mazancourt
commited on
Commit
•
119b050
1
Parent(s):
9cec535
Update README.md
Browse files
README.md
CHANGED
@@ -8,6 +8,16 @@ datasets:
|
|
8 |
co2_eq_emissions: 1.06099358268878
|
9 |
---
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# Model Trained Using AutoNLP
|
12 |
|
13 |
- Problem type: Multi-class Classification
|
@@ -49,4 +59,8 @@ tokenizer = AutoTokenizer.from_pretrained("mazancourt/politics-sentence-classifi
|
|
49 |
inputs = tokenizer("Il y a dans ce pays une fracture", return_tensors="pt")
|
50 |
|
51 |
outputs = model(**inputs)
|
|
|
|
|
|
|
|
|
52 |
```
|
|
|
8 |
co2_eq_emissions: 1.06099358268878
|
9 |
---
|
10 |
|
11 |
+
# Prediction of sentence "nature" in a French political sentence
|
12 |
+
|
13 |
+
This model aims at predicting the nature of a sentence in a French political sentence.
|
14 |
+
The predictions fall in three categories:
|
15 |
+
- `problem`: the sentence describes a problem (usually to be tackled by the speaker), for example _il y a dans ce pays une fracture_ (J. Chirac)
|
16 |
+
- `solution`: the sentences describes a solution (typically part of a political programme), for example: _on va donc nettoyer, au propre comme au figuré, la cité des 4000_ (N. Sarkozy)
|
17 |
+
- `other`: the sentence does not belong to any of these categories, for example: _vive la République, vive la France_
|
18 |
+
|
19 |
+
This model was trained using AutoNLP based on sentences extracted from a mix of political tweets and speeches.
|
20 |
+
|
21 |
# Model Trained Using AutoNLP
|
22 |
|
23 |
- Problem type: Multi-class Classification
|
|
|
59 |
inputs = tokenizer("Il y a dans ce pays une fracture", return_tensors="pt")
|
60 |
|
61 |
outputs = model(**inputs)
|
62 |
+
|
63 |
+
# Category can be "problem", "solution" or "other"
|
64 |
+
category = outputs[0]["label"]
|
65 |
+
score = outputs[0]["score"]
|
66 |
```
|