renzhongwei
commited on
Commit
•
efe17b4
1
Parent(s):
f8c1812
des
Browse files- cascade-rcnn_x101-32x4d_fpn_1x_ct/20240412_192400/20240412_192400.log +0 -0
- cascade-rcnn_x101-32x4d_fpn_1x_ct/20240412_192400/vis_data/20240412_192400.json +0 -0
- cascade-rcnn_x101-32x4d_fpn_1x_ct/20240412_192400/vis_data/config.py +439 -0
- cascade-rcnn_x101-32x4d_fpn_1x_ct/20240412_192400/vis_data/scalars.json +0 -0
- cascade-rcnn_x101-32x4d_fpn_1x_ct/cascade-rcnn_x101-32x4d_fpn_1x_ct.py +439 -0
- cascade-rcnn_x101-32x4d_fpn_1x_ct/epoch_12.pth +3 -0
- cascade-rcnn_x101-64x4d_fpn_1x_ct/20240412_193331/20240412_193331.log +0 -0
- cascade-rcnn_x101-64x4d_fpn_1x_ct/20240412_193331/vis_data/20240412_193331.json +0 -0
- cascade-rcnn_x101-64x4d_fpn_1x_ct/20240412_193331/vis_data/config.py +439 -0
- cascade-rcnn_x101-64x4d_fpn_1x_ct/20240412_193331/vis_data/scalars.json +0 -0
- cascade-rcnn_x101-64x4d_fpn_1x_ct/cascade-rcnn_x101-64x4d_fpn_1x_ct.py +439 -0
- cascade-rcnn_x101-64x4d_fpn_1x_ct/epoch_12.pth +3 -0
- co_deformable_detr_r50_1x_ct/co_deformable_detr_r50_1x_ct.py +407 -0
- co_deformable_detr_r50_1x_ct/epoch_40.pth +3 -0
- co_deformable_detr_swin_large_1x_ct/co_deformable_detr_swin_large_1x_ct.py +409 -0
- co_deformable_detr_swin_large_1x_ct/epoch_50.pth +3 -0
- co_dino_5scale_r50_1x_ct/co_dino_5scale_r50_1x_ct.py +411 -0
- co_dino_5scale_r50_1x_ct/epoch_50.pth +3 -0
cascade-rcnn_x101-32x4d_fpn_1x_ct/20240412_192400/20240412_192400.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
cascade-rcnn_x101-32x4d_fpn_1x_ct/20240412_192400/vis_data/20240412_192400.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
cascade-rcnn_x101-32x4d_fpn_1x_ct/20240412_192400/vis_data/config.py
ADDED
@@ -0,0 +1,439 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
auto_scale_lr = dict(base_batch_size=16, enable=False)
|
2 |
+
backend_args = None
|
3 |
+
data_root = '/mnt/bn/panxuran/Slice_Data/slice_dataset_maximum_0402/'
|
4 |
+
dataset_type = 'CocoCTDataset'
|
5 |
+
default_hooks = dict(
|
6 |
+
checkpoint=dict(interval=1, type='CheckpointHook'),
|
7 |
+
logger=dict(interval=50, type='LoggerHook'),
|
8 |
+
param_scheduler=dict(type='ParamSchedulerHook'),
|
9 |
+
sampler_seed=dict(type='DistSamplerSeedHook'),
|
10 |
+
timer=dict(type='IterTimerHook'),
|
11 |
+
visualization=dict(type='DetVisualizationHook'))
|
12 |
+
default_scope = 'mmdet'
|
13 |
+
env_cfg = dict(
|
14 |
+
cudnn_benchmark=False,
|
15 |
+
dist_cfg=dict(backend='nccl'),
|
16 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
|
17 |
+
launcher = 'pytorch'
|
18 |
+
load_from = 'ckpt/cascade_rcnn_x101_32x4d_fpn_1x_coco_20200316-95c2deb6.pth'
|
19 |
+
log_level = 'INFO'
|
20 |
+
log_processor = dict(by_epoch=True, type='LogProcessor', window_size=50)
|
21 |
+
model = dict(
|
22 |
+
backbone=dict(
|
23 |
+
base_width=4,
|
24 |
+
depth=101,
|
25 |
+
frozen_stages=1,
|
26 |
+
groups=32,
|
27 |
+
init_cfg=dict(
|
28 |
+
checkpoint='open-mmlab://resnext101_32x4d', type='Pretrained'),
|
29 |
+
norm_cfg=dict(requires_grad=True, type='BN'),
|
30 |
+
norm_eval=True,
|
31 |
+
num_stages=4,
|
32 |
+
out_indices=(
|
33 |
+
0,
|
34 |
+
1,
|
35 |
+
2,
|
36 |
+
3,
|
37 |
+
),
|
38 |
+
style='pytorch',
|
39 |
+
type='ResNeXt'),
|
40 |
+
data_preprocessor=dict(
|
41 |
+
bgr_to_rgb=True,
|
42 |
+
mean=[
|
43 |
+
123.675,
|
44 |
+
116.28,
|
45 |
+
103.53,
|
46 |
+
],
|
47 |
+
pad_size_divisor=32,
|
48 |
+
std=[
|
49 |
+
58.395,
|
50 |
+
57.12,
|
51 |
+
57.375,
|
52 |
+
],
|
53 |
+
type='DetDataPreprocessor'),
|
54 |
+
neck=dict(
|
55 |
+
in_channels=[
|
56 |
+
256,
|
57 |
+
512,
|
58 |
+
1024,
|
59 |
+
2048,
|
60 |
+
],
|
61 |
+
num_outs=5,
|
62 |
+
out_channels=256,
|
63 |
+
type='FPN'),
|
64 |
+
roi_head=dict(
|
65 |
+
bbox_head=[
|
66 |
+
dict(
|
67 |
+
bbox_coder=dict(
|
68 |
+
target_means=[
|
69 |
+
0.0,
|
70 |
+
0.0,
|
71 |
+
0.0,
|
72 |
+
0.0,
|
73 |
+
],
|
74 |
+
target_stds=[
|
75 |
+
0.1,
|
76 |
+
0.1,
|
77 |
+
0.2,
|
78 |
+
0.2,
|
79 |
+
],
|
80 |
+
type='DeltaXYWHBBoxCoder'),
|
81 |
+
fc_out_channels=1024,
|
82 |
+
in_channels=256,
|
83 |
+
loss_bbox=dict(beta=1.0, loss_weight=1.0, type='SmoothL1Loss'),
|
84 |
+
loss_cls=dict(
|
85 |
+
loss_weight=1.0,
|
86 |
+
type='CrossEntropyLoss',
|
87 |
+
use_sigmoid=False),
|
88 |
+
num_classes=5,
|
89 |
+
reg_class_agnostic=True,
|
90 |
+
roi_feat_size=7,
|
91 |
+
type='Shared2FCBBoxHead'),
|
92 |
+
dict(
|
93 |
+
bbox_coder=dict(
|
94 |
+
target_means=[
|
95 |
+
0.0,
|
96 |
+
0.0,
|
97 |
+
0.0,
|
98 |
+
0.0,
|
99 |
+
],
|
100 |
+
target_stds=[
|
101 |
+
0.05,
|
102 |
+
0.05,
|
103 |
+
0.1,
|
104 |
+
0.1,
|
105 |
+
],
|
106 |
+
type='DeltaXYWHBBoxCoder'),
|
107 |
+
fc_out_channels=1024,
|
108 |
+
in_channels=256,
|
109 |
+
loss_bbox=dict(beta=1.0, loss_weight=1.0, type='SmoothL1Loss'),
|
110 |
+
loss_cls=dict(
|
111 |
+
loss_weight=1.0,
|
112 |
+
type='CrossEntropyLoss',
|
113 |
+
use_sigmoid=False),
|
114 |
+
num_classes=5,
|
115 |
+
reg_class_agnostic=True,
|
116 |
+
roi_feat_size=7,
|
117 |
+
type='Shared2FCBBoxHead'),
|
118 |
+
dict(
|
119 |
+
bbox_coder=dict(
|
120 |
+
target_means=[
|
121 |
+
0.0,
|
122 |
+
0.0,
|
123 |
+
0.0,
|
124 |
+
0.0,
|
125 |
+
],
|
126 |
+
target_stds=[
|
127 |
+
0.033,
|
128 |
+
0.033,
|
129 |
+
0.067,
|
130 |
+
0.067,
|
131 |
+
],
|
132 |
+
type='DeltaXYWHBBoxCoder'),
|
133 |
+
fc_out_channels=1024,
|
134 |
+
in_channels=256,
|
135 |
+
loss_bbox=dict(beta=1.0, loss_weight=1.0, type='SmoothL1Loss'),
|
136 |
+
loss_cls=dict(
|
137 |
+
loss_weight=1.0,
|
138 |
+
type='CrossEntropyLoss',
|
139 |
+
use_sigmoid=False),
|
140 |
+
num_classes=5,
|
141 |
+
reg_class_agnostic=True,
|
142 |
+
roi_feat_size=7,
|
143 |
+
type='Shared2FCBBoxHead'),
|
144 |
+
],
|
145 |
+
bbox_roi_extractor=dict(
|
146 |
+
featmap_strides=[
|
147 |
+
4,
|
148 |
+
8,
|
149 |
+
16,
|
150 |
+
32,
|
151 |
+
],
|
152 |
+
out_channels=256,
|
153 |
+
roi_layer=dict(output_size=7, sampling_ratio=0, type='RoIAlign'),
|
154 |
+
type='SingleRoIExtractor'),
|
155 |
+
num_stages=3,
|
156 |
+
stage_loss_weights=[
|
157 |
+
1,
|
158 |
+
0.5,
|
159 |
+
0.25,
|
160 |
+
],
|
161 |
+
type='CascadeRoIHead'),
|
162 |
+
rpn_head=dict(
|
163 |
+
anchor_generator=dict(
|
164 |
+
ratios=[
|
165 |
+
0.5,
|
166 |
+
1.0,
|
167 |
+
2.0,
|
168 |
+
],
|
169 |
+
scales=[
|
170 |
+
8,
|
171 |
+
],
|
172 |
+
strides=[
|
173 |
+
4,
|
174 |
+
8,
|
175 |
+
16,
|
176 |
+
32,
|
177 |
+
64,
|
178 |
+
],
|
179 |
+
type='AnchorGenerator'),
|
180 |
+
bbox_coder=dict(
|
181 |
+
target_means=[
|
182 |
+
0.0,
|
183 |
+
0.0,
|
184 |
+
0.0,
|
185 |
+
0.0,
|
186 |
+
],
|
187 |
+
target_stds=[
|
188 |
+
1.0,
|
189 |
+
1.0,
|
190 |
+
1.0,
|
191 |
+
1.0,
|
192 |
+
],
|
193 |
+
type='DeltaXYWHBBoxCoder'),
|
194 |
+
feat_channels=256,
|
195 |
+
in_channels=256,
|
196 |
+
loss_bbox=dict(
|
197 |
+
beta=0.1111111111111111, loss_weight=1.0, type='SmoothL1Loss'),
|
198 |
+
loss_cls=dict(
|
199 |
+
loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=True),
|
200 |
+
type='RPNHead'),
|
201 |
+
test_cfg=dict(
|
202 |
+
rcnn=dict(
|
203 |
+
max_per_img=100,
|
204 |
+
nms=dict(iou_threshold=0.5, type='nms'),
|
205 |
+
score_thr=0.05),
|
206 |
+
rpn=dict(
|
207 |
+
max_per_img=1000,
|
208 |
+
min_bbox_size=0,
|
209 |
+
nms=dict(iou_threshold=0.7, type='nms'),
|
210 |
+
nms_pre=1000)),
|
211 |
+
train_cfg=dict(
|
212 |
+
rcnn=[
|
213 |
+
dict(
|
214 |
+
assigner=dict(
|
215 |
+
ignore_iof_thr=-1,
|
216 |
+
match_low_quality=False,
|
217 |
+
min_pos_iou=0.5,
|
218 |
+
neg_iou_thr=0.5,
|
219 |
+
pos_iou_thr=0.5,
|
220 |
+
type='MaxIoUAssigner'),
|
221 |
+
debug=False,
|
222 |
+
pos_weight=-1,
|
223 |
+
sampler=dict(
|
224 |
+
add_gt_as_proposals=True,
|
225 |
+
neg_pos_ub=-1,
|
226 |
+
num=512,
|
227 |
+
pos_fraction=0.25,
|
228 |
+
type='RandomSampler')),
|
229 |
+
dict(
|
230 |
+
assigner=dict(
|
231 |
+
ignore_iof_thr=-1,
|
232 |
+
match_low_quality=False,
|
233 |
+
min_pos_iou=0.6,
|
234 |
+
neg_iou_thr=0.6,
|
235 |
+
pos_iou_thr=0.6,
|
236 |
+
type='MaxIoUAssigner'),
|
237 |
+
debug=False,
|
238 |
+
pos_weight=-1,
|
239 |
+
sampler=dict(
|
240 |
+
add_gt_as_proposals=True,
|
241 |
+
neg_pos_ub=-1,
|
242 |
+
num=512,
|
243 |
+
pos_fraction=0.25,
|
244 |
+
type='RandomSampler')),
|
245 |
+
dict(
|
246 |
+
assigner=dict(
|
247 |
+
ignore_iof_thr=-1,
|
248 |
+
match_low_quality=False,
|
249 |
+
min_pos_iou=0.7,
|
250 |
+
neg_iou_thr=0.7,
|
251 |
+
pos_iou_thr=0.7,
|
252 |
+
type='MaxIoUAssigner'),
|
253 |
+
debug=False,
|
254 |
+
pos_weight=-1,
|
255 |
+
sampler=dict(
|
256 |
+
add_gt_as_proposals=True,
|
257 |
+
neg_pos_ub=-1,
|
258 |
+
num=512,
|
259 |
+
pos_fraction=0.25,
|
260 |
+
type='RandomSampler')),
|
261 |
+
],
|
262 |
+
rpn=dict(
|
263 |
+
allowed_border=0,
|
264 |
+
assigner=dict(
|
265 |
+
ignore_iof_thr=-1,
|
266 |
+
match_low_quality=True,
|
267 |
+
min_pos_iou=0.3,
|
268 |
+
neg_iou_thr=0.3,
|
269 |
+
pos_iou_thr=0.7,
|
270 |
+
type='MaxIoUAssigner'),
|
271 |
+
debug=False,
|
272 |
+
pos_weight=-1,
|
273 |
+
sampler=dict(
|
274 |
+
add_gt_as_proposals=False,
|
275 |
+
neg_pos_ub=-1,
|
276 |
+
num=256,
|
277 |
+
pos_fraction=0.5,
|
278 |
+
type='RandomSampler')),
|
279 |
+
rpn_proposal=dict(
|
280 |
+
max_per_img=2000,
|
281 |
+
min_bbox_size=0,
|
282 |
+
nms=dict(iou_threshold=0.7, type='nms'),
|
283 |
+
nms_pre=2000)),
|
284 |
+
type='CascadeRCNN')
|
285 |
+
optim_wrapper = dict(
|
286 |
+
optimizer=dict(lr=0.02, momentum=0.9, type='SGD', weight_decay=0.0001),
|
287 |
+
type='OptimWrapper')
|
288 |
+
param_scheduler = [
|
289 |
+
dict(
|
290 |
+
begin=0, by_epoch=False, end=500, start_factor=0.001, type='LinearLR'),
|
291 |
+
dict(
|
292 |
+
begin=0,
|
293 |
+
by_epoch=True,
|
294 |
+
end=12,
|
295 |
+
gamma=0.1,
|
296 |
+
milestones=[
|
297 |
+
8,
|
298 |
+
11,
|
299 |
+
],
|
300 |
+
type='MultiStepLR'),
|
301 |
+
]
|
302 |
+
resume = False
|
303 |
+
test_cfg = dict(type='TestLoop')
|
304 |
+
test_dataloader = dict(
|
305 |
+
batch_size=8,
|
306 |
+
dataset=dict(
|
307 |
+
ann_file='annotations/test.json',
|
308 |
+
backend_args=None,
|
309 |
+
data_prefix=dict(img='images/test/'),
|
310 |
+
data_root='/mnt/bn/panxuran/Slice_Data/slice_dataset_maximum_0402/',
|
311 |
+
pipeline=[
|
312 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
313 |
+
dict(keep_ratio=True, scale=(
|
314 |
+
512,
|
315 |
+
512,
|
316 |
+
), type='Resize'),
|
317 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
318 |
+
dict(
|
319 |
+
meta_keys=(
|
320 |
+
'img_id',
|
321 |
+
'img_path',
|
322 |
+
'ori_shape',
|
323 |
+
'img_shape',
|
324 |
+
'scale_factor',
|
325 |
+
),
|
326 |
+
type='PackDetInputs'),
|
327 |
+
],
|
328 |
+
test_mode=True,
|
329 |
+
type='CocoCTDataset'),
|
330 |
+
drop_last=False,
|
331 |
+
num_workers=4,
|
332 |
+
persistent_workers=True,
|
333 |
+
sampler=dict(shuffle=False, type='DefaultSampler'))
|
334 |
+
test_evaluator = dict(
|
335 |
+
ann_file=
|
336 |
+
'/mnt/bn/panxuran/Slice_Data/slice_dataset_maximum_0402/annotations/test.json',
|
337 |
+
backend_args=None,
|
338 |
+
format_only=False,
|
339 |
+
metric='bbox',
|
340 |
+
type='CocoMetric')
|
341 |
+
test_pipeline = [
|
342 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
343 |
+
dict(keep_ratio=True, scale=(
|
344 |
+
512,
|
345 |
+
512,
|
346 |
+
), type='Resize'),
|
347 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
348 |
+
dict(
|
349 |
+
meta_keys=(
|
350 |
+
'img_id',
|
351 |
+
'img_path',
|
352 |
+
'ori_shape',
|
353 |
+
'img_shape',
|
354 |
+
'scale_factor',
|
355 |
+
),
|
356 |
+
