Upload main.py
Browse files
main.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
from sklearn.model_selection import train_test_split
|
3 |
+
from request_body import request_body
|
4 |
+
from utilities import *
|
5 |
+
from classifier import Classifier
|
6 |
+
|
7 |
+
# Download necessary modules
|
8 |
+
nltk.download('punkt')
|
9 |
+
|
10 |
+
# Get dataset and convert it into suitable form of input for the classification model
|
11 |
+
filename = "airline_sentiment_analysis.csv"
|
12 |
+
raw_data = get_data_for_training(filename)
|
13 |
+
sentences, labels = get_data_and_labels(raw_data)
|
14 |
+
sentences = get_word_embeddings(sentences)
|
15 |
+
|
16 |
+
# Spliting the dataset into Training and Testing dataset to train the model
|
17 |
+
# Train Set = 50%
|
18 |
+
# Test Set = 50%
|
19 |
+
airline_train_data, airline_test_data, airline_train_labels, airline_test_labels = train_test_split(
|
20 |
+
sentences, labels, test_size=0.5, random_state=42)
|
21 |
+
|
22 |
+
# Vectorize the sequence for both train and test datasets
|
23 |
+
x_train = vectorize_sequence(airline_train_data, 20000)
|
24 |
+
x_test = vectorize_sequence(airline_test_data, 20000)
|
25 |
+
|
26 |
+
y_train = np.asarray(airline_train_labels).astype('float32')
|
27 |
+
y_test = np.asarray(airline_test_labels).astype('float32')
|
28 |
+
|
29 |
+
print(x_train.shape)
|
30 |
+
print(x_test.shape)
|
31 |
+
print(y_train.shape)
|
32 |
+
print(y_test.shape)
|
33 |
+
|
34 |
+
# # Naive Bayes
|
35 |
+
# classifier_mnb = Classifier("Naive Bayes")
|
36 |
+
# classifier_mnb.train(x_train, y_train)
|
37 |
+
# print("NAIVE BAYES")
|
38 |
+
# print("train shape: " + str(x_train.shape))
|
39 |
+
# print("score on test: " + str(classifier_mnb.score(x_test, y_test)))
|
40 |
+
# print("score on train: " + str(classifier_mnb.score(x_train, y_train)))
|
41 |
+
|
42 |
+
# Logistic Regression
|
43 |
+
classifier_lr = Classifier("Logistic Regression")
|
44 |
+
classifier_lr.train(x_train, y_train)
|
45 |
+
print("LOGISTIC REGRESSION")
|
46 |
+
print("train shape: " + str(x_train.shape))
|
47 |
+
print("score on test: " + str(classifier_lr.score(x_test, y_test)))
|
48 |
+
print("score on train: " + str(classifier_lr.score(x_train, y_train)))
|
49 |
+
|
50 |
+
# # KNN
|
51 |
+
# classifier_knn = Classifier("KNN")
|
52 |
+
# classifier_knn.train(x_train, y_train)
|
53 |
+
|
54 |
+
# print("KNN")
|
55 |
+
# print("train shape: " + str(x_train.shape))
|
56 |
+
# print("score on train: " + str(classifier_knn.score(x_train, y_train)))
|
57 |
+
# print("score on test: " + str(classifier_knn.score(x_test, y_test)))
|
58 |
+
|
59 |
+
# # Support Vector Machines
|
60 |
+
# classifier_svm = Classifier("SVM")
|
61 |
+
# classifier_svm.train(x_train, y_train)
|
62 |
+
|
63 |
+
# print("SUPPORT VECTOR MACHINE")
|
64 |
+
# print("train shape: " + str(x_train.shape))
|
65 |
+
# print("score on test: " + str(classifier_svm.score(x_test, y_test)))
|
66 |
+
# print("score on train: " + str(classifier_svm.score(x_train, y_train)))
|
67 |
+
|
68 |
+
app = FastAPI()
|
69 |
+
|
70 |
+
@app.post('/predict')
|
71 |
+
def predict(data: request_body):
|
72 |
+
text = data.text
|
73 |
+
sequence = get_sequence(text)
|
74 |
+
sequence = vectorize_sequence(sequence, 20000)
|
75 |
+
print(sequence)
|
76 |
+
|
77 |
+
class_idx = classifier_lr.classify(sequence)[0]
|
78 |
+
print(class_idx)
|
79 |
+
class_idx = (int)(class_idx)
|
80 |
+
if class_idx==1:
|
81 |
+
return {'sentiment': "positive"}
|
82 |
+
else:
|
83 |
+
return {'sentiment': "negative"}
|