFUsyaBZHQKjP0Z88cMp1fZQoaAZoCWgPQwhFm+PcJjwJwJSGlFKUaBVLMmgWR0Co0lgxBVuKdX2UKGgGaAloD0MIGapiKv2EBcCUhpRSlGgVSzJoFkdAqNIbIHTqjnV9lChoBmgJaA9DCG8vaYzWEQDAlIaUUpRoFUsyaBZHQKjR2d/axot1fZQoaAZoCWgPQwjGounsZMAQwJSGlFKUaBVLMmgWR0Co0ZiUornUdX2UKGgGaAloD0MI2ClWDcJcBMCUhpRSlGgVSzJoFkdAqNP8b1h9cHV9lChoBmgJaA9DCCUIV0Ch3vi/lIaUUpRoFUsyaBZHQKjTvpsXSBt1fZQoaAZoCWgPQwgld9hEZu4CwJSGlFKUaBVLMmgWR0Co03zGYKIBdX2UKGgGaAloD0MIB+qURzcCBsCUhpRSlGgVSzJoFkdAqNM6tNi6QXV9lChoBmgJaA9DCJf+JalMUQfAlIaUUpRoFUsyaBZHQKjVAlByCFt1fZQoaAZoCWgPQwh6ceKrHaUDwJSGlFKUaBVLMmgWR0Co1MSYPXkHdX2UKGgGaAloD0MIvcXDew7MCMCUhpRSlGgVSzJoFkdAqNSCgIyCWnV9lChoBmgJaA9DCPq0iv7QzAHAlIaUUpRoFUsyaBZHQKjUQRf4REp1fZQoaAZoCWgPQwjOF3svvuj/v5SGlFKUaBVLMmgWR0Co1gcSGrS3dX2UKGgGaAloD0MIGxAhrpz9BsCUhpRSlGgVSzJoFkdAqNXJM36yjnV9lChoBmgJaA9DCANf0a3XNAPAlIaUUpRoFUsyaBZHQKjVh2FFlTZ1fZQoaAZoCWgPQwgTRUjdzj7/v5SGlFKUaBVLMmgWR0Co1UUjLSuydX2UKGgGaAloD0MI3T8WokPgDsCUhpRSlGgVSzJoFkdAqNcFgF5fMXV9lChoBmgJaA9DCIOI1LSLyQfAlIaUUpRoFUsyaBZHQKjWx5a/yoZ1fZQoaAZoCWgPQwj7eOi7W3kHwJSGlFKUaBVLMmgWR0Co1oVoYekpdX2UKGgGaAloD0MIdxVSflJtCcCUhpRSlGgVSzJoFkdAqNZDEUCaJHV9lChoBmgJaA9DCEUsYthhbAXAlIaUUpRoFUsyaBZHQKjYCpc5bQl1fZQoaAZoCWgPQwgSv2INF9kHwJSGlFKUaBVLMmgWR0Co18y9/SYxdX2UKGgGaAloD0MI1QPmIVO+CsCUhpRSlGgVSzJoFkdAqNeKjBVMmHV9lChoBmgJaA9DCHsTQ3IycQnAlIaUUpRoFUsyaBZHQKjXSD+zdDZ1fZQoaAZoCWgPQwh4l4v4TiwLwJSGlFKUaBVLMmgWR0Co2QljVhCudX2UKGgGaAloD0MITIkkehklCMCUhpRSlGgVSzJoFkdAqNjLgl4TsnV9lChoBmgJaA9DCFwhrMYSdgLAlIaUUpRoFUsyaBZHQKjYiXE61b91fZQoaAZoCWgPQwi0O6QYIIERwJSGlFKUaBVLMmgWR0Co2EcgQpWndX2UKGgGaAloD0MILJs5JLUwAsCUhpRSlGgVSzJoFkdAqNoRoEjgRHV9lChoBmgJaA9DCKpla32R8ATAlIaUUpRoFUsyaBZHQKjZ09Oh0yR1fZQoaAZoCWgPQwjwwtZs5eUGwJSGlFKUaBVLMmgWR0Co2ZHAymALdX2UKGgGaAloD0MItkjajT5mE8CUhpRSlGgVSzJoFkdAqNlPc8DB/XV9lChoBmgJaA9DCBlUG5yIXgfAlIaUUpRoFUsyaBZHQKjbEoOQQtl1fZQoaAZoCWgPQwhXBtUGJwIDwJSGlFKUaBVLMmgWR0Co2tSnLq2SdX2UKGgGaAloD0MIP6cgPxvZAsCUhpRSlGgVSzJoFkdAqNqTGecx03V9lChoBmgJaA9DCCqQ2Vn0bg7AlIaUUpRoFUsyaBZHQKjaULF4s3B1fZQoaAZoCWgPQwg+l6lJ8KYOwJSGlFKUaBVLMmgWR0Co3AoGyHEddX2UKGgGaAloD0MIiXyXUpdsB8CUhpRSlGgVSzJoFkdAqNvMRSP2f3V9lChoBmgJaA9DCM0jfzDwvAnAlIaUUpRoFUsyaBZHQKjbih3aBZp1fZQoaAZoCWgPQwgUJLa7BygFwJSGlFKUaBVLMmgWR0Co20fqgRK6dX2UKGgGaAloD0MIRmCsb2BSAsCUhpRSlGgVSzJoFkdAqN0UvAXVLHV9lChoBmgJaA9DCN1FmKJc+gbAlIaUUpRoFUsyaBZHQKjc1xQSBbx1fZQoaAZoCWgPQwhBKVq5F5gNwJSGlFKUaBVLMmgWR0Co3JUCRwIddX2UKGgGaAloD0MIOX8TChEwDMCUhpRSlGgVSzJoFkdAqNxS7oSteXV9lChoBmgJaA9DCCbhQh7BLQXAlIaUUpRoFUsyaBZHQKjeCiMYMv11fZQoaAZoCWgPQwiy1eWUgLgGwJSGlFKUaBVLMmgWR0Co3cxIatLddX2UKGgGaAloD0MIxQQ1fAsrBsCUhpRSlGgVSzJoFkdAqN2KIHkcTHV9lChoBmgJaA9DCHV2MjhKfgXAlIaUUpRoFUsyaBZHQKjdR8hLXcx1fZQoaAZoCWgPQwjAJQD/lOr8v5SGlFKUaBVLMmgWR0Co3wS+xnnMdX2UKGgGaAloD0MITz3S4LbWAMCUhpRSlGgVSzJoFkdAqN7G5Fw1i3V9lChoBmgJaA9DCIHR5c3hOgHAlIaUUpRoFUsyaBZHQKjehLbHp8p1fZQoaAZoCWgPQwjrjO+LS5UJwJSGlFKUaBVLMmgWR0Co3kJ5VwPzdX2UKGgGaAloD0MIWkV/aOZJA8CUhpRSlGgVSzJoFkdAqOAWzlcQiHV9lChoBmgJaA9DCBSzXgzlBArAlIaUUpRoFUsyaBZHQKjf2TQmeDp1fZQoaAZoCWgPQwgXuaerO2YSwJSGlFKUaBVLMmgWR0Co35cXm/34dX2UKGgGaAloD0MI9YO6SKH8FMCUhpRSlGgVSzJoFkdAqN9U1ZTya3V9lChoBmgJaA9DCOMan8n+uQTAlIaUUpRoFUsyaBZHQKjhI4RVZLZ1fZQoaAZoCWgPQwjzH9JvXwf7v5SGlFKUaBVLMmgWR0Co4OWo3rD7dX2UKGgGaAloD0MIbhXEQNeeBMCUhpRSlGgVSzJoFkdAqOCjxI8QqnV9lChoBmgJaA9DCOuLhLacKwPAlIaUUpRoFUsyaBZHQKjgYZv1lGx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (814 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -2.8776104650925847, "std_reward": 0.4472139287273874, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-06T05:30:00.366486"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:404fd5a76a63ed52abfbc019b07a60ccac57997f1b21b2c0e691be19dc22bc9b
|
3 |
+
size 2387
|