type='PackDetInputs'),
|
357 |
+
]
|
358 |
+
train_cfg = dict(max_epochs=12, type='EpochBasedTrainLoop', val_interval=1)
|
359 |
+
train_dataloader = dict(
|
360 |
+
batch_sampler=dict(type='AspectRatioBatchSampler'),
|
361 |
+
batch_size=8,
|
362 |
+
dataset=dict(
|
363 |
+
ann_file='annotations/train_wsyn.json',
|
364 |
+
backend_args=None,
|
365 |
+
data_prefix=dict(img='images/train/'),
|
366 |
+
data_root='/mnt/bn/panxuran/Slice_Data/slice_dataset_maximum_0402/',
|
367 |
+
filter_cfg=dict(filter_empty_gt=False, min_size=32),
|
368 |
+
pipeline=[
|
369 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
370 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
371 |
+
dict(keep_ratio=True, scale=(
|
372 |
+
512,
|
373 |
+
512,
|
374 |
+
), type='Resize'),
|
375 |
+
dict(prob=0.5, type='RandomFlip'),
|
376 |
+
dict(type='PackDetInputs'),
|
377 |
+
],
|
378 |
+
type='CocoCTDataset'),
|
379 |
+
num_workers=4,
|
380 |
+
persistent_workers=True,
|
381 |
+
sampler=dict(shuffle=True, type='DefaultSampler'))
|
382 |
+
train_pipeline = [
|
383 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
384 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
385 |
+
dict(keep_ratio=True, scale=(
|
386 |
+
512,
|
387 |
+
512,
|
388 |
+
), type='Resize'),
|
389 |
+
dict(prob=0.5, type='RandomFlip'),
|
390 |
+
dict(type='PackDetInputs'),
|
391 |
+
]
|
392 |
+
val_cfg = dict(type='ValLoop')
|
393 |
+
val_dataloader = dict(
|
394 |
+
batch_size=8,
|
395 |
+
dataset=dict(
|
396 |
+
ann_file='annotations/test.json',
|
397 |
+
backend_args=None,
|
398 |
+
data_prefix=dict(img='images/test/'),
|
399 |
+
data_root='/mnt/bn/panxuran/Slice_Data/slice_dataset_maximum_0402/',
|
400 |
+
pipeline=[
|
401 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
402 |
+
dict(keep_ratio=True, scale=(
|
403 |
+
512,
|
404 |
+
512,
|
405 |
+
), type='Resize'),
|
406 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
407 |
+
dict(
|
408 |
+
meta_keys=(
|
409 |
+
'img_id',
|
410 |
+
'img_path',
|
411 |
+
'ori_shape',
|
412 |
+
'img_shape',
|
413 |
+
'scale_factor',
|
414 |
+
),
|
415 |
+
type='PackDetInputs'),
|
416 |
+
],
|
417 |
+
test_mode=True,
|
418 |
+
type='CocoCTDataset'),
|
419 |
+
drop_last=False,
|
420 |
+
num_workers=4,
|
421 |
+
persistent_workers=True,
|
422 |
+
sampler=dict(shuffle=False, type='DefaultSampler'))
|
423 |
+
val_evaluator = dict(
|
424 |
+
ann_file=
|
425 |
+
'/mnt/bn/panxuran/Slice_Data/slice_dataset_maximum_0402/annotations/test.json',
|
426 |
+
backend_args=None,
|
427 |
+
format_only=False,
|
428 |
+
metric='bbox',
|
429 |
+
type='CocoMetric')
|
430 |
+
vis_backends = [
|
431 |
+
dict(type='LocalVisBackend'),
|
432 |
+
]
|
433 |
+
visualizer = dict(
|
434 |
+
name='visualizer',
|
435 |
+
type='DetLocalVisualizer',
|
436 |
+
vis_backends=[
|
437 |
+
dict(type='LocalVisBackend'),
|
438 |
+
])
|
439 |
+
work_dir = 'work_dirs/cascade-rcnn_x101-32x4d_fpn_1x_ct'
|
cascade-rcnn_x101-32x4d_fpn_1x_ct/20240412_192400/vis_data/scalars.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
cascade-rcnn_x101-32x4d_fpn_1x_ct/cascade-rcnn_x101-32x4d_fpn_1x_ct.py
ADDED
@@ -0,0 +1,439 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
auto_scale_lr = dict(base_batch_size=16, enable=False)
|
2 |
+
backend_args = None
|
3 |
+
data_root = '/mnt/bn/panxuran/Slice_Data/slice_dataset_maximum_0402/'
|
4 |
+
dataset_type = 'CocoCTDataset'
|
5 |
+
default_hooks = dict(
|
6 |
+
checkpoint=dict(interval=1, type='CheckpointHook'),
|
7 |
+
logger=dict(interval=50, type='LoggerHook'),
|
8 |
+
param_scheduler=dict(type='ParamSchedulerHook'),
|
9 |
+
sampler_seed=dict(type='DistSamplerSeedHook'),
|
10 |
+
timer=dict(type='IterTimerHook'),
|
11 |
+
visualization=dict(type='DetVisualizationHook'))
|
12 |
+
default_scope = 'mmdet'
|
13 |
+
env_cfg = dict(
|
14 |
+
cudnn_benchmark=False,
|
15 |
+
dist_cfg=dict(backend='nccl'),
|
16 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
|
17 |
+
launcher = 'pytorch'
|
18 |
+
load_from = 'ckpt/cascade_rcnn_x101_32x4d_fpn_1x_coco_20200316-95c2deb6.pth'
|
19 |
+
log_level = 'INFO'
|
20 |
+
log_processor = dict(by_epoch=True, type='LogProcessor', window_size=50)
|
21 |
+
model = dict(
|
22 |
+
backbone=dict(
|
23 |
+
base_width=4,
|
24 |
+
depth=101,
|
25 |
+
frozen_stages=1,
|
26 |
+
groups=32,
|
27 |
+
init_cfg=dict(
|
28 |
+
checkpoint='open-mmlab://resnext101_32x4d', type='Pretrained'),
|
29 |
+
norm_cfg=dict(requires_grad=True, type='BN'),
|
30 |
+
norm_eval=True,
|
31 |
+
num_stages=4,
|
32 |
+
out_indices=(
|
33 |
+
0,
|
34 |
+
1,
|
35 |
+
2,
|
36 |
+
3,
|
37 |
+
),
|
38 |
+
style='pytorch',
|
39 |
+
type='ResNeXt'),
|
40 |
+
data_preprocessor=dict(
|
41 |
+
bgr_to_rgb=True,
|
42 |
+
mean=[
|
43 |
+
123.675,
|
44 |
+
116.28,
|
45 |
+
103.53,
|
46 |
+
],
|
47 |
+
pad_size_divisor=32,
|
48 |
+
std=[
|
49 |
+
58.395,
|
50 |
+
57.12,
|
51 |
+
57.375,
|
52 |
+
],
|
53 |
+
type='DetDataPreprocessor'),
|
54 |
+
neck=dict(
|
55 |
+
in_channels=[
|
56 |
+
256,
|
57 |
+
512,
|
58 |
+
1024,
|
59 |
+
2048,
|
60 |
+
],
|
61 |
+
num_outs=5,
|
62 |
+
out_channels=256,
|
63 |
+
type='FPN'),
|
64 |
+
roi_head=dict(
|
65 |
+
bbox_head=[
|
66 |
+
dict(
|
67 |
+
bbox_coder=dict(
|
68 |
+
target_means=[
|
69 |
+
0.0,
|
70 |
+
0.0,
|
71 |
+
0.0,
|
72 |
+
0.0,
|
73 |
+
],
|
74 |
+
target_stds=[
|
75 |
+
0.1,
|
76 |
+
0.1,
|
77 |
+
0.2,
|
78 |
+
0.2,
|
79 |
+
],
|
80 |
+
type='DeltaXYWHBBoxCoder'),
|
81 |
+
fc_out_channels=1024,
|
82 |
+
in_channels=256,
|
83 |
+
loss_bbox=dict(beta=1.0, loss_weight=1.0, type='SmoothL1Loss'),
|
84 |
+
loss_cls=dict(
|
85 |
+
loss_weight=1.0,
|
86 |
+
type='CrossEntropyLoss',
|
87 |
+
use_sigmoid=False),
|
88 |
+
num_classes=5,
|
89 |
+
reg_class_agnostic=True,
|
90 |
+
roi_feat_size=7,
|
91 |
+
type='Shared2FCBBoxHead'),
|
92 |
+
dict(
|
93 |
+
bbox_coder=dict(
|
94 |
+
target_means=[
|
95 |
+
0.0,
|
96 |
+
0.0,
|
97 |
+
0.0,
|
98 |
+
0.0,
|
99 |
+
],
|
100 |
+
target_stds=[
|
101 |
+
0.05,
|
102 |
+
0.05,
|
103 |
+
0.1,
|
104 |
+
0.1,
|
105 |
+
],
|
106 |
+
type='DeltaXYWHBBoxCoder'),
|
107 |
+
fc_out_channels=1024,
|
108 |
+
in_channels=256,
|
109 |
+
loss_bbox=dict(beta=1.0, loss_weight=1.0, type='SmoothL1Loss'),
|
110 |
+
loss_cls=dict(
|
111 |
+
loss_weight=1.0,
|
112 |
+
type='CrossEntropyLoss',
|
113 |
+
use_sigmoid=False),
|
114 |
+
num_classes=5,
|
115 |
+
reg_class_agnostic=True,
|
116 |
+
roi_feat_size=7,
|
117 |
+
type='Shared2FCBBoxHead'),
|
118 |
+
dict(
|
119 |
+
bbox_coder=dict(
|
120 |
+
target_means=[
|
121 |
+
0.0,
|
122 |
+
0.0,
|
123 |
+
0.0,
|
124 |
+
0.0,
|
125 |
+
],
|
126 |
+
target_stds=[
|
127 |
+
0.033,
|
128 |
+
0.033,
|
129 |
+
0.067,
|
130 |
+
0.067,
|
131 |
+
],
|
132 |
+
type='DeltaXYWHBBoxCoder'),
|
133 |
+
fc_out_channels=1024,
|
134 |
+
in_channels=256,
|
135 |
+
loss_bbox=dict(beta=1.0, loss_weight=1.0, type='SmoothL1Loss'),
|
136 |
+
loss_cls=dict(
|
137 |
+
loss_weight=1.0,
|
138 |
+
type='CrossEntropyLoss',
|
139 |
+
use_sigmoid=False),
|
140 |
+
num_classes=5,
|
141 |
+
reg_class_agnostic=True,
|
142 |
+
roi_feat_size=7,
|
143 |
+
type='Shared2FCBBoxHead'),
|
144 |
+
],
|
145 |
+
bbox_roi_extractor=dict(
|
146 |
+
featmap_strides=[
|
147 |
+
4,
|
148 |
+
8,
|
149 |
+
16,
|
150 |
+
32,
|
151 |
+
],
|
152 |
+
out_channels=256,
|
153 |
+
roi_layer=dict(output_size=7, sampling_ratio=0, type='RoIAlign'),
|
154 |
+
type='SingleRoIExtractor'),
|
155 |
+
num_stages=3,
|
156 |
+
stage_loss_weights=[
|
157 |
+
1,
|
158 |
+
0.5,
|
159 |
+
0.25,
|
160 |
+
],
|
161 |
+
type='CascadeRoIHead'),
|
162 |
+
rpn_head=dict(
|
163 |
+
anchor_generator=dict(
|
164 |
+
ratios=[
|
165 |
+
0.5,
|
166 |
+
1.0,
|
167 |
+
2.0,
|
168 |
+
],
|
169 |
+
scales=[
|
170 |
+
8,
|
171 |
+
],
|
172 |
+
strides=[
|
173 |
+
4,
|
174 |
+
8,
|
175 |
+
16,
|
176 |
+
32,
|
177 |
+
64,
|
178 |
+
],
|
179 |
+
type='AnchorGenerator'),
|
180 |
+
bbox_coder=dict(
|
181 |
+
target_means=[
|
182 |
+
0.0,
|
183 |
+
0.0,
|
184 |
+
0.0,
|
185 |
+
0.0,
|
186 |
+
],
|
187 |
+
target_stds=[
|
188 |
+
1.0,
|
189 |
+
1.0,
|
190 |
+
1.0,
|
191 |
+
1.0,
|
192 |
+
],
|
193 |
+
type='DeltaXYWHBBoxCoder'),
|
194 |
+
feat_channels=256,
|
195 |
+
in_channels=256,
|
196 |
+
loss_bbox=dict(
|
197 |
+
beta=0.1111111111111111, loss_weight=1.0, type='SmoothL1Loss'),
|
198 |
+
loss_cls=dict(
|
199 |
+
loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=True),
|
200 |
+
type='RPNHead'),
|
201 |
+
test_cfg=dict(
|
202 |
+
rcnn=dict(
|
203 |
+
max_per_img=100,
|
204 |
+
nms=dict(iou_threshold=0.5, type='nms'),
|
205 |
+
score_thr=0.05),
|
206 |
+
rpn=dict(
|
207 |
+
max_per_img=1000,
|
208 |
+
min_bbox_size=0,
|
209 |
+
nms=dict(iou_threshold=0.7, type='nms'),
|
210 |
+
nms_pre=1000)),
|
211 |
+
train_cfg=dict(
|
212 |
+
rcnn=[
|
213 |
+
dict(
|
214 |
+
assigner=dict(
|
215 |
+
ignore_iof_thr=-1,
|
216 |
+
match_low_quality=False,
|
217 |
+
min_pos_iou=0.5,
|
218 |
+
neg_iou_thr=0.5,
|
219 |
+
pos_iou_thr=0.5,
|
220 |
+
type='MaxIoUAssigner'),
|
221 |
+
debug=False,
|
222 |
+
pos_weight=-1,
|
223 |
+
sampler=dict(
|
224 |
+
add_gt_as_proposals=True,
|
225 |
+
neg_pos_ub=-1,
|
226 |
+
num=512,
|
227 |
+
pos_fraction=0.25,
|
228 |
+
type='RandomSampler')),
|
229 |
+
dict(
|
230 |
+
assigner=dict(
|
231 |
+
ignore_iof_thr=-1,
|
232 |
+
match_low_quality=False,
|
233 |
+
min_pos_iou=0.6,
|
234 |
+
neg_iou_thr=0.6,
|
235 |
+
pos_iou_thr=0.6,
|
236 |
+
type='MaxIoUAssigner'),
|
237 |
+
debug=False,
|
238 |
+
pos_weight=-1,
|
239 |
+
sampler=dict(
|
240 |
+
add_gt_as_proposals=True,
|
241 |
+
neg_pos_ub=-1,
|
242 |
+
num=512,
|
243 |
+
pos_fraction=0.25,
|
244 |
+
type='RandomSampler')),
|
245 |
+
dict(
|
246 |
+
assigner=dict(
|
247 |
+
ignore_iof_thr=-1,
|
248 |
+
match_low_quality=False,
|
249 |
+
min_pos_iou=0.7,
|
250 |
+
neg_iou_thr=0.7,
|
251 |
+
pos_iou_thr=0.7,
|
252 |
+
type='MaxIoUAssigner'),
|
253 |
+
debug=False,
|
254 |
+
pos_weight=-1,
|
255 |
+
sampler=dict(
|
256 |
+
add_gt_as_proposals=True,
|
257 |
+
neg_pos_ub=-1,
|
258 |
+
num=512,
|
259 |
+
pos_fraction=0.25,
|
260 |
+
type='RandomSampler')),
|
261 |
+
],
|
262 |
+
rpn=dict(
|
263 |
+
allowed_border=0,
|
264 |
+
assigner=dict(
|
265 |
+
ignore_iof_thr=-1,
|
266 |
+
match_low_quality=True,
|
267 |
+
min_pos_iou=0.3,
|
268 |
+
neg_iou_thr=0.3,
|
269 |
+
pos_iou_thr=0.7,
|
270 |
+
type='MaxIoUAssigner'),
|
271 |
+
debug=False,
|
272 |
+
pos_weight=-1,
|
273 |
+
sampler=dict(
|
274 |
+
add_gt_as_proposals=False,
|
275 |
+
neg_pos_ub=-1,
|
276 |
+
num=256,
|
277 |
+
pos_fraction=0.5,
|
278 |
+
type='RandomSampler')),
|
279 |
+
rpn_proposal=dict(
|
280 |
+
max_per_img=2000,
|
281 |
+
min_bbox_size=0,
|
282 |
+
nms=dict(iou_threshold=0.7, type='nms'),
|
283 |
+
nms_pre=2000)),
|
284 |
+
type='CascadeRCNN')
|
285 |
+
optim_wrapper = dict(
|
286 |
+
optimizer=dict(lr=0.02, momentum=0.9, type='SGD', weight_decay=0.0001),
|
287 |
+
type='OptimWrapper')
|
288 |
+
param_scheduler = [
|
289 |
+
dict(
|
290 |
+
begin=0, by_epoch=False, end=500, start_factor=0.001, type='LinearLR'),
|
291 |
+
dict(
|
292 |
+
begin=0,
|
293 |
+
by_epoch=True,
|
294 |
+
end=12,
|
295 |
+
gamma=0.1,
|
296 |
+
milestones=[
|
297 |
+
8,
|
298 |
+
11,
|
299 |
+
],
|
300 |
+
type='MultiStepLR'),
|
301 |
+
]
|
302 |
+
resume = False
|
303 |
+
test_cfg = dict(type='TestLoop')
|
304 |
+
test_dataloader = dict(
|
305 |
+
batch_size=8,
|
306 |
+
dataset=dict(
|
307 |
+
ann_file='annotations/test.json',
|
308 |
+
backend_args=None,
|
309 |
+
data_prefix=dict(img='images/test/'),
