Diffusers
maxin-cn commited on
Commit
ade76bf
β€’
1 Parent(s): 8096dc5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -2
README.md CHANGED
@@ -2,6 +2,36 @@
2
  license: mit
3
  ---
4
 
5
- Latte: Latent Diffusion Transformer for Video Generation (Latte)
6
 
7
- Please refer to the project page of [Latte](https://maxin-cn.github.io/latte_project/).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: mit
3
  ---
4
 
5
+ ## Latte: Latent Diffusion Transformer for Video Generation
6
 
7
+ This repo contains pre-trained weights for our paper exploring latent diffusion models with transformers (Latte). You can find more visualizations on our [project page](https://maxin-cn.github.io/latte_project/).
8
+
9
+ ## News
10
+ - (πŸ”₯ New) May. 23, 2024. πŸ’₯ The updated LatteT2V model is released at [here](https://huggingface.co/maxin-cn/Latte/blob/main/t2v_v20240523.pt). If you want to use the updated model to generate images directly, please make sure `video_length=1`, `enable_temporal_attentions=True` and `enable_vae_temporal_decoder=False` in [t2v_sample.yaml](configs/t2v/t2v_sample.yaml).
11
+
12
+ - (πŸ”₯ New) Mar. 20, 2024. πŸ’₯ An updated LatteT2V model is coming soon, stay tuned!
13
+
14
+ - (πŸ”₯ New) Feb. 24, 2024. πŸ’₯ We are very grateful that researchers and developers like our work. We will continue to update our LatteT2V model, hoping that our efforts can help the community develop. Our Latte [discord](https://discord.gg/RguYqhVU92) channel is created for discussions. Coders are welcome to contribute.
15
+
16
+ - (πŸ”₯ New) Jan. 9, 2024. πŸ’₯ An updated LatteT2V model initialized with the [PixArt-Ξ±](https://github.com/PixArt-alpha/PixArt-alpha) is released, the checkpoint can be found [here](https://huggingface.co/maxin-cn/Latte/resolve/main/t2v.pt?download=true).
17
+
18
+ - (πŸ”₯ New) Oct. 31, 2023. πŸ’₯ The training and inference code is released. All checkpoints (including FaceForensics, SkyTimelapse, UCF101, and Taichi-HD) can be found [here](https://huggingface.co/maxin-cn/Latte/tree/main). In addition, the LatteT2V inference code is provided.
19
+
20
+ ## Contact Us
21
+ **Yaohui Wang**: [wangyaohui@pjlab.org.cn](mailto:wangyaohui@pjlab.org.cn)
22
+ **Xin Ma**: [xin.ma1@monash.edu](mailto:xin.ma1@monash.edu)
23
+
24
+ ## Citation
25
+ If you find this work useful for your research, please consider citing it.
26
+ ```bibtex
27
+ @article{ma2024latte,
28
+ title={Latte: Latent Diffusion Transformer for Video Generation},
29
+ author={Ma, Xin and Wang, Yaohui and Jia, Gengyun and Chen, Xinyuan and Liu, Ziwei and Li, Yuan-Fang and Chen, Cunjian and Qiao, Yu},
30
+ journal={arXiv preprint arXiv:2401.03048},
31
+ year={2024}
32
+ }
33
+ ```
34
+
35
+
36
+ ## Acknowledgments
37
+ Latte has been greatly inspired by the following amazing works and teams: [DiT](https://github.com/facebookresearch/DiT) and [PixArt-Ξ±](https://github.com/PixArt-alpha/PixArt-alpha), we thank all the contributors for open-sourcing.