mazancourt commited on
Commit
119b050
1 Parent(s): 9cec535

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -0
README.md CHANGED
@@ -8,6 +8,16 @@ datasets:
8
  co2_eq_emissions: 1.06099358268878
9
  ---
10
 
 
 
 
 
 
 
 
 
 
 
11
  # Model Trained Using AutoNLP
12
 
13
  - Problem type: Multi-class Classification
@@ -49,4 +59,8 @@ tokenizer = AutoTokenizer.from_pretrained("mazancourt/politics-sentence-classifi
49
  inputs = tokenizer("Il y a dans ce pays une fracture", return_tensors="pt")
50
 
51
  outputs = model(**inputs)
 
 
 
 
52
  ```
 
8
  co2_eq_emissions: 1.06099358268878
9
  ---
10
 
11
+ # Prediction of sentence "nature" in a French political sentence
12
+
13
+ This model aims at predicting the nature of a sentence in a French political sentence.
14
+ The predictions fall in three categories:
15
+ - `problem`: the sentence describes a problem (usually to be tackled by the speaker), for example _il y a dans ce pays une fracture_ (J. Chirac)
16
+ - `solution`: the sentences describes a solution (typically part of a political programme), for example: _on va donc nettoyer, au propre comme au figuré, la cité des 4000_ (N. Sarkozy)
17
+ - `other`: the sentence does not belong to any of these categories, for example: _vive la République, vive la France_
18
+
19
+ This model was trained using AutoNLP based on sentences extracted from a mix of political tweets and speeches.
20
+
21
  # Model Trained Using AutoNLP
22
 
23
  - Problem type: Multi-class Classification
 
59
  inputs = tokenizer("Il y a dans ce pays une fracture", return_tensors="pt")
60
 
61
  outputs = model(**inputs)
62
+
63
+ # Category can be "problem", "solution" or "other"
64
+ category = outputs[0]["label"]
65
+ score = outputs[0]["score"]
66
  ```