|
310 |
+
data_root='/mnt/bn/panxuran/Slice_Data/slice_dataset_maximum_0402/',
|
311 |
+
pipeline=[
|
312 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
313 |
+
dict(keep_ratio=True, scale=(
|
314 |
+
512,
|
315 |
+
512,
|
316 |
+
), type='Resize'),
|
317 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
318 |
+
dict(
|
319 |
+
meta_keys=(
|
320 |
+
'img_id',
|
321 |
+
'img_path',
|
322 |
+
'ori_shape',
|
323 |
+
'img_shape',
|
324 |
+
'scale_factor',
|
325 |
+
),
|
326 |
+
type='PackDetInputs'),
|
327 |
+
],
|
328 |
+
test_mode=True,
|
329 |
+
type='CocoCTDataset'),
|
330 |
+
drop_last=False,
|
331 |
+
num_workers=4,
|
332 |
+
persistent_workers=True,
|
333 |
+
sampler=dict(shuffle=False, type='DefaultSampler'))
|
334 |
+
test_evaluator = dict(
|
335 |
+
ann_file=
|
336 |
+
'/mnt/bn/panxuran/Slice_Data/slice_dataset_maximum_0402/annotations/test.json',
|
337 |
+
backend_args=None,
|
338 |
+
format_only=False,
|
339 |
+
metric='bbox',
|
340 |
+
type='CocoMetric')
|
341 |
+
test_pipeline = [
|
342 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
343 |
+
dict(keep_ratio=True, scale=(
|
344 |
+
512,
|
345 |
+
512,
|
346 |
+
), type='Resize'),
|
347 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
348 |
+
dict(
|
349 |
+
meta_keys=(
|
350 |
+
'img_id',
|
351 |
+
'img_path',
|
352 |
+
'ori_shape',
|
353 |
+
'img_shape',
|
354 |
+
'scale_factor',
|
355 |
+
),
|
356 |
+
type='PackDetInputs'),
|
357 |
+
]
|
358 |
+
train_cfg = dict(max_epochs=12, type='EpochBasedTrainLoop', val_interval=1)
|
359 |
+
train_dataloader = dict(
|
360 |
+
batch_sampler=dict(type='AspectRatioBatchSampler'),
|
361 |
+
batch_size=8,
|
362 |
+
dataset=dict(
|
363 |
+
ann_file='annotations/train_wsyn.json',
|
364 |
+
backend_args=None,
|
365 |
+
data_prefix=dict(img='images/train/'),
|
366 |
+
data_root='/mnt/bn/panxuran/Slice_Data/slice_dataset_maximum_0402/',
|
367 |
+
filter_cfg=dict(filter_empty_gt=False, min_size=32),
|
368 |
+
pipeline=[
|
369 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
370 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
371 |
+
dict(keep_ratio=True, scale=(
|
372 |
+
512,
|
373 |
+
512,
|
374 |
+
), type='Resize'),
|
375 |
+
dict(prob=0.5, type='RandomFlip'),
|
376 |
+
dict(type='PackDetInputs'),
|
377 |
+
],
|
378 |
+
type='CocoCTDataset'),
|
379 |
+
num_workers=4,
|
380 |
+
persistent_workers=True,
|
381 |
+
sampler=dict(shuffle=True, type='DefaultSampler'))
|
382 |
+
train_pipeline = [
|
383 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
384 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
385 |
+
dict(keep_ratio=True, scale=(
|
386 |
+
512,
|
387 |
+
512,
|
388 |
+
), type='Resize'),
|
389 |
+
dict(prob=0.5, type='RandomFlip'),
|
390 |
+
dict(type='PackDetInputs'),
|
391 |
+
]
|
392 |
+
val_cfg = dict(type='ValLoop')
|
393 |
+
val_dataloader = dict(
|
394 |
+
batch_size=8,
|
395 |
+
dataset=dict(
|
396 |
+
ann_file='annotations/test.json',
|
397 |
+
backend_args=None,
|
398 |
+
data_prefix=dict(img='images/test/'),
|
399 |
+
data_root='/mnt/bn/panxuran/Slice_Data/slice_dataset_maximum_0402/',
|
400 |
+
pipeline=[
|
401 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
402 |
+
dict(keep_ratio=True, scale=(
|
403 |
+
512,
|
404 |
+
512,
|
405 |
+
), type='Resize'),
|
406 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
407 |
+
dict(
|
408 |
+
meta_keys=(
|
409 |
+
'img_id',
|
410 |
+
'img_path',
|
411 |
+
'ori_shape',
|
412 |
+
'img_shape',
|
413 |
+
'scale_factor',
|
414 |
+
),
|
415 |
+
type='PackDetInputs'),
|
416 |
+
],
|
417 |
+
test_mode=True,
|
418 |
+
type='CocoCTDataset'),
|
419 |
+
drop_last=False,
|
420 |
+
num_workers=4,
|
421 |
+
persistent_workers=True,
|
422 |
+
sampler=dict(shuffle=False, type='DefaultSampler'))
|
423 |
+
val_evaluator = dict(
|
424 |
+
ann_file=
|
425 |
+
'/mnt/bn/panxuran/Slice_Data/slice_dataset_maximum_0402/annotations/test.json',
|
426 |
+
backend_args=None,
|
427 |
+
format_only=False,
|
428 |
+
metric='bbox',
|
429 |
+
type='CocoMetric')
|
430 |
+
vis_backends = [
|
431 |
+
dict(type='LocalVisBackend'),
|
432 |
+
]
|
433 |
+
visualizer = dict(
|
434 |
+
name='visualizer',
|
435 |
+
type='DetLocalVisualizer',
|
436 |
+
vis_backends=[
|
437 |
+
dict(type='LocalVisBackend'),
|
438 |
+
])
|
439 |
+
work_dir = 'work_dirs/cascade-rcnn_x101-32x4d_fpn_1x_ct'
|
cascade-rcnn_x101-32x4d_fpn_1x_ct/epoch_12.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0bf7e7b96b6cd52aff250301b864a09d798e2a55cc55cfb25403e449645e633f
|
3 |
+
size 705747963
|
cascade-rcnn_x101-64x4d_fpn_1x_ct/20240412_193331/20240412_193331.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
cascade-rcnn_x101-64x4d_fpn_1x_ct/20240412_193331/vis_data/20240412_193331.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
cascade-rcnn_x101-64x4d_fpn_1x_ct/20240412_193331/vis_data/config.py
ADDED
@@ -0,0 +1,439 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
auto_scale_lr = dict(base_batch_size=16, enable=False)
|
2 |
+
backend_args = None
|
3 |
+
data_root = '/mnt/bn/panxuran/Slice_Data/slice_dataset_maximum_0402/'
|
4 |
+
dataset_type = 'CocoCTDataset'
|
5 |
+
default_hooks = dict(
|
6 |
+
checkpoint=dict(interval=1, type='CheckpointHook'),
|
7 |
+
logger=dict(interval=50, type='LoggerHook'),
|
8 |
+
param_scheduler=dict(type='ParamSchedulerHook'),
|
9 |
+
sampler_seed=dict(type='DistSamplerSeedHook'),
|
10 |
+
timer=dict(type='IterTimerHook'),
|
11 |
+
visualization=dict(type='DetVisualizationHook'))
|
12 |
+
default_scope = 'mmdet'
|
13 |
+
env_cfg = dict(
|
14 |
+
cudnn_benchmark=False,
|
15 |
+
dist_cfg=dict(backend='nccl'),
|
16 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
|
17 |
+
launcher = 'pytorch'
|
18 |
+
load_from = 'ckpt/cascade_rcnn_x101_64x4d_fpn_1x_coco_20200515_075702-43ce6a30.pth'
|
19 |
+
log_level = 'INFO'
|
20 |
+
log_processor = dict(by_epoch=True, type='LogProcessor', window_size=50)
|
21 |
+
model = dict(
|
22 |
+
backbone=dict(
|
23 |
+
base_width=4,
|
24 |
+
depth=101,
|
25 |
+
frozen_stages=1,
|
26 |
+
groups=64,
|
27 |
+
init_cfg=dict(
|
28 |
+
checkpoint='open-mmlab://resnext101_64x4d', type='Pretrained'),
|
29 |
+
norm_cfg=dict(requires_grad=True, type='BN'),
|
30 |
+
norm_eval=True,
|
31 |
+
num_stages=4,
|
32 |
+
out_indices=(
|
33 |
+
0,
|
34 |
+
1,
|
35 |
+
2,
|
36 |
+
3,
|
37 |
+
),
|
38 |
+
style='pytorch',
|
39 |
+
type='ResNeXt'),
|
40 |
+
data_preprocessor=dict(
|
41 |
+
bgr_to_rgb=True,
|
42 |
+
mean=[
|
43 |
+
123.675,
|
44 |
+
116.28,
|
45 |
+
103.53,
|
46 |
+
],
|
47 |
+
pad_size_divisor=32,
|
48 |
+
std=[
|
49 |
+
58.395,
|
50 |
+
57.12,
|
51 |
+
57.375,
|
52 |
+
],
|
53 |
+
type='DetDataPreprocessor'),
|
54 |
+
neck=dict(
|
55 |
+
in_channels=[
|
56 |
+
256,
|
57 |
+
512,
|
58 |
+
1024,
|
59 |
+
2048,
|
60 |
+
],
|
61 |
+
num_outs=5,
|
62 |
+
out_channels=256,
|
63 |
+
type='FPN'),
|
64 |
+
roi_head=dict(
|
65 |
+
bbox_head=[
|
66 |
+
dict(
|
67 |
+
bbox_coder=dict(
|
68 |
+
target_means=[
|
69 |
+
0.0,
|
70 |
+
0.0,
|
71 |
+
0.0,
|
72 |
+
0.0,
|
73 |
+
],
|
74 |
+
target_stds=[
|
75 |
+
0.1,
|
76 |
+
0.1,
|
77 |
+
0.2,
|
78 |
+
0.2,
|
79 |
+
],
|
80 |
+
type='DeltaXYWHBBoxCoder'),
|
81 |
+
fc_out_channels=1024,
|
82 |
+
in_channels=256,
|
83 |
+
loss_bbox=dict(beta=1.0, loss_weight=1.0, type='SmoothL1Loss'),
|
84 |
+
loss_cls=dict(
|
85 |
+
loss_weight=1.0,
|
86 |
+
type='CrossEntropyLoss',
|
87 |
+
use_sigmoid=False),
|
88 |
+
num_classes=5,
|
89 |
+
reg_class_agnostic=True,
|
90 |
+
roi_feat_size=7,
|
91 |
+
type='Shared2FCBBoxHead'),
|
92 |
+
dict(
|
93 |
+
bbox_coder=dict(
|
94 |
+
target_means=[
|
95 |
+
0.0,
|
96 |
+
0.0,
|
97 |
+
0.0,
|
98 |
+
0.0,
|
99 |
+
],
|
100 |
+
target_stds=[
|
101 |
+
0.05,
|
102 |
+
0.05,
|
103 |
+
0.1,
|
104 |
+
0.1,
|
105 |
+
],
|
106 |
+
type='DeltaXYWHBBoxCoder'),
|
107 |
+
fc_out_channels=1024,
|
108 |
+
in_channels=256,
|
109 |
+
loss_bbox=dict(beta=1.0, loss_weight=1.0, type='SmoothL1Loss'),
|
110 |
+
loss_cls=dict(
|
111 |
+
loss_weight=1.0,
|
112 |
+
type='CrossEntropyLoss',
|
113 |
+
use_sigmoid=False),
|
114 |
+
num_classes=5,
|
115 |
+
reg_class_agnostic=True,
|
116 |
+
roi_feat_size=7,
|
117 |
+
type='Shared2FCBBoxHead'),
|
118 |
+
dict(
|
119 |
+
bbox_coder=dict(
|
120 |
+
target_means=[
|
121 |
+
0.0,
|
122 |
+
0.0,
|
123 |
+
0.0,
|
124 |
+
0.0,
|
125 |
+
],
|
126 |
+
target_stds=[
|
127 |
+
0.033,
|
128 |
+
0.033,
|
129 |
+
0.067,
|
130 |
+
0.067,
|
131 |
+
],
|
132 |
+
type='DeltaXYWHBBoxCoder'),
|
133 |
+
fc_out_channels=1024,
|
134 |
+
in_channels=256,
|
135 |
+
loss_bbox=dict(beta=1.0, loss_weight=1.0, type='SmoothL1Loss'),
|
136 |
+
loss_cls=dict(
|
137 |
+
loss_weight=1.0,
|
138 |
+
type='CrossEntropyLoss',
|
139 |
+
use_sigmoid=False),
|
140 |
+
num_classes=5,
|
141 |
+
reg_class_agnostic=True,
|
142 |
+
roi_feat_size=7,
|
143 |
+
type='Shared2FCBBoxHead'),
|
144 |
+
],
|
145 |
+
bbox_roi_extractor=dict(
|
146 |
+
featmap_strides=[
|
147 |
+
4,
|
148 |
+
8,
|
149 |
+
16,
|
150 |
+
32,
|
151 |
+
],
|
152 |
+
out_channels=256,
|
153 |
+
roi_layer=dict(output_size=7, sampling_ratio=0, type='RoIAlign'),
|
154 |
+
type='SingleRoIExtractor'),
|
155 |
+
num_stages=3,
|
156 |
+
stage_loss_weights=[
|
157 |
+
1,
|
158 |
+
0.5,
|
159 |
+
0.25,
|
160 |
+
],
|
161 |
+
type='CascadeRoIHead'),
|
162 |
+
rpn_head=dict(
|
163 |
+
anchor_generator=dict(
|
164 |
+
ratios=[
|
165 |
+
0.5,
|
166 |
+
1.0,
|
167 |
+
2.0,
|
168 |
+
],
|
169 |
+
scales=[
|
170 |
+
8,
|
171 |
+
],
|
172 |
+
strides=[
|
173 |
+
4,
|
174 |
+
8,
|
175 |
+
16,
|
176 |
+
32,
|
177 |
+
64,
|
178 |
+
],
|
179 |
+
type='AnchorGenerator'),
|
180 |
+
bbox_coder=dict(
|
181 |
+
target_means=[
|
182 |
+
0.0,
|
183 |
+
0.0,
|
184 |
+
0.0,
|
185 |
+
0.0,
|
186 |
+
],
|
187 |
+
target_stds=[
|
188 |
+
1.0,
|
189 |
+
1.0,
|
190 |
+
1.0,
|
191 |
+
1.0,
|
192 |
+
],
|
193 |
+
type='DeltaXYWHBBoxCoder'),
|
194 |
+
feat_channels=256,
|
195 |
+
in_channels=256,
|
196 |
+
loss_bbox=dict(
|
197 |
+
beta=0.1111111111111111, loss_weight=1.0, type='SmoothL1Loss'),
|
198 |
+
loss_cls=dict(
|
199 |
+
loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=True),
|
200 |
+
type='RPNHead'),
|
201 |
+
test_cfg=dict(
|
202 |
+
rcnn=dict(
|
203 |
+
max_per_img=100,
|
204 |
+
nms=dict(iou_threshold=0.5, type='nms'),
|
205 |
+
score_thr=0.05),
|
206 |
+
rpn=dict(
|
207 |
+
max_per_img=1000,
|
208 |
+
min_bbox_size=0,
|
209 |
+
nms=dict(iou_threshold=0.7, type='nms'),
|
210 |
+
nms_pre=1000)),
|
211 |
+
train_cfg=dict(
|
212 |
+
rcnn=[
|
213 |
+
dict(
|
214 |
+
assigner=dict(
|
215 |
+
ignore_iof_thr=-1,
|
216 |
+
match_low_quality=False,
|
217 |
+
min_pos_iou=0.5,
|
218 |
+
neg_iou_thr=0.5,
|
219 |
+
pos_iou_thr=0.5,
|
220 |
+
type='MaxIoUAssigner'),
|
221 |
+
debug=False,
|
222 |
+
pos_weight=-1,
|
223 |
+
sampler=dict(
|
224 |
+
add_gt_as_proposals=True,
|
225 |
+
neg_pos_ub=-1,
|
226 |
+
num=512,
|
227 |
+
pos_fraction=0.25,
|
228 |
+
type='RandomSampler')),
|
229 |
+
dict(
|
230 |
+
assigner=dict(
|
231 |
+
ignore_iof_thr=-1,
|
232 |
+
match_low_quality=False,
|
233 |
+
min_pos_iou=0.6,
|
234 |
+
neg_iou_thr=0.6,
|
235 |
+
pos_iou_thr=0.6,
|
236 |
+
type='MaxIoUAssigner'),
|
237 |
+
debug=False,
|
238 |
+
pos_weight=-1,
|
239 |
+
sampler=dict(
|
240 |
+
add_gt_as_proposals=True,
|
241 |
+
neg_pos_ub=-1,
|
242 |
+
num=512,
|
243 |
+
pos_fraction=0.25,
|
244 |
+
type='RandomSampler')),
|
245 |
+
dict(
|
246 |
+
assigner=dict(
|
247 |
+
ignore_iof_thr=-1,
|
248 |
+
match_low_quality=False,
|
249 |
+
