mavuriRahul commited on
Commit
7d961ec
·
verified ·
1 Parent(s): c388ea8

Create README.MD

Browse files
Files changed (1) hide show
  1. README.MD +77 -0
README.MD ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Model Deployment Guide
2
+
3
+ This project contains the necessary files to deploy a machine learning model using Keras. Below is a description of each file and how to use them.
4
+ This documentation provides detailed information about the machine learning model, its architecture, configuration, and how to use it for predictions. The model has been built using Keras and TensorFlow and is saved in a modular format with separate files for configuration, metadata, and weights.
5
+ 1. config.json
6
+ Purpose: This file describes the architecture of the Keras model.
7
+ • Contains the layer configurations, including input, embedding, LSTM, and output layers.
8
+ • Specifies the model type: Sequential or Functional.
9
+ • Includes optimizer, loss function, and training parameters.
10
+ Example details from config.json:
11
+ • Input Shape: [batch_size, sequence_length]
12
+ • Layers:
13
+ o Input Layer
14
+ o Embedding Layer (Input Dimension: 13745, Output Dimension: 512)
15
+ o LSTM Layers
16
+ o TimeDistributed Dense Output Layer
17
+ 2. metadata.json
18
+ Purpose: Metadata about the model.
19
+ • Keras Version: 3.4.1
20
+ • Date Saved:
21
+ o First model: 2024-11-15 11:24:05
22
+ o Second model: 2024-11-15 11:38:25
23
+ 3. model.weights.h5
24
+ Purpose: Contains the trained weights of the model.
25
+ • Must be used in combination with the architecture defined in config.json to reconstruct the model.
26
+ Ensure the following dependencies are installed:
27
+ • Python 3.8 or later
28
+ • TensorFlow 2.10 or later
29
+ • Keras 3.4.1 or later
30
+
31
+
32
+ ## Files in the Repository
33
+
34
+ ### 1. `config.json`
35
+ This file contains the configuration of the Keras model. It defines the architecture, including input layers, embedding layers, LSTMs, and the output layer. Key details include:
36
+ - **Model Type**: Sequential/Functional
37
+ - **Layers**: InputLayer, Embedding, LSTM, RepeatVector, TimeDistributed
38
+ - **Optimizer**: Adam
39
+ - **Loss Function**: Sparse Categorical Crossentropy
40
+
41
+ ### 2. `metadata.json`
42
+ This file contains metadata about the model:
43
+ - **Keras Version**: 3.4.1
44
+ - **Date Saved**: 2024-11-15
45
+
46
+ ### 3. `model.weights.h5`
47
+ This file contains the trained weights of the model. It should be loaded alongside the model configuration to make predictions.
48
+
49
+ ## How to Use
50
+
51
+ ### Prerequisites
52
+ - Python 3.8 or later
53
+ - TensorFlow 2.10 or later
54
+ - Keras 3.4.1 or later
55
+
56
+ ### Steps
57
+ 1. **Setup Environment**:
58
+ ```bash
59
+ pip install tensorflow keras
60
+ from tensorflow.keras.models import model_from_json
61
+
62
+ # Load model configuration
63
+ with open('config.json', 'r') as json_file:
64
+ model_config = json_file.read()
65
+
66
+ model = model_from_json(model_config)
67
+
68
+ # Load weights
69
+ model.load_weights('model.weights.h5')
70
+ from tensorflow.keras.optimizers import Adam
71
+
72
+ model.compile(
73
+ optimizer=Adam(learning_rate=0.001),
74
+ loss='sparse_categorical_crossentropy'
75
+ )
76
+ predictions = model.predict(input_data)
77
+