min_pos_iou=0.7,
|
250 |
+
neg_iou_thr=0.7,
|
251 |
+
pos_iou_thr=0.7,
|
252 |
+
type='MaxIoUAssigner'),
|
253 |
+
debug=False,
|
254 |
+
pos_weight=-1,
|
255 |
+
sampler=dict(
|
256 |
+
add_gt_as_proposals=True,
|
257 |
+
neg_pos_ub=-1,
|
258 |
+
num=512,
|
259 |
+
pos_fraction=0.25,
|
260 |
+
type='RandomSampler')),
|
261 |
+
],
|
262 |
+
rpn=dict(
|
263 |
+
allowed_border=0,
|
264 |
+
assigner=dict(
|
265 |
+
ignore_iof_thr=-1,
|
266 |
+
match_low_quality=True,
|
267 |
+
min_pos_iou=0.3,
|
268 |
+
neg_iou_thr=0.3,
|
269 |
+
pos_iou_thr=0.7,
|
270 |
+
type='MaxIoUAssigner'),
|
271 |
+
debug=False,
|
272 |
+
pos_weight=-1,
|
273 |
+
sampler=dict(
|
274 |
+
add_gt_as_proposals=False,
|
275 |
+
neg_pos_ub=-1,
|
276 |
+
num=256,
|
277 |
+
pos_fraction=0.5,
|
278 |
+
type='RandomSampler')),
|
279 |
+
rpn_proposal=dict(
|
280 |
+
max_per_img=2000,
|
281 |
+
min_bbox_size=0,
|
282 |
+
nms=dict(iou_threshold=0.7, type='nms'),
|
283 |
+
nms_pre=2000)),
|
284 |
+
type='CascadeRCNN')
|
285 |
+
optim_wrapper = dict(
|
286 |
+
optimizer=dict(lr=0.02, momentum=0.9, type='SGD', weight_decay=0.0001),
|
287 |
+
type='OptimWrapper')
|
288 |
+
param_scheduler = [
|
289 |
+
dict(
|
290 |
+
begin=0, by_epoch=False, end=500, start_factor=0.001, type='LinearLR'),
|
291 |
+
dict(
|
292 |
+
begin=0,
|
293 |
+
by_epoch=True,
|
294 |
+
end=12,
|
295 |
+
gamma=0.1,
|
296 |
+
milestones=[
|
297 |
+
8,
|
298 |
+
11,
|
299 |
+
],
|
300 |
+
type='MultiStepLR'),
|
301 |
+
]
|
302 |
+
resume = False
|
303 |
+
test_cfg = dict(type='TestLoop')
|
304 |
+
test_dataloader = dict(
|
305 |
+
batch_size=8,
|
306 |
+
dataset=dict(
|
307 |
+
ann_file='annotations/test.json',
|
308 |
+
backend_args=None,
|
309 |
+
data_prefix=dict(img='images/test/'),
|
310 |
+
data_root='/mnt/bn/panxuran/Slice_Data/slice_dataset_maximum_0402/',
|
311 |
+
pipeline=[
|
312 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
313 |
+
dict(keep_ratio=True, scale=(
|
314 |
+
512,
|
315 |
+
512,
|
316 |
+
), type='Resize'),
|
317 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
318 |
+
dict(
|
319 |
+
meta_keys=(
|
320 |
+
'img_id',
|
321 |
+
'img_path',
|
322 |
+
'ori_shape',
|
323 |
+
'img_shape',
|
324 |
+
'scale_factor',
|
325 |
+
),
|
326 |
+
type='PackDetInputs'),
|
327 |
+
],
|
328 |
+
test_mode=True,
|
329 |
+
type='CocoCTDataset'),
|
330 |
+
drop_last=False,
|
331 |
+
num_workers=4,
|
332 |
+
persistent_workers=True,
|
333 |
+
sampler=dict(shuffle=False, type='DefaultSampler'))
|
334 |
+
test_evaluator = dict(
|
335 |
+
ann_file=
|
336 |
+
'/mnt/bn/panxuran/Slice_Data/slice_dataset_maximum_0402/annotations/test.json',
|
337 |
+
backend_args=None,
|
338 |
+
format_only=False,
|
339 |
+
metric='bbox',
|
340 |
+
type='CocoMetric')
|
341 |
+
test_pipeline = [
|
342 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
343 |
+
dict(keep_ratio=True, scale=(
|
344 |
+
512,
|
345 |
+
512,
|
346 |
+
), type='Resize'),
|
347 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
348 |
+
dict(
|
349 |
+
meta_keys=(
|
350 |
+
'img_id',
|
351 |
+
'img_path',
|
352 |
+
'ori_shape',
|
353 |
+
'img_shape',
|
354 |
+
'scale_factor',
|
355 |
+
),
|
356 |
+
type='PackDetInputs'),
|
357 |
+
]
|
358 |
+
train_cfg = dict(max_epochs=12, type='EpochBasedTrainLoop', val_interval=1)
|
359 |
+
train_dataloader = dict(
|
360 |
+
batch_sampler=dict(type='AspectRatioBatchSampler'),
|
361 |
+
batch_size=8,
|
362 |
+
dataset=dict(
|
363 |
+
ann_file='annotations/train_wsyn.json',
|
364 |
+
backend_args=None,
|
365 |
+
data_prefix=dict(img='images/train/'),
|
366 |
+
data_root='/mnt/bn/panxuran/Slice_Data/slice_dataset_maximum_0402/',
|
367 |
+
filter_cfg=dict(filter_empty_gt=False, min_size=32),
|
368 |
+
pipeline=[
|
369 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
370 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
371 |
+
dict(keep_ratio=True, scale=(
|
372 |
+
512,
|
373 |
+
512,
|
374 |
+
), type='Resize'),
|
375 |
+
dict(prob=0.5, type='RandomFlip'),
|
376 |
+
dict(type='PackDetInputs'),
|
377 |
+
],
|
378 |
+
type='CocoCTDataset'),
|
379 |
+
num_workers=4,
|
380 |
+
persistent_workers=True,
|
381 |
+
sampler=dict(shuffle=True, type='DefaultSampler'))
|
382 |
+
train_pipeline = [
|
383 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
384 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
385 |
+
dict(keep_ratio=True, scale=(
|
386 |
+
512,
|
387 |
+
512,
|
388 |
+
), type='Resize'),
|
389 |
+
dict(prob=0.5, type='RandomFlip'),
|
390 |
+
dict(type='PackDetInputs'),
|
391 |
+
]
|
392 |
+
val_cfg = dict(type='ValLoop')
|
393 |
+
val_dataloader = dict(
|
394 |
+
batch_size=8,
|
395 |
+
dataset=dict(
|
396 |
+
ann_file='annotations/test.json',
|
397 |
+
backend_args=None,
|
398 |
+
data_prefix=dict(img='images/test/'),
|
399 |
+
data_root='/mnt/bn/panxuran/Slice_Data/slice_dataset_maximum_0402/',
|
400 |
+
pipeline=[
|
401 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
402 |
+
dict(keep_ratio=True, scale=(
|
403 |
+
512,
|
404 |
+
512,
|
405 |
+
), type='Resize'),
|
406 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
407 |
+
dict(
|
408 |
+
meta_keys=(
|
409 |
+
'img_id',
|
410 |
+
'img_path',
|
411 |
+
'ori_shape',
|
412 |
+
'img_shape',
|
413 |
+
'scale_factor',
|
414 |
+
),
|
415 |
+
type='PackDetInputs'),
|
416 |
+
],
|
417 |
+
test_mode=True,
|
418 |
+
type='CocoCTDataset'),
|
419 |
+
drop_last=False,
|
420 |
+
num_workers=4,
|
421 |
+
persistent_workers=True,
|
422 |
+
sampler=dict(shuffle=False, type='DefaultSampler'))
|
423 |
+
val_evaluator = dict(
|
424 |
+
ann_file=
|
425 |
+
'/mnt/bn/panxuran/Slice_Data/slice_dataset_maximum_0402/annotations/test.json',
|
426 |
+
backend_args=None,
|
427 |
+
format_only=False,
|
428 |
+
metric='bbox',
|
429 |
+
type='CocoMetric')
|
430 |
+
vis_backends = [
|
431 |
+
dict(type='LocalVisBackend'),
|
432 |
+
]
|
433 |
+
visualizer = dict(
|
434 |
+
name='visualizer',
|
435 |
+
type='DetLocalVisualizer',
|
436 |
+
vis_backends=[
|
437 |
+
dict(type='LocalVisBackend'),
|
438 |
+
])
|
439 |
+
work_dir = 'work_dirs/cascade-rcnn_x101-64x4d_fpn_1x_ct'
|
cascade-rcnn_x101-64x4d_fpn_1x_ct/20240412_193331/vis_data/scalars.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
cascade-rcnn_x101-64x4d_fpn_1x_ct/cascade-rcnn_x101-64x4d_fpn_1x_ct.py
ADDED
@@ -0,0 +1,439 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
auto_scale_lr = dict(base_batch_size=16, enable=False)
|
2 |
+
backend_args = None
|
3 |
+
data_root = '/mnt/bn/panxuran/Slice_Data/slice_dataset_maximum_0402/'
|
4 |
+
dataset_type = 'CocoCTDataset'
|
5 |
+
default_hooks = dict(
|
6 |
+
checkpoint=dict(interval=1, type='CheckpointHook'),
|
7 |
+
logger=dict(interval=50, type='LoggerHook'),
|
8 |
+
param_scheduler=dict(type='ParamSchedulerHook'),
|
9 |
+
sampler_seed=dict(type='DistSamplerSeedHook'),
|
10 |
+
timer=dict(type='IterTimerHook'),
|
11 |
+
visualization=dict(type='DetVisualizationHook'))
|
12 |
+
default_scope = 'mmdet'
|
13 |
+
env_cfg = dict(
|
14 |
+
cudnn_benchmark=False,
|
15 |
+
dist_cfg=dict(backend='nccl'),
|
16 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
|
17 |
+
launcher = 'pytorch'
|
18 |
+
load_from = 'ckpt/cascade_rcnn_x101_64x4d_fpn_1x_coco_20200515_075702-43ce6a30.pth'
|
19 |
+
log_level = 'INFO'
|
20 |
+
log_processor = dict(by_epoch=True, type='LogProcessor', window_size=50)
|
21 |
+
model = dict(
|
22 |
+
backbone=dict(
|
23 |
+
base_width=4,
|
24 |
+
depth=101,
|
25 |
+
frozen_stages=1,
|
26 |
+
groups=64,
|
27 |
+
init_cfg=dict(
|
28 |
+
checkpoint='open-mmlab://resnext101_64x4d', type='Pretrained'),
|
29 |
+
norm_cfg=dict(requires_grad=True, type='BN'),
|
30 |
+
norm_eval=True,
|
31 |
+
num_stages=4,
|
32 |
+
out_indices=(
|
33 |
+
0,
|
34 |
+
1,
|
35 |
+
2,
|
36 |
+
3,
|
37 |
+
),
|
38 |
+
style='pytorch',
|
39 |
+
type='ResNeXt'),
|
40 |
+
data_preprocessor=dict(
|
41 |
+
bgr_to_rgb=True,
|
42 |
+
mean=[
|
43 |
+
123.675,
|
44 |
+
116.28,
|
45 |
+
103.53,
|
46 |
+
],
|
47 |
+
pad_size_divisor=32,
|
48 |
+
std=[
|
49 |
+
58.395,
|
50 |
+
57.12,
|
51 |
+
57.375,
|
52 |
+
],
|
53 |
+
type='DetDataPreprocessor'),
|
54 |
+
neck=dict(
|
55 |
+
in_channels=[
|
56 |
+
256,
|
57 |
+
512,
|
58 |
+
1024,
|
59 |
+
2048,
|
60 |
+
],
|
61 |
+
num_outs=5,
|
62 |
+
out_channels=256,
|
63 |
+
type='FPN'),
|
64 |
+
roi_head=dict(
|
65 |
+
bbox_head=[
|
66 |
+
dict(
|
67 |
+
bbox_coder=dict(
|
68 |
+
target_means=[
|
69 |
+
0.0,
|
70 |
+
0.0,
|
71 |
+
0.0,
|
72 |
+
0.0,
|
73 |
+
],
|
74 |
+
target_stds=[
|
75 |
+
0.1,
|
76 |
+
0.1,
|
77 |
+
0.2,
|
78 |
+
0.2,
|
79 |
+
],
|
80 |
+
type='DeltaXYWHBBoxCoder'),
|
81 |
+
fc_out_channels=1024,
|
82 |
+
in_channels=256,
|
83 |
+
loss_bbox=dict(beta=1.0, loss_weight=1.0, type='SmoothL1Loss'),
|
84 |
+
loss_cls=dict(
|
85 |
+
loss_weight=1.0,
|
86 |
+
type='CrossEntropyLoss',
|
87 |
+
use_sigmoid=False),
|
88 |
+
num_classes=5,
|
89 |
+
reg_class_agnostic=True,
|
90 |
+
roi_feat_size=7,
|
91 |
+
type='Shared2FCBBoxHead'),
|
92 |
+
dict(
|
93 |
+
bbox_coder=dict(
|
94 |
+
target_means=[
|
95 |
+
0.0,
|
96 |
+
0.0,
|
97 |
+
0.0,
|
98 |
+
0.0,
|
99 |
+
],
|
100 |
+
target_stds=[
|
101 |
+
0.05,
|
102 |
+
0.05,
|
103 |
+
0.1,
|
104 |
+
0.1,
|
105 |
+
],
|
106 |
+
type='DeltaXYWHBBoxCoder'),
|
107 |
+
fc_out_channels=1024,
|
108 |
+
in_channels=256,
|
109 |
+
loss_bbox=dict(beta=1.0, loss_weight=1.0, type='SmoothL1Loss'),
|
110 |
+
loss_cls=dict(
|
111 |
+
loss_weight=1.0,
|
112 |
+
type='CrossEntropyLoss',
|
113 |
+
use_sigmoid=False),
|
114 |
+
num_classes=5,
|
115 |
+
reg_class_agnostic=True,
|
116 |
+
roi_feat_size=7,
|
117 |
+
type='Shared2FCBBoxHead'),
|
118 |
+
dict(
|
119 |
+
bbox_coder=dict(
|
120 |
+
target_means=[
|
121 |
+
0.0,
|
122 |
+
0.0,
|
123 |
+
0.0,
|
124 |
+
0.0,
|
125 |
+
],
|
126 |
+
target_stds=[
|
127 |
+
0.033,
|
128 |
+
0.033,
|
129 |
+
0.067,
|
130 |
+
0.067,
|
131 |
+
],
|
132 |
+
type='DeltaXYWHBBoxCoder'),
|
133 |
+
fc_out_channels=1024,
|
134 |
+
in_channels=256,
|
135 |
+
loss_bbox=dict(beta=1.0, loss_weight=1.0, type='SmoothL1Loss'),
|
136 |
+
loss_cls=dict(
|
137 |
+
loss_weight=1.0,
|
138 |
+
type='CrossEntropyLoss',
|
139 |
+
use_sigmoid=False),
|
140 |
+
num_classes=5,
|
141 |
+
reg_class_agnostic=True,
|
142 |
+
roi_feat_size=7,
|
143 |
+
type='Shared2FCBBoxHead'),
|
144 |
+
],
|
145 |
+
bbox_roi_extractor=dict(
|
146 |
+
featmap_strides=[
|
147 |
+
4,
|
148 |
+
8,
|
149 |
+
16,
|
150 |
+
32,
|
151 |
+
],
|
152 |
+
out_channels=256,
|
153 |
+
roi_layer=dict(output_size=7, sampling_ratio=0, type='RoIAlign'),
|
154 |
+
type='SingleRoIExtractor'),
|
155 |
+
num_stages=3,
|
156 |
+
stage_loss_weights=[
|
157 |
+
1,
|
158 |
+
0.5,
|
159 |
+
0.25,
|
160 |
+
],
|
161 |
+
type='CascadeRoIHead'),
|
162 |
+
rpn_head=dict(
|
163 |
+
anchor_generator=dict(
|
164 |
+
ratios=[
|
165 |
+
0.5,
|
166 |
+
1.0,
|
167 |
+
2.0,
|
168 |
+
],
|
169 |
+
scales=[
|
170 |
+
8,
|
171 |
+
],
|
172 |
+
strides=[
|
173 |
+
4,
|
174 |
+
8,
|
175 |
+
16,
|
176 |
+
32,
|
177 |
+
64,
|
178 |
+
],
|
179 |
+
type='AnchorGenerator'),
|
180 |
+
bbox_coder=dict(
|
181 |
+
target_means=[
|
182 |
+
0.0,
|
183 |
+
0.0,
|
184 |
+
0.0,
|
185 |
+
0.0,
|
186 |
+
],
|
187 |
+
target_stds=[
|
188 |
+
1.0,
|
189 |
+
1.0,
|
190 |
+
1.0,
|
191 |
+
1.0,
|
192 |
+
],
|
193 |
+
type='DeltaXYWHBBoxCoder'),
|
194 |
+
feat_channels=256,
|
195 |
+
in_channels=256,
|
196 |
+
loss_bbox=dict(
|
197 |
+
beta=0.1111111111111111, loss_weight=1.0, type='SmoothL1Loss'),
|
198 |
+
loss_cls=dict(
|
199 |
+
loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=True),
|
200 |
+
type='RPNHead'),
|
201 |
+
test_cfg=dict(
|
202 |
+
rcnn=dict(
|
203 |
+
max_per_img=100,
|
204 |
+
nms=dict(iou_threshold=0.5, type='nms'),
|
205 |
+
score_thr=0.05),
|
206 |
+
rpn=dict(
|
207 |
+
max_per_img=1000,
|
208 |
+
min_bbox_size=0,
|
209 |
+
nms=dict(iou_threshold=0.7, type='nms'),
|
210 |
+
nms_pre=1000)),
|
211 |
+
train_cfg=dict(
|
212 |
+
rcnn=[
|
213 |
+
dict(
|
214 |
+
assigner=dict(
|
215 |
+
ignore_iof_thr=-1,
|
216 |
+
match_low_quality=False,
|
217 |
+
min_pos_iou=0.5,
|
218 |
+
neg_iou_thr=0.5,
|
219 |
+
pos_iou_thr=0.5,
|
220 |
+
type='MaxIoUAssigner'),
|
221 |
+
debug=False,
|
222 |
+
pos_weight=-1,
|
223 |
+
sampler=dict(
|
224 |
+
add_gt_as_proposals=True,
|
225 |
+
neg_pos_ub=-1,
|
226 |
+
num=512,
|
227 |
+
pos_fraction=0.25,
|
228 |
+
type='RandomSampler')),
|
229 |
+
dict(
|
230 |
+
assigner=dict(
|
231 |
+
ignore_iof_thr=-1,
|
232 |
+
match_low_quality=False,
|
233 |
+
min_pos_iou=0.6,
|
234 |
+
neg_iou_thr=0.6,
|
235 |
+
pos_iou_thr=0.6,
|
236 |
+
type='MaxIoUAssigner'),
|
237 |
+
debug=False,
|
238 |
+
pos_weight=-1,
|
239 |
+
sampler=dict(
|
240 |
+
add_gt_as_proposals=True,
|
241 |
+
neg_pos_ub=-1,
|
242 |
+
num=512,
|
243 |
+
pos_fraction=0.25,
|
244 |
+
type='RandomSampler')),
|
245 |
+
dict(
|
246 |
+
assigner=dict(
|
247 |
+
ignore_iof_thr=-1,
|
248 |
+
match_low_quality=False,
|
249 |
+
min_pos_iou=0.7,
|
250 |
+
neg_iou_thr=0.7,
|
251 |
+
pos_iou_thr=0.7,
|
252 |
+
type='MaxIoUAssigner'),
|
253 |
+
debug=False,
|
254 |
+
pos_weight=-1,
|
255 |
+
sampler=dict(
|
256 |
+
add_gt_as_proposals=True,
|
257 |
+
neg_pos_ub=-1,
|
258 |
+
num=512,
|
259 |
+
pos_fraction=0.25,
|
260 |
+
type='RandomSampler')),
|
261 |
+
],
|
262 |
+
rpn=dict(
|
263 |
+
allowed_border=0,
|
264 |
+
assigner=dict(
|
265 |
+
ignore_iof_thr=-1,
|
266 |
+
match_low_quality=True,
|
267 |
+
min_pos_iou=0.3,
|
268 |
+
neg_iou_thr=0.3,
|
269 |
+
pos_iou_thr=0.7,
|
270 |
+
type='MaxIoUAssigner'),
|
271 |
+
debug=False,
|
272 |
+
pos_weight=-1,
|
273 |
+
sampler=dict(
|
274 |
+
add_gt_as_proposals=False,
|
275 |
+
neg_pos_ub=-1,
|
276 |
+
num=256,
|
277 |
+
pos_fraction=0.5,
|
278 |
+
type='RandomSampler')),
|
279 |
+
rpn_proposal=dict(
|
280 |
+
max_per_img=2000,
|
281 |
+
min_bbox_size=0,
|
282 |
+
nms=dict(iou_threshold=0.7, type='nms'),
|
283 |
+
nms_pre=2000)),
|
284 |
+
type='CascadeRCNN')
|
285 |
+
optim_wrapper = dict(
|
286 |
+
optimizer=dict(lr=0.02, momentum=0.9, type='SGD', weight_decay=0.0001),
|
287 |
+
type='OptimWrapper')
|
288 |
+
param_scheduler = [
|
289 |
+
dict(
|
290 |
+
begin=0, by_epoch=False, end=500, start_factor=0.001, type='LinearLR'),
|
291 |
+
dict(
|
292 |
+
begin=0,
|
293 |
+
by_epoch=True,
|
294 |
+
end=12,
|
295 |
+
gamma=0.1,
|
296 |
+
milestones=[
|
297 |
+
8,
|
298 |
+
11,
|
299 |
+
],
|
300 |
+
type='MultiStepLR'),
|
301 |
+
]
|
302 |
+
resume = False
|
303 |
+
test_cfg = dict(type='TestLoop')
|
304 |
+
test_dataloader = dict(
|
305 |
+
batch_size=8,
|
306 |
+
dataset=dict(
|
307 |
+
ann_file='annotations/test.json',
|
308 |
+
backend_args=None,
|
309 |
+
data_prefix=dict(img='images/test/'),
|
310 |
+
data_root='/mnt/bn/panxuran/Slice_Data/slice_dataset_maximum_0402/',
|
311 |
+
pipeline=[
|
312 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
313 |
+
dict(keep_ratio=True, scale=(
|
314 |
+
512,
|
315 |
+
512,
|
316 |
+
), type='Resize'),
|
317 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
318 |
+
dict(
|
319 |
+
meta_keys=(
|
320 |
+
'img_id',
|
321 |
+
'img_path',
|
322 |
+
'ori_shape',
|
323 |
+
'img_shape',
|
324 |
+
'scale_factor',
|
325 |
+
),
|
326 |
+
type='PackDetInputs'),
|
327 |
+
],
|
328 |
+
test_mode=True,
|
329 |
+
type='CocoCTDataset'),
|
330 |
+
drop_last=False,
|
331 |
+
num_workers=4,
|
332 |
+
persistent_workers=True,
|
333 |
+
sampler=dict(shuffle=False, type='DefaultSampler'))
|
334 |
+
test_evaluator = dict(
|
335 |
+
ann_file=
|
336 |
+
'/mnt/bn/panxuran/Slice_Data/slice_dataset_maximum_0402/annotations/test.json',
|
337 |
+
backend_args=None,
|
338 |
+
format_only=False,
|
339 |
+
metric='bbox',
|
340 |
+
type='CocoMetric')
|
341 |
+
test_pipeline = [
|
342 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
343 |
+
dict(keep_ratio=True, scale=(
|
344 |
+
512,
|
345 |
+
512,
|
346 |
+
), type='Resize'),
|
347 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
348 |
+
dict(
|
349 |
+
meta_keys=(
|
350 |
+
'img_id',
|
351 |
+
'img_path',
|
352 |
+
'ori_shape',
|
353 |
+
'img_shape',
|
354 |
+
'scale_factor',
|
355 |
+
),
|
356 |
+
type='PackDetInputs'),
|
357 |
+
]
|
358 |
+
train_cfg = dict(max_epochs=12, type='EpochBasedTrainLoop', val_interval=1)
|
359 |
+
train_dataloader = dict(
|
360 |
+
batch_sampler=dict(type='AspectRatioBatchSampler'),
|
361 |
+
batch_size=8,
|
362 |
+
dataset=dict(
|
363 |
+
ann_file='annotations/train_wsyn.json',
|
364 |
+
backend_args=None,
|
365 |
+
data_prefix=dict(img='images/train/'),
|
366 |
+
data_root='/mnt/bn/panxuran/Slice_Data/slice_dataset_maximum_0402/',
|
367 |
+
filter_cfg=dict(filter_empty_gt=False, min_size=32),
|
368 |
+
pipeline=[
|
369 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
370 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
371 |
+
dict(keep_ratio=True, scale=(
|
372 |
+
512,
|
373 |
+
512,
|
374 |
+
), type='Resize'),
|
375 |
+
dict(prob=0.5, type='RandomFlip'),
|
376 |
+
dict(type='PackDetInputs'),
|
377 |
+
],
|
378 |
+
type='CocoCTDataset'),
|
379 |
+
num_workers=4,
|
380 |
+
persistent_workers=True,
|
381 |
+
sampler=dict(shuffle=True, type='DefaultSampler'))
|
382 |
+
train_pipeline = [
|
383 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
384 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
385 |
+
dict(keep_ratio=True, scale=(
|
386 |
+
512,
|
387 |
+
512,
|
388 |
+
), type='Resize'),
|
389 |
+
dict(prob=0.5, type='RandomFlip'),
|
390 |
+
dict(type='PackDetInputs'),
|
391 |
+
]
|
392 |
+
val_cfg = dict(type='ValLoop')
|
393 |
+
val_dataloader = dict(
|
394 |
+
batch_size=8,
|
395 |
+
dataset=dict(
|
396 |
+
ann_file='annotations/test.json',
|
397 |
+
backend_args=None,
|
398 |
+
data_prefix=dict(img='images/test/'),
|
399 |
+
data_root='/mnt/bn/panxuran/Slice_Data/slice_dataset_maximum_0402/',
|
400 |
+
pipeline=[
|
401 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
402 |
+
dict(keep_ratio=True, scale=(
|
403 |
+
512,
|
404 |
+
512,
|
405 |
+
), type='Resize'),
|
406 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
407 |
+
dict(
|
408 |
+
meta_keys=(
|
409 |
+
'img_id',
|
410 |
+
'img_path',
|
411 |
+
'ori_shape',
|
412 |
+
'img_shape',
|
413 |
+
'scale_factor',
|
414 |
+
),
|
415 |
+
type='PackDetInputs'),
|
416 |
+
],
|
417 |
+
test_mode=True,
|
418 |
+
type='CocoCTDataset'),
|
419 |
+
drop_last=False,
|
420 |
+
num_workers=4,
|
421 |
+
persistent_workers=True,
|
422 |
+
sampler=dict(shuffle=False, type='DefaultSampler'))
|
423 |
+
val_evaluator = dict(
|
424 |
+
ann_file=
|
425 |
+
'/mnt/bn/panxuran/Slice_Data/slice_dataset_maximum_0402/annotations/test.json',
|
426 |
+
backend_args=None,
|
427 |
+
format_only=False,
|
428 |
+
metric='bbox',
|
429 |
+
type='CocoMetric')
|
430 |
+
vis_backends = [
|
431 |
+
dict(type='LocalVisBackend'),
|
432 |
+
]
|
433 |
+
visualizer = dict(
|
434 |
+
name='visualizer',
|
435 |
+
type='DetLocalVisualizer',
|
436 |
+
vis_backends=[
|
437 |
+
dict(type='LocalVisBackend'),
|
438 |
+
])
|
439 |
+
work_dir = 'work_dirs/cascade-rcnn_x101-64x4d_fpn_1x_ct'
|
cascade-rcnn_x101-64x4d_fpn_1x_ct/epoch_12.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7a735d734720fd3cc93d5b9401116b29c9e96c45b9679a0a0b52dabc94b34dea
|
3 |
+
size 1019471931
|
co_deformable_detr_r50_1x_ct/co_deformable_detr_r50_1x_ct.py
ADDED
@@ -0,0 +1,407 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dataset_type = 'CocoDataset'
|
2 |
+
data_root = 'data/slice_dataset_maximum_0402/'
|
3 |
+
img_norm_cfg = dict(
|
4 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
5 |
+
train_pipeline = [
|
6 |
+
dict(type='LoadImageFromFile'),
|
7 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
8 |
+
dict(type='RandomFlip', flip_ratio=0.5),
|
9 |
+
dict(
|
10 |
+
type='AutoAugment',
|
11 |
+
policies=[[{
|
12 |
+
'type': 'Resize',
|
13 |
+
'img_scale': [(512, 512)],
|
14 |
+
'multiscale_mode': 'value',
|
15 |
+
'keep_ratio': True
|
16 |
+
}],
|
17 |
+
[{
|
18 |
+
'type': 'Resize',
|
19 |
+
'img_scale': [(512, 512)],
|
20 |
+
'multiscale_mode': 'value',
|
21 |
+
'keep_ratio': True
|
22 |
+
}, {
|
23 |
+
'type': 'RandomCrop',
|
24 |
+
'crop_type': 'absolute_range',
|
25 |
+
'crop_size': (512, 512),
|
26 |
+
'allow_negative_crop': True
|
27 |
+
}, {
|
28 |
+
'type': 'Resize',
|
29 |
+
'img_scale': [(512, 512)],
|
30 |
+
'multiscale_mode': 'value',
|
31 |
+
'override': True,
|
32 |
+
'keep_ratio': True
|
33 |
+
}]]),
|
34 |
+
dict(
|
35 |
+
type='Normalize',
|
36 |
+
mean=[123.675, 116.28, 103.53],
|
37 |
+
std=[58.395, 57.12, 57.375],
|
38 |
+
to_rgb=True),
|
39 |
+
dict(type='Pad', size_divisor=1),
|
40 |
+
dict(type='DefaultFormatBundle'),
|
41 |
+
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
|
42 |
+
]
|
43 |
+
test_pipeline = [
|
44 |
+
dict(type='LoadImageFromFile'),
|
45 |
+
dict(
|
46 |
+
type='MultiScaleFlipAug',
|
47 |
+
img_scale=(512, 512),
|
48 |
+
flip=False,
|
49 |
+
transforms=[
|
50 |
+
dict(type='Resize', keep_ratio=True),
|
51 |
+
dict(type='RandomFlip'),
|
52 |
+
dict(
|
53 |
+
type='Normalize',
|
54 |
+
mean=[123.675, 116.28, 103.53],
|
55 |
+
std=[58.395, 57.12, 57.375],
|
56 |
+
to_rgb=True),
|
57 |
+
dict(type='Pad', size_divisor=1),
|
58 |
+
dict(type='ImageToTensor', keys=['img']),
|
59 |
+
dict(type='Collect', keys=['img'])
|
60 |
+
])
|
61 |
+
]
|
62 |
+
data = dict(
|
63 |
+
samples_per_gpu=16,
|
64 |
+
workers_per_gpu=4,
|
65 |
+
train=dict(
|
66 |
+
type='CocoDataset',
|
67 |
+
ann_file='data/slice_dataset_maximum_0402/annotations/train.json',
|
68 |
+
img_prefix='data/slice_dataset_maximum_0402/images/train/',
|
69 |
+
filter_empty_gt=False,
|
70 |
+
pipeline=[
|
71 |
+
dict(type='LoadImageFromFile'),
|
72 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
73 |
+
dict(type='RandomFlip', flip_ratio=0.5),
|
74 |
+
dict(
|
75 |
+
type='AutoAugment',
|
76 |
+
policies=[[{
|
77 |
+
'type': 'Resize',
|
78 |
+
'img_scale': [(512, 512)],
|
79 |
+
'multiscale_mode': 'value',
|
80 |
+
'keep_ratio': True
|
81 |
+
}],
|
82 |
+
[{
|
83 |
+
'type': 'Resize',
|
84 |
+
'img_scale': [(512, 512)],
|
85 |
+
'multiscale_mode': 'value',
|
86 |
+
'keep_ratio': True
|
87 |
+
}, {
|
88 |
+
'type': 'RandomCrop',
|
89 |
+
'crop_type': 'absolute_range',
|
90 |
+
'crop_size': (512, 512),
|
91 |
+
'allow_negative_crop': True
|
92 |
+
}, {
|
93 |
+
'type': 'Resize',
|
94 |
+
'img_scale': [(512, 512)],
|
95 |
+
'multiscale_mode': 'value',
|
96 |
+
'override': True,
|
97 |
+
'keep_ratio': True
|
98 |
+
}]]),
|
99 |
+
dict(
|
100 |
+
type='Normalize',
|
101 |
+
mean=[123.675, 116.28, 103.53],
|
102 |
+
std=[58.395, 57.12, 57.375],
|
103 |
+
to_rgb=True),
|
104 |
+
dict(type='Pad', size_divisor=1),
|
105 |
+
dict(type='DefaultFormatBundle'),
|
106 |
+
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
|
107 |
+
]),
|
108 |
+
val=dict(
|
109 |
+
type='CocoDataset',
|
110 |
+
ann_file='data/slice_dataset_maximum_0402/annotations/test.json',
|
111 |
+
img_prefix='data/slice_dataset_maximum_0402/images/test/',
|
112 |
+
pipeline=[
|
113 |
+
dict(type='LoadImageFromFile'),
|
114 |
+
dict(
|
115 |
+
type='MultiScaleFlipAug',
|
116 |
+
img_scale=(512, 512),
|
117 |
+
flip=False,
|
118 |
+
transforms=[
|
119 |
+
dict(type='Resize', keep_ratio=True),
|
120 |
+
dict(type='RandomFlip'),
|
121 |
+
dict(
|
122 |
+
type='Normalize',
|
123 |
+
mean=[123.675, 116.28, 103.53],
|
124 |
+
std=[58.395, 57.12, 57.375],
|
125 |
+
to_rgb=True),
|
126 |
+
dict(type='Pad', size_divisor=1),
|
127 |
+
dict(type='ImageToTensor', keys=['img']),
|
128 |
+
dict(type='Collect', keys=['img'])
|
129 |
+
])
|
130 |
+
]),
|
131 |
+
test=dict(
|
132 |
+
type='CocoDataset',
|
133 |
+
ann_file='data/slice_dataset_maximum_0402/annotations/test.json',
|
134 |
+
img_prefix='data/slice_dataset_maximum_0402/images/test/',
|
135 |
+
pipeline=[
|
136 |
+
dict(type='LoadImageFromFile'),
|
137 |
+
dict(
|
138 |
+
type='MultiScaleFlipAug',
|
139 |
+
img_scale=(512, 512),
|
140 |
+
flip=False,
|
141 |
+
transforms=[
|
142 |
+
dict(type='Resize', keep_ratio=True),
|
143 |
+
dict(type='RandomFlip'),
|
144 |
+
dict(
|
145 |
+
type='Normalize',
|
146 |
+
mean=[123.675, 116.28, 103.53],
|
147 |
+
std=[58.395, 57.12, 57.375],
|
148 |
+
to_rgb=True),
|
149 |
+
dict(type='Pad', size_divisor=1),
|
150 |
+
dict(type='ImageToTensor', keys=['img']),
|
151 |
+
dict(type='Collect', keys=['img'])
|
152 |
+
])
|
153 |
+
]))
|
154 |
+
evaluation = dict(interval=1, metric='bbox')
|
155 |
+
checkpoint_config = dict(interval=1)
|
156 |
+
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])
|
157 |
+
custom_hooks = [dict(type='NumClassCheckHook')]
|
158 |
+
dist_params = dict(backend='nccl')
|
159 |
+
log_level = 'INFO'
|
160 |
+
load_from = './ckpt/co_deformable_detr_r50_1x_coco.pth'
|
161 |
+
resume_from = None
|
162 |
+
workflow = [('train', 1)]
|
163 |
+
opencv_num_threads = 0
|
164 |
+
mp_start_method = 'fork'
|
165 |
+
auto_scale_lr = dict(enable=False, base_batch_size=16)
|
166 |
+
num_dec_layer = 6
|
167 |
+
lambda_2 = 2.0
|
168 |
+
model = dict(
|
169 |
+
type='CoDETR',
|
170 |
+
backbone=dict(
|
171 |
+
type='ResNet',
|
172 |
+
depth=50,
|
173 |
+
num_stages=4,
|
174 |
+
out_indices=(1, 2, 3),
|
175 |
+
frozen_stages=1,
|
176 |
+
norm_cfg=dict(type='BN', requires_grad=False),
|
177 |
+
norm_eval=True,
|
178 |
+
style='pytorch',
|
179 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
|
180 |
+
neck=dict(
|
181 |
+
type='ChannelMapper',
|
182 |
+
in_channels=[512, 1024, 2048],
|
183 |
+
kernel_size=1,
|
184 |
+
out_channels=256,
|
185 |
+
act_cfg=None,
|
186 |
+
norm_cfg=dict(type='GN', num_groups=32),
|
187 |
+
num_outs=4),
|
188 |
+
rpn_head=dict(
|
189 |
+
type='RPNHead',
|
190 |
+
in_channels=256,
|
191 |
+
feat_channels=256,
|
192 |
+
anchor_generator=dict(
|
193 |
+
type='AnchorGenerator',
|
194 |
+
octave_base_scale=4,
|
195 |
+
scales_per_octave=3,
|
196 |
+
ratios=[0.5, 1.0, 2.0],
|
197 |
+
strides=[8, 16, 32, 64, 128]),
|
198 |
+
bbox_coder=dict(
|
199 |
+
type='DeltaXYWHBBoxCoder',
|
200 |
+
target_means=[0.0, 0.0, 0.0, 0.0],
|
201 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
202 |
+
loss_cls=dict(
|
203 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=12.0),
|
204 |
+
loss_bbox=dict(type='L1Loss', loss_weight=12.0)),
|
205 |
+
query_head=dict(
|
206 |
+
type='CoDeformDETRHead',
|
207 |
+
num_query=300,
|
208 |
+
num_classes=5,
|
209 |
+
in_channels=2048,
|
210 |
+
sync_cls_avg_factor=True,
|
211 |
+
with_box_refine=True,
|
212 |
+
as_two_stage=True,
|
213 |
+
mixed_selection=True,
|
214 |
+
transformer=dict(
|
215 |
+
type='CoDeformableDetrTransformer',
|
216 |
+
num_co_heads=2,
|
217 |
+
encoder=dict(
|
218 |
+
type='DetrTransformerEncoder',
|
219 |
+
num_layers=6,
|
220 |
+
transformerlayers=dict(
|
221 |
+
type='BaseTransformerLayer',
|
222 |
+
attn_cfgs=dict(
|
223 |
+
type='MultiScaleDeformableAttention',
|
224 |
+
embed_dims=256,
|
225 |
+
dropout=0.0),
|
226 |
+
feedforward_channels=2048,
|
227 |
+
ffn_dropout=0.0,
|
228 |
+
operation_order=('self_attn', 'norm', 'ffn', 'norm'))),
|
229 |
+
decoder=dict(
|
230 |
+
type='CoDeformableDetrTransformerDecoder',
|
231 |
+
num_layers=6,
|
232 |
+
return_intermediate=True,
|
233 |
+
look_forward_twice=True,
|
234 |
+
transformerlayers=dict(
|
235 |
+
type='DetrTransformerDecoderLayer',
|
236 |
+
attn_cfgs=[
|
237 |
+
dict(
|
238 |
+
type='MultiheadAttention',
|
239 |
+
embed_dims=256,
|
240 |
+
num_heads=8,
|
241 |
+
dropout=0.0),
|
242 |
+
dict(
|
243 |
+
type='MultiScaleDeformableAttention',
|
244 |
+
embed_dims=256,
|
245 |
+
dropout=0.0)
|
246 |
+
],
|
247 |
+
feedforward_channels=2048,
|
248 |
+
ffn_dropout=0.0,
|
249 |
+
operation_order=('self_attn', 'norm', 'cross_attn', 'norm',
|
250 |
+
'ffn', 'norm')))),
|
251 |
+
positional_encoding=dict(
|
252 |
+
type='SinePositionalEncoding',
|
253 |
+
num_feats=128,
|
254 |
+
normalize=True,
|
255 |
+
offset=-0.5),
|
256 |
+
loss_cls=dict(
|
257 |
+
type='FocalLoss',
|
258 |
+
use_sigmoid=True,
|
259 |
+
gamma=2.0,
|
260 |
+
alpha=0.25,
|
261 |
+
loss_weight=2.0),
|
262 |
+
loss_bbox=dict(type='L1Loss', loss_weight=5.0),
|
263 |
+
loss_iou=dict(type='GIoULoss', loss_weight=2.0)),
|
264 |
+
roi_head=[
|
265 |
+
dict(
|
266 |
+
type='CoStandardRoIHead',
|
267 |
+
bbox_roi_extractor=dict(
|
268 |
+
type='SingleRoIExtractor',
|
269 |
+
roi_layer=dict(
|
270 |
+
type='RoIAlign', output_size=7, sampling_ratio=0),
|
271 |
+
out_channels=256,
|
272 |
+
featmap_strides=[8, 16, 32, 64],
|
273 |
+
finest_scale=112),
|
274 |
+
bbox_head=dict(
|
275 |
+
type='Shared2FCBBoxHead',
|
276 |
+
in_channels=256,
|
277 |
+
fc_out_channels=1024,
|
278 |
+
roi_feat_size=7,
|
279 |
+
num_classes=5,
|
280 |
+
bbox_coder=dict(
|
281 |
+
type='DeltaXYWHBBoxCoder',
|
282 |
+
target_means=[0.0, 0.0, 0.0, 0.0],
|
283 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
284 |
+
reg_class_agnostic=False,
|
285 |
+
reg_decoded_bbox=True,
|
286 |
+
loss_cls=dict(
|
287 |
+
type='CrossEntropyLoss',
|
288 |
+
use_sigmoid=False,
|
289 |
+
loss_weight=12.0),
|
290 |
+
loss_bbox=dict(type='GIoULoss', loss_weight=120.0)))
|
291 |
+
],
|
292 |
+
bbox_head=[
|
293 |
+
dict(
|
294 |
+
type='CoATSSHead',
|
295 |
+
num_classes=5,
|
296 |
+
in_channels=256,
|
297 |
+
stacked_convs=1,
|
298 |
+
feat_channels=256,
|
299 |
+
anchor_generator=dict(
|
300 |
+
type='AnchorGenerator',
|
301 |
+
ratios=[1.0],
|
302 |
+
octave_base_scale=8,
|
303 |
+
scales_per_octave=1,
|
304 |
+
strides=[8, 16, 32, 64, 128]),
|
305 |
+
bbox_coder=dict(
|
306 |
+
type='DeltaXYWHBBoxCoder',
|
307 |
+
target_means=[0.0, 0.0, 0.0, 0.0],
|
308 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
309 |
+
loss_cls=dict(
|
310 |
+
type='FocalLoss',
|
311 |
+
use_sigmoid=True,
|
312 |
+
gamma=2.0,
|
313 |
+
alpha=0.25,
|
314 |
+
loss_weight=12.0),
|
315 |
+
loss_bbox=dict(type='GIoULoss', loss_weight=24.0),
|
316 |
+
loss_centerness=dict(
|
317 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=12.0))
|
318 |
+
],
|
319 |
+
train_cfg=[
|
320 |
+
dict(
|
321 |
+
assigner=dict(
|
322 |
+
type='HungarianAssigner',
|
323 |
+
cls_cost=dict(type='FocalLossCost', weight=2.0),
|
324 |
+
reg_cost=dict(
|
325 |
+
type='BBoxL1Cost', weight=5.0, box_format='xywh'),
|
326 |
+
iou_cost=dict(type='IoUCost', iou_mode='giou', weight=2.0))),
|
327 |
+
dict(
|
328 |
+
rpn=dict(
|
329 |
+
assigner=dict(
|
330 |
+
type='MaxIoUAssigner',
|
331 |
+
pos_iou_thr=0.7,
|
332 |
+
neg_iou_thr=0.3,
|
333 |
+
min_pos_iou=0.3,
|
334 |
+
match_low_quality=True,
|
335 |
+
ignore_iof_thr=-1),
|
336 |
+
sampler=dict(
|
337 |
+
type='RandomSampler',
|
338 |
+
num=256,
|
339 |
+
pos_fraction=0.5,
|
340 |
+
neg_pos_ub=-1,
|
341 |
+
add_gt_as_proposals=False),
|
342 |
+
allowed_border=-1,
|
343 |
+
pos_weight=-1,
|
344 |
+
debug=False),
|
345 |
+
rpn_proposal=dict(
|
346 |
+
nms_pre=4000,
|
347 |
+
max_per_img=1000,
|
348 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
349 |
+
min_bbox_size=0),
|
350 |
+
rcnn=dict(
|
351 |
+
assigner=dict(
|
352 |
+
type='MaxIoUAssigner',
|
353 |
+
pos_iou_thr=0.5,
|
354 |
+
neg_iou_thr=0.5,
|
355 |
+
min_pos_iou=0.5,
|
356 |
+
match_low_quality=False,
|
357 |
+
ignore_iof_thr=-1),
|
358 |
+
sampler=dict(
|
359 |
+
type='RandomSampler',
|
360 |
+
num=512,
|
361 |
+
pos_fraction=0.25,
|
362 |
+
neg_pos_ub=-1,
|
363 |
+
add_gt_as_proposals=True),
|
364 |
+
pos_weight=-1,
|
365 |
+
debug=False)),
|
366 |
+
dict(
|
367 |
+
assigner=dict(type='ATSSAssigner', topk=9),
|
368 |
+
allowed_border=-1,
|
369 |
+
pos_weight=-1,
|
370 |
+
debug=False)
|
371 |
+
],
|
372 |
+
test_cfg=[
|
373 |
+
dict(max_per_img=100),
|
374 |
+
dict(
|
375 |
+
rpn=dict(
|
376 |
+
nms_pre=1000,
|
377 |
+
max_per_img=1000,
|
378 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
379 |
+
min_bbox_size=0),
|
380 |
+
rcnn=dict(
|
381 |
+
score_thr=0.0,
|
382 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
383 |
+
max_per_img=100)),
|
384 |
+
dict(
|
385 |
+
nms_pre=1000,
|
386 |
+
min_bbox_size=0,
|
387 |
+
score_thr=0.0,
|
388 |
+
nms=dict(type='nms', iou_threshold=0.6),
|
389 |
+
max_per_img=100)
|
390 |
+
])
|
391 |
+
optimizer = dict(
|
392 |
+
type='AdamW',
|
393 |
+
lr=0.0002,
|
394 |
+
weight_decay=0.0001,
|
395 |
+
paramwise_cfg=dict(
|
396 |
+
custom_keys=dict(
|
397 |
+
backbone=dict(lr_mult=0.1),
|
398 |
+
sampling_offsets=dict(lr_mult=0.1),
|
399 |
+
reference_points=dict(lr_mult=0.1))))
|
400 |
+
optimizer_config = dict(grad_clip=dict(max_norm=0.1, norm_type=2))
|
401 |
+
lr_config = dict(policy='step', step=[11])
|
402 |
+
runner = dict(type='EpochBasedRunner', max_epochs=200)
|
403 |
+
pretrained = './ckpt/co_deformable_detr_r50_1x_coco.pth'
|
404 |
+
resume = False
|
405 |
+
work_dir = 'work_dirs/co_deformable_detr_r50_1x_ct'
|
406 |
+
auto_resume = False
|
407 |
+
gpu_ids = range(0, 8)
|
co_deformable_detr_r50_1x_ct/epoch_40.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0367c20230c989c98a12957fdfb8346ada1fa020f879ff0f055ecabef6d0dd48
|
3 |
+
size 771820693
|
co_deformable_detr_swin_large_1x_ct/co_deformable_detr_swin_large_1x_ct.py
ADDED
@@ -0,0 +1,409 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dataset_type = 'CocoDataset'
|
2 |
+
data_root = 'data/slice_dataset_maximum_0402/'
|
3 |
+
img_norm_cfg = dict(
|
4 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
5 |
+
train_pipeline = [
|
6 |
+
dict(type='LoadImageFromFile'),
|
7 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
8 |
+
dict(type='RandomFlip', flip_ratio=0.5),
|
9 |
+
dict(
|
10 |
+
type='AutoAugment',
|
11 |
+
policies=[[{
|
12 |
+
'type': 'Resize',
|
13 |
+
'img_scale': [(512, 512)],
|
14 |
+
'multiscale_mode': 'value',
|
15 |
+
'keep_ratio': True
|
16 |
+
}],
|
17 |
+
[{
|
18 |
+
'type': 'Resize',
|
19 |
+
'img_scale': [(512, 512)],
|
20 |
+
'multiscale_mode': 'value',
|
21 |
+
'keep_ratio': True
|
22 |
+
}, {
|
23 |
+
'type': 'RandomCrop',
|
24 |
+
'crop_type': 'absolute_range',
|
25 |
+
'crop_size': (512, 512),
|
26 |
+
'allow_negative_crop': True
|
27 |
+
}, {
|
28 |
+
'type': 'Resize',
|
29 |
+
'img_scale': [(512, 512)],
|
30 |
+
'multiscale_mode': 'value',
|
31 |
+
'override': True,
|
32 |
+
'keep_ratio': True
|
33 |
+
}]]),
|
34 |
+
dict(
|
35 |
+
type='Normalize',
|
36 |
+
mean=[123.675, 116.28, 103.53],
|
37 |
+
std=[58.395, 57.12, 57.375],
|
38 |
+
to_rgb=True),
|
39 |
+
dict(type='Pad', size_divisor=1),
|
40 |
+
dict(type='DefaultFormatBundle'),
|
41 |
+
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
|
42 |
+
]
|
43 |
+
test_pipeline = [
|
44 |
+
dict(type='LoadImageFromFile'),
|
45 |
+
dict(
|
46 |
+
type='MultiScaleFlipAug',
|
47 |
+
img_scale=(512, 512),
|
48 |
+
flip=False,
|
49 |
+
transforms=[
|
50 |
+
dict(type='Resize', keep_ratio=True),
|
51 |
+
dict(type='RandomFlip'),
|
52 |
+
dict(
|
53 |
+
type='Normalize',
|
54 |
+
mean=[123.675, 116.28, 103.53],
|
55 |
+
std=[58.395, 57.12, 57.375],
|
56 |
+
to_rgb=True),
|
57 |
+
dict(type='Pad', size_divisor=1),
|
58 |
+
dict(type='ImageToTensor', keys=['img']),
|
59 |
+
dict(type='Collect', keys=['img'])
|
60 |
+
])
|
61 |
+
]
|
62 |
+
data = dict(
|
63 |
+
samples_per_gpu=4,
|
64 |
+
workers_per_gpu=4,
|
65 |
+
train=dict(
|
66 |
+
type='CocoDataset',
|
67 |
+
ann_file='data/slice_dataset_maximum_0402/annotations/train.json',
|
68 |
+
img_prefix='data/slice_dataset_maximum_0402/images/train/',
|
69 |
+
filter_empty_gt=False,
|
70 |
+
pipeline=[
|
71 |
+
dict(type='LoadImageFromFile'),
|
72 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
73 |
+
dict(type='RandomFlip', flip_ratio=0.5),
|
74 |
+
dict(
|
75 |
+
type='AutoAugment',
|
76 |
+
policies=[[{
|
77 |
+
'type': 'Resize',
|
78 |
+
'img_scale': [(512, 512)],
|
79 |
+
'multiscale_mode': 'value',
|
80 |
+
'keep_ratio': True
|
81 |
+
}],
|
82 |
+
[{
|
83 |
+
'type': 'Resize',
|
84 |
+
'img_scale': [(512, 512)],
|
85 |
+
'multiscale_mode': 'value',
|
86 |
+
'keep_ratio': True
|
87 |
+
}, {
|
88 |
+
'type': 'RandomCrop',
|
89 |
+
'crop_type': 'absolute_range',
|
90 |
+
'crop_size': (512, 512),
|
91 |
+
'allow_negative_crop': True
|
92 |
+
}, {
|
93 |
+
'type': 'Resize',
|
94 |
+
'img_scale': [(512, 512)],
|
95 |
+
'multiscale_mode': 'value',
|
96 |
+
'override': True,
|
97 |
+
'keep_ratio': True
|
98 |
+
}]]),
|
99 |
+
dict(
|
100 |
+
type='Normalize',
|
101 |
+
mean=[123.675, 116.28, 103.53],
|
102 |
+
std=[58.395, 57.12, 57.375],
|
103 |
+
to_rgb=True),
|
104 |
+
dict(type='Pad', size_divisor=1),
|
105 |
+
dict(type='DefaultFormatBundle'),
|
106 |
+
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
|
107 |
+
]),
|
108 |
+
val=dict(
|
109 |
+
type='CocoDataset',
|
110 |
+
ann_file='data/slice_dataset_maximum_0402/annotations/test.json',
|
111 |
+
img_prefix='data/slice_dataset_maximum_0402/images/test/',
|
112 |
+
pipeline=[
|
113 |
+
dict(type='LoadImageFromFile'),
|
114 |
+
dict(
|
115 |
+
type='MultiScaleFlipAug',
|
116 |
+
img_scale=(512, 512),
|
117 |
+
flip=False,
|
118 |
+
transforms=[
|
119 |
+
dict(type='Resize', keep_ratio=True),
|
120 |
+
dict(type='RandomFlip'),
|
121 |
+
dict(
|
122 |
+
type='Normalize',
|
123 |
+
mean=[123.675, 116.28, 103.53],
|
124 |
+
std=[58.395, 57.12, 57.375],
|
125 |
+
to_rgb=True),
|
126 |
+
dict(type='Pad', size_divisor=1),
|
127 |
+
dict(type='ImageToTensor', keys=['img']),
|
128 |
+
dict(type='Collect', keys=['img'])
|
129 |
+
])
|
130 |
+
]),
|
131 |
+
test=dict(
|
132 |
+
type='CocoDataset',
|
133 |
+
ann_file='data/slice_dataset_maximum_0402/annotations/test.json',
|
134 |
+
img_prefix='data/slice_dataset_maximum_0402/images/test/',
|
135 |
+
pipeline=[
|
136 |
+
dict(type='LoadImageFromFile'),
|
137 |
+
dict(
|
138 |
+
type='MultiScaleFlipAug',
|
139 |
+
img_scale=(512, 512),
|
140 |
+
flip=False,
|
141 |
+
transforms=[
|
142 |
+
dict(type='Resize', keep_ratio=True),
|
143 |
+
dict(type='RandomFlip'),
|
144 |
+
dict(
|
145 |
+
type='Normalize',
|
146 |
+
mean=[123.675, 116.28, 103.53],
|
147 |
+
std=[58.395, 57.12, 57.375],
|
148 |
+
to_rgb=True),
|
149 |
+
dict(type='Pad', size_divisor=1),
|
150 |
+
dict(type='ImageToTensor', keys=['img']),
|
151 |
+
dict(type='Collect', keys=['img'])
|
152 |
+
])
|
153 |
+
]))
|
154 |
+
evaluation = dict(interval=1, metric='bbox')
|
155 |
+
checkpoint_config = dict(interval=1)
|
156 |
+
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])
|
157 |
+
custom_hooks = [dict(type='NumClassCheckHook')]
|
158 |
+
dist_params = dict(backend='nccl')
|
159 |
+
log_level = 'INFO'
|
160 |
+
load_from = './ckpt/co_deformable_detr_swin_large_1x_coco.pth'
|
161 |
+
resume_from = None
|
162 |
+
workflow = [('train', 1)]
|
163 |
+
opencv_num_threads = 0
|
164 |
+
mp_start_method = 'fork'
|
165 |
+
auto_scale_lr = dict(enable=False, base_batch_size=16)
|
166 |
+
num_dec_layer = 6
|
167 |
+
lambda_2 = 2.0
|
168 |
+
model = dict(
|
169 |
+
type='CoDETR',
|
170 |
+
backbone=dict(
|
171 |
+
type='SwinTransformerV1',
|
172 |
+
embed_dim=192,
|
173 |
+
depths=[2, 2, 18, 2],
|
174 |
+
num_heads=[6, 12, 24, 48],
|
175 |
+
out_indices=(1, 2, 3),
|
176 |
+
window_size=12,
|
177 |
+
ape=False,
|
178 |
+
drop_path_rate=0.3,
|
179 |
+
patch_norm=True,
|
180 |
+
use_checkpoint=False,
|
181 |
+
pretrained='./ckpt/co_deformable_detr_swin_large_1x_coco.pth'),
|
182 |
+
neck=dict(
|
183 |
+
type='ChannelMapper',
|
184 |
+
in_channels=[384, 768, 1536],
|
185 |
+
kernel_size=1,
|
186 |
+
out_channels=256,
|
187 |
+
act_cfg=None,
|
188 |
+
norm_cfg=dict(type='GN', num_groups=32),
|
189 |
+
num_outs=4),
|
190 |
+
rpn_head=dict(
|
191 |
+
type='RPNHead',
|
192 |
+
in_channels=256,
|
193 |
+
feat_channels=256,
|
194 |
+
anchor_generator=dict(
|
195 |
+
type='AnchorGenerator',
|
196 |
+
octave_base_scale=4,
|
197 |
+
scales_per_octave=3,
|
198 |
+
ratios=[0.5, 1.0, 2.0],
|
199 |
+
strides=[8, 16, 32, 64, 128]),
|
200 |
+
bbox_coder=dict(
|
201 |
+
type='DeltaXYWHBBoxCoder',
|
202 |
+
target_means=[0.0, 0.0, 0.0, 0.0],
|
203 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
204 |
+
loss_cls=dict(
|
205 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=12.0),
|
206 |
+
loss_bbox=dict(type='L1Loss', loss_weight=12.0)),
|
207 |
+
query_head=dict(
|
208 |
+
type='CoDeformDETRHead',
|
209 |
+
num_query=300,
|
210 |
+
num_classes=5,
|
211 |
+
in_channels=2048,
|
212 |
+
sync_cls_avg_factor=True,
|
213 |
+
with_box_refine=True,
|
214 |
+
as_two_stage=True,
|
215 |
+
mixed_selection=True,
|
216 |
+
transformer=dict(
|
217 |
+
type='CoDeformableDetrTransformer',
|
218 |
+
num_co_heads=2,
|
219 |
+
encoder=dict(
|
220 |
+
type='DetrTransformerEncoder',
|
221 |
+
num_layers=6,
|
222 |
+
transformerlayers=dict(
|
223 |
+
type='BaseTransformerLayer',
|
224 |
+
attn_cfgs=dict(
|
225 |
+
type='MultiScaleDeformableAttention',
|
226 |
+
embed_dims=256,
|
227 |
+
dropout=0.0),
|
228 |
+
feedforward_channels=2048,
|
229 |
+
ffn_dropout=0.0,
|
230 |
+
operation_order=('self_attn', 'norm', 'ffn', 'norm'))),
|
231 |
+
decoder=dict(
|
232 |
+
type='CoDeformableDetrTransformerDecoder',
|
233 |
+
num_layers=6,
|
234 |
+
return_intermediate=True,
|
235 |
+
look_forward_twice=True,
|
236 |
+
transformerlayers=dict(
|
237 |
+
type='DetrTransformerDecoderLayer',
|
238 |
+
attn_cfgs=[
|
239 |
+
dict(
|
240 |
+
type='MultiheadAttention',
|
241 |
+
embed_dims=256,
|
242 |
+
num_heads=8,
|
243 |
+
dropout=0.0),
|
244 |
+
dict(
|
245 |
+
type='MultiScaleDeformableAttention',
|
246 |
+
embed_dims=256,
|
247 |
+
dropout=0.0)
|
248 |
+
],
|
249 |
+
feedforward_channels=2048,
|
250 |
+
ffn_dropout=0.0,
|
251 |
+
operation_order=('self_attn', 'norm', 'cross_attn', 'norm',
|
252 |
+
'ffn', 'norm')))),
|
253 |
+
positional_encoding=dict(
|
254 |
+
type='SinePositionalEncoding',
|
255 |
+
num_feats=128,
|
256 |
+
normalize=True,
|
257 |
+
offset=-0.5),
|
258 |
+
loss_cls=dict(
|
259 |
+
type='FocalLoss',
|
260 |
+
use_sigmoid=True,
|
261 |
+
gamma=2.0,
|
262 |
+
alpha=0.25,
|
263 |
+
loss_weight=2.0),
|
264 |
+
loss_bbox=dict(type='L1Loss', loss_weight=5.0),
|
265 |
+
loss_iou=dict(type='GIoULoss', loss_weight=2.0)),
|
266 |
+
roi_head=[
|
267 |
+
dict(
|
268 |
+
type='CoStandardRoIHead',
|
269 |
+
bbox_roi_extractor=dict(
|
270 |
+
type='SingleRoIExtractor',
|
271 |
+
roi_layer=dict(
|
272 |
+
type='RoIAlign', output_size=7, sampling_ratio=0),
|
273 |
+
out_channels=256,
|
274 |
+
featmap_strides=[8, 16, 32, 64],
|
275 |
+
finest_scale=112),
|
276 |
+
bbox_head=dict(
|
277 |
+
type='Shared2FCBBoxHead',
|
278 |
+
in_channels=256,
|
279 |
+
fc_out_channels=1024,
|
280 |
+
roi_feat_size=7,
|
281 |
+
num_classes=5,
|
282 |
+
bbox_coder=dict(
|
283 |
+
type='DeltaXYWHBBoxCoder',
|
284 |
+
target_means=[0.0, 0.0, 0.0, 0.0],
|
285 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
286 |
+
reg_class_agnostic=False,
|
287 |
+
reg_decoded_bbox=True,
|
288 |
+
loss_cls=dict(
|
289 |
+
type='CrossEntropyLoss',
|
290 |
+
use_sigmoid=False,
|
291 |
+
loss_weight=12.0),
|
292 |
+
loss_bbox=dict(type='GIoULoss', loss_weight=120.0)))
|
293 |
+
],
|
294 |
+
bbox_head=[
|
295 |
+
dict(
|
296 |
+
type='CoATSSHead',
|
297 |
+
num_classes=5,
|
298 |
+
in_channels=256,
|
299 |
+
stacked_convs=1,
|
300 |
+
feat_channels=256,
|
301 |
+
anchor_generator=dict(
|
302 |
+
type='AnchorGenerator',
|
303 |
+
ratios=[1.0],
|
304 |
+
octave_base_scale=8,
|
305 |
+
scales_per_octave=1,
|
306 |
+
strides=[8, 16, 32, 64, 128]),
|
307 |
+
bbox_coder=dict(
|
308 |
+
type='DeltaXYWHBBoxCoder',
|
309 |
+
target_means=[0.0, 0.0, 0.0, 0.0],
|
310 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
311 |
+
loss_cls=dict(
|
312 |
+
type='FocalLoss',
|
313 |
+
use_sigmoid=True,
|
314 |
+
gamma=2.0,
|
315 |
+
alpha=0.25,
|
316 |
+
loss_weight=12.0),
|
317 |
+
loss_bbox=dict(type='GIoULoss', loss_weight=24.0),
|
318 |
+
loss_centerness=dict(
|
319 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=12.0))
|
320 |
+
],
|
321 |
+
train_cfg=[
|
322 |
+
dict(
|
323 |
+
assigner=dict(
|
324 |
+
type='HungarianAssigner',
|
325 |
+
cls_cost=dict(type='FocalLossCost', weight=2.0),
|
326 |
+
reg_cost=dict(
|
327 |
+
type='BBoxL1Cost', weight=5.0, box_format='xywh'),
|
328 |
+
iou_cost=dict(type='IoUCost', iou_mode='giou', weight=2.0))),
|
329 |
+
dict(
|
330 |
+
rpn=dict(
|
331 |
+
assigner=dict(
|
332 |
+
type='MaxIoUAssigner',
|
333 |
+
pos_iou_thr=0.7,
|
334 |
+
neg_iou_thr=0.3,
|
335 |
+
min_pos_iou=0.3,
|
336 |
+
match_low_quality=True,
|
337 |
+
ignore_iof_thr=-1),
|
338 |
+
sampler=dict(
|
339 |
+
type='RandomSampler',
|
340 |
+
num=256,
|
341 |
+
pos_fraction=0.5,
|
342 |
+
neg_pos_ub=-1,
|
343 |
+
add_gt_as_proposals=False),
|
344 |
+
allowed_border=-1,
|
345 |
+
pos_weight=-1,
|
346 |
+
debug=False),
|
347 |
+
rpn_proposal=dict(
|
348 |
+
nms_pre=4000,
|
349 |
+
max_per_img=1000,
|
350 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
351 |
+
min_bbox_size=0),
|
352 |
+
rcnn=dict(
|
353 |
+
assigner=dict(
|
354 |
+
type='MaxIoUAssigner',
|
355 |
+
pos_iou_thr=0.5,
|
356 |
+
neg_iou_thr=0.5,
|
357 |
+
min_pos_iou=0.5,
|
358 |
+
match_low_quality=False,
|
359 |
+
ignore_iof_thr=-1),
|
360 |
+
sampler=dict(
|
361 |
+
type='RandomSampler',
|
362 |
+
num=512,
|
363 |
+
pos_fraction=0.25,
|
364 |
+
neg_pos_ub=-1,
|
365 |
+
add_gt_as_proposals=True),
|
366 |
+
pos_weight=-1,
|
367 |
+
debug=False)),
|
368 |
+
dict(
|
369 |
+
assigner=dict(type='ATSSAssigner', topk=9),
|
370 |
+
allowed_border=-1,
|
371 |
+
pos_weight=-1,
|
372 |
+
debug=False)
|
373 |
+
],
|
374 |
+
test_cfg=[
|
375 |
+
dict(max_per_img=100),
|
376 |
+
dict(
|
377 |
+
rpn=dict(
|
378 |
+
nms_pre=1000,
|
379 |
+
max_per_img=1000,
|
380 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
381 |
+
min_bbox_size=0),
|
382 |
+
rcnn=dict(
|
383 |
+
score_thr=0.0,
|
384 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
385 |
+
max_per_img=100)),
|
386 |
+
dict(
|
387 |
+
nms_pre=1000,
|
388 |
+
min_bbox_size=0,
|
389 |
+
score_thr=0.0,
|
390 |
+
nms=dict(type='nms', iou_threshold=0.6),
|
391 |
+
max_per_img=100)
|
392 |
+
])
|
393 |
+
optimizer = dict(
|
394 |
+
type='AdamW',
|
395 |
+
lr=0.0002,
|
396 |
+
weight_decay=0.05,
|
397 |
+
paramwise_cfg=dict(
|
398 |
+
custom_keys=dict(
|
399 |
+
backbone=dict(lr_mult=0.1),
|
400 |
+
sampling_offsets=dict(lr_mult=0.1),
|
401 |
+
reference_points=dict(lr_mult=0.1))))
|
402 |
+
optimizer_config = dict(grad_clip=dict(max_norm=0.1, norm_type=2))
|
403 |
+
lr_config = dict(policy='step', step=[11])
|
404 |
+
runner = dict(type='EpochBasedRunner', max_epochs=200)
|
405 |
+
pretrained = './ckpt/co_deformable_detr_swin_large_1x_coco.pth'
|
406 |
+
resume = False
|
407 |
+
work_dir = 'work_dirs/co_deformable_detr_swin_large_1x_ct'
|
408 |
+
auto_resume = False
|
409 |
+
gpu_ids = range(0, 8)
|
co_deformable_detr_swin_large_1x_ct/epoch_50.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:21211f7d4b3e34daa235cb2f5840093e1fe7653329e421f8668bee6958cf12b7
|
3 |
+
size 2821415790
|
co_dino_5scale_r50_1x_ct/co_dino_5scale_r50_1x_ct.py
ADDED
@@ -0,0 +1,411 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dataset_type = 'CocoDataset'
|
2 |
+
data_root = 'data/slice_dataset_maximum_0402/'
|
3 |
+
img_norm_cfg = dict(
|
4 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
5 |
+
train_pipeline = [
|
6 |
+
dict(type='LoadImageFromFile'),
|
7 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
8 |
+
dict(type='RandomFlip', flip_ratio=0.5),
|
9 |
+
dict(
|
10 |
+
type='AutoAugment',
|
11 |
+
policies=[[{
|
12 |
+
'type': 'Resize',
|
13 |
+
'img_scale': [(512, 512)],
|
14 |
+
'multiscale_mode': 'value',
|
15 |
+
'keep_ratio': True
|
16 |
+
}],
|
17 |
+
[{
|
18 |
+
'type': 'Resize',
|
19 |
+
'img_scale': [(512, 512)],
|
20 |
+
'multiscale_mode': 'value',
|
21 |
+
'keep_ratio': True
|
22 |
+
}, {
|
23 |
+
'type': 'RandomCrop',
|
24 |
+
'crop_type': 'absolute_range',
|
25 |
+
'crop_size': (512, 512),
|
26 |
+
'allow_negative_crop': True
|
27 |
+
}, {
|
28 |
+
'type': 'Resize',
|
29 |
+
'img_scale': [(512, 512)],
|
30 |
+
'multiscale_mode': 'value',
|
31 |
+
'override': True,
|
32 |
+
'keep_ratio': True
|
33 |
+
}]]),
|
34 |
+
dict(
|
35 |
+
type='Normalize',
|
36 |
+
mean=[123.675, 116.28, 103.53],
|
37 |
+
std=[58.395, 57.12, 57.375],
|
38 |
+
to_rgb=True),
|
39 |
+
dict(type='Pad', size_divisor=1),
|
40 |
+
dict(type='DefaultFormatBundle'),
|
41 |
+
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
|
42 |
+
]
|
43 |
+
test_pipeline = [
|
44 |
+
dict(type='LoadImageFromFile'),
|
45 |
+
dict(
|
46 |
+
type='MultiScaleFlipAug',
|
47 |
+
img_scale=(512, 512),
|
48 |
+
flip=False,
|
49 |
+
transforms=[
|
50 |
+
dict(type='Resize', keep_ratio=True),
|
51 |
+
dict(type='RandomFlip'),
|
52 |
+
dict(
|
53 |
+
type='Normalize',
|
54 |
+
mean=[123.675, 116.28, 103.53],
|
55 |
+
std=[58.395, 57.12, 57.375],
|
56 |
+
to_rgb=True),
|
57 |
+
dict(type='Pad', size_divisor=1),
|
58 |
+
dict(type='ImageToTensor', keys=['img']),
|
59 |
+
dict(type='Collect', keys=['img'])
|
60 |
+
])
|
61 |
+
]
|
62 |
+
data = dict(
|
63 |
+
samples_per_gpu=8,
|
64 |
+
workers_per_gpu=4,
|
65 |
+
train=dict(
|
66 |
+
type='CocoDataset',
|
67 |
+
ann_file='data/slice_dataset_maximum_0402/annotations/train.json',
|
68 |
+
img_prefix='data/slice_dataset_maximum_0402/images/train/',
|
69 |
+
filter_empty_gt=False,
|
70 |
+
pipeline=[
|
71 |
+
dict(type='LoadImageFromFile'),
|
72 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
73 |
+
dict(type='RandomFlip', flip_ratio=0.5),
|
74 |
+
dict(
|
75 |
+
type='AutoAugment',
|
76 |
+
policies=[[{
|
77 |
+
'type': 'Resize',
|
78 |
+
'img_scale': [(512, 512)],
|
79 |
+
'multiscale_mode': 'value',
|
80 |
+
'keep_ratio': True
|
81 |
+
}],
|
82 |
+
[{
|
83 |
+
'type': 'Resize',
|
84 |
+
'img_scale': [(512, 512)],
|
85 |
+
'multiscale_mode': 'value',
|
86 |
+
'keep_ratio': True
|
87 |
+
}, {
|
88 |
+
'type': 'RandomCrop',
|
89 |
+
'crop_type': 'absolute_range',
|
90 |
+
'crop_size': (512, 512),
|
91 |
+
'allow_negative_crop': True
|
92 |
+
}, {
|
93 |
+
'type': 'Resize',
|
94 |
+
'img_scale': [(512, 512)],
|
95 |
+
'multiscale_mode': 'value',
|
96 |
+
'override': True,
|
97 |
+
'keep_ratio': True
|
98 |
+
}]]),
|
99 |
+
dict(
|
100 |
+
type='Normalize',
|
101 |
+
mean=[123.675, 116.28, 103.53],
|
102 |
+
std=[58.395, 57.12, 57.375],
|
103 |
+
to_rgb=True),
|
104 |
+
dict(type='Pad', size_divisor=1),
|
105 |
+
dict(type='DefaultFormatBundle'),
|
106 |
+
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
|
107 |
+
]),
|
108 |
+
val=dict(
|
109 |
+
type='CocoDataset',
|
110 |
+
ann_file='data/slice_dataset_maximum_0402/annotations/test.json',
|
111 |
+
img_prefix='data/slice_dataset_maximum_0402/images/test/',
|
112 |
+
pipeline=[
|
113 |
+
dict(type='LoadImageFromFile'),
|
114 |
+
dict(
|
115 |
+
type='MultiScaleFlipAug',
|
116 |
+
img_scale=(512, 512),
|
117 |
+
flip=False,
|
118 |
+
transforms=[
|
119 |
+
dict(type='Resize', keep_ratio=True),
|
120 |
+
dict(type='RandomFlip'),
|
121 |
+
dict(
|
122 |
+
type='Normalize',
|
123 |
+
mean=[123.675, 116.28, 103.53],
|
124 |
+
std=[58.395, 57.12, 57.375],
|
125 |
+
to_rgb=True),
|
126 |
+
dict(type='Pad', size_divisor=1),
|
127 |
+
dict(type='ImageToTensor', keys=['img']),
|
128 |
+
dict(type='Collect', keys=['img'])
|
129 |
+
])
|
130 |
+
]),
|
131 |
+
test=dict(
|
132 |
+
type='CocoDataset',
|
133 |
+
ann_file='data/slice_dataset_maximum_0402/annotations/test.json',
|
134 |
+
img_prefix='data/slice_dataset_maximum_0402/images/test/',
|
135 |
+
pipeline=[
|
136 |
+
dict(type='LoadImageFromFile'),
|
137 |
+
dict(
|
138 |
+
type='MultiScaleFlipAug',
|
139 |
+
img_scale=(512, 512),
|
140 |
+
flip=False,
|
141 |
+
transforms=[
|
142 |
+
dict(type='Resize', keep_ratio=True),
|
143 |
+
dict(type='RandomFlip'),
|
144 |
+
dict(
|
145 |
+
type='Normalize',
|
146 |
+
mean=[123.675, 116.28, 103.53],
|
147 |
+
std=[58.395, 57.12, 57.375],
|
148 |
+
to_rgb=True),
|
149 |
+
dict(type='Pad', size_divisor=1),
|
150 |
+
dict(type='ImageToTensor', keys=['img']),
|
151 |
+
dict(type='Collect', keys=['img'])
|
152 |
+
])
|
153 |
+
]))
|
154 |
+
evaluation = dict(interval=1, metric='bbox')
|
155 |
+
checkpoint_config = dict(interval=1)
|
156 |
+
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])
|
157 |
+
custom_hooks = [dict(type='NumClassCheckHook')]
|
158 |
+
dist_params = dict(backend='nccl')
|
159 |
+
log_level = 'INFO'
|
160 |
+
load_from = './ckpt/co_dino_5scale_r50_1x_coco.pth'
|
161 |
+
resume_from = None
|
162 |
+
workflow = [('train', 1)]
|
163 |
+
opencv_num_threads = 0
|
164 |
+
mp_start_method = 'fork'
|
165 |
+
auto_scale_lr = dict(enable=False, base_batch_size=16)
|
166 |
+
num_dec_layer = 6
|
167 |
+
lambda_2 = 2.0
|
168 |
+
model = dict(
|
169 |
+
type='CoDETR',
|
170 |
+
backbone=dict(
|
171 |
+
type='ResNet',
|
172 |
+
depth=50,
|
173 |
+
num_stages=4,
|
174 |
+
out_indices=(0, 1, 2, 3),
|
175 |
+
frozen_stages=1,
|
176 |
+
norm_cfg=dict(type='BN', requires_grad=False),
|
177 |
+
norm_eval=True,
|
178 |
+
style='pytorch',
|
179 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
|
180 |
+
neck=dict(
|
181 |
+
type='ChannelMapper',
|
182 |
+
in_channels=[256, 512, 1024, 2048],
|
183 |
+
kernel_size=1,
|
184 |
+
out_channels=256,
|
185 |
+
act_cfg=None,
|
186 |
+
norm_cfg=dict(type='GN', num_groups=32),
|
187 |
+
num_outs=5),
|
188 |
+
rpn_head=dict(
|
189 |
+
type='RPNHead',
|
190 |
+
in_channels=256,
|
191 |
+
feat_channels=256,
|
192 |
+
anchor_generator=dict(
|
193 |
+
type='AnchorGenerator',
|
194 |
+
octave_base_scale=4,
|
195 |
+
scales_per_octave=3,
|
196 |
+
ratios=[0.5, 1.0, 2.0],
|
197 |
+
strides=[4, 8, 16, 32, 64, 128]),
|
198 |
+
bbox_coder=dict(
|
199 |
+
type='DeltaXYWHBBoxCoder',
|
200 |
+
target_means=[0.0, 0.0, 0.0, 0.0],
|
201 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
202 |
+
loss_cls=dict(
|
203 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=12.0),
|
204 |
+
loss_bbox=dict(type='L1Loss', loss_weight=12.0)),
|
205 |
+
query_head=dict(
|
206 |
+
type='CoDINOHead',
|
207 |
+
num_query=900,
|
208 |
+
num_classes=5,
|
209 |
+
num_feature_levels=5,
|
210 |
+
in_channels=2048,
|
211 |
+
sync_cls_avg_factor=True,
|
212 |
+
as_two_stage=True,
|
213 |
+
with_box_refine=True,
|
214 |
+
mixed_selection=True,
|
215 |
+
dn_cfg=dict(
|
216 |
+
type='CdnQueryGenerator',
|
217 |
+
noise_scale=dict(label=0.5, box=1.0),
|
218 |
+
group_cfg=dict(dynamic=True, num_groups=None, num_dn_queries=100)),
|
219 |
+
transformer=dict(
|
220 |
+
type='CoDinoTransformer',
|
221 |
+
with_pos_coord=True,
|
222 |
+
with_coord_feat=False,
|
223 |
+
num_co_heads=2,
|
224 |
+
num_feature_levels=5,
|
225 |
+
encoder=dict(
|
226 |
+
type='DetrTransformerEncoder',
|
227 |
+
num_layers=6,
|
228 |
+
with_cp=4,
|
229 |
+
transformerlayers=dict(
|
230 |
+
type='BaseTransformerLayer',
|
231 |
+
attn_cfgs=dict(
|
232 |
+
type='MultiScaleDeformableAttention',
|
233 |
+
embed_dims=256,
|
234 |
+
num_levels=5,
|
235 |
+
dropout=0.0),
|
236 |
+
feedforward_channels=2048,
|
237 |
+
ffn_dropout=0.0,
|
238 |
+
operation_order=('self_attn', 'norm', 'ffn', 'norm'))),
|
239 |
+
decoder=dict(
|
240 |
+
type='DinoTransformerDecoder',
|
241 |
+
num_layers=6,
|
242 |
+
return_intermediate=True,
|
243 |
+
transformerlayers=dict(
|
244 |
+
type='DetrTransformerDecoderLayer',
|
245 |
+
attn_cfgs=[
|
246 |
+
dict(
|
247 |
+
type='MultiheadAttention',
|
248 |
+
embed_dims=256,
|
249 |
+
num_heads=8,
|
250 |
+
dropout=0.0),
|
251 |
+
dict(
|
252 |
+
type='MultiScaleDeformableAttention',
|
253 |
+
embed_dims=256,
|
254 |
+
num_levels=5,
|
255 |
+
dropout=0.0)
|
256 |
+
],
|
257 |
+
feedforward_channels=2048,
|
258 |
+
ffn_dropout=0.0,
|
259 |
+
operation_order=('self_attn', 'norm', 'cross_attn', 'norm',
|
260 |
+
'ffn', 'norm')))),
|
261 |
+
positional_encoding=dict(
|
262 |
+
type='SinePositionalEncoding',
|
263 |
+
num_feats=128,
|
264 |
+
temperature=20,
|
265 |
+
normalize=True),
|
266 |
+
loss_cls=dict(
|
267 |
+
type='QualityFocalLoss',
|
268 |
+
use_sigmoid=True,
|
269 |
+
beta=2.0,
|
270 |
+
loss_weight=1.0),
|
271 |
+
loss_bbox=dict(type='L1Loss', loss_weight=5.0),
|
272 |
+
loss_iou=dict(type='GIoULoss', loss_weight=2.0)),
|
273 |
+
roi_head=[
|
274 |
+
dict(
|
275 |
+
type='CoStandardRoIHead',
|
276 |
+
bbox_roi_extractor=dict(
|
277 |
+
type='SingleRoIExtractor',
|
278 |
+
roi_layer=dict(
|
279 |
+
type='RoIAlign', output_size=7, sampling_ratio=0),
|
280 |
+
out_channels=256,
|
281 |
+
featmap_strides=[4, 8, 16, 32, 64],
|
282 |
+
finest_scale=56),
|
283 |
+
bbox_head=dict(
|
284 |
+
type='Shared2FCBBoxHead',
|
285 |
+
in_channels=256,
|
286 |
+
fc_out_channels=1024,
|
287 |
+
roi_feat_size=7,
|
288 |
+
num_classes=5,
|
289 |
+
bbox_coder=dict(
|
290 |
+
type='DeltaXYWHBBoxCoder',
|
291 |
+
target_means=[0.0, 0.0, 0.0, 0.0],
|
292 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
293 |
+
reg_class_agnostic=False,
|
294 |
+
reg_decoded_bbox=True,
|
295 |
+
loss_cls=dict(
|
296 |
+
type='CrossEntropyLoss',
|
297 |
+
use_sigmoid=False,
|
298 |
+
loss_weight=12.0),
|
299 |
+
loss_bbox=dict(type='GIoULoss', loss_weight=120.0)))
|
300 |
+
],
|
301 |
+
bbox_head=[
|
302 |
+
dict(
|
303 |
+
type='CoATSSHead',
|
304 |
+
num_classes=5,
|
305 |
+
in_channels=256,
|
306 |
+
stacked_convs=1,
|
307 |
+
feat_channels=256,
|
308 |
+
anchor_generator=dict(
|
309 |
+
type='AnchorGenerator',
|
310 |
+
ratios=[1.0],
|
311 |
+
octave_base_scale=8,
|
312 |
+
scales_per_octave=1,
|
313 |
+
strides=[4, 8, 16, 32, 64, 128]),
|
314 |
+
bbox_coder=dict(
|
315 |
+
type='DeltaXYWHBBoxCoder',
|
316 |
+
target_means=[0.0, 0.0, 0.0, 0.0],
|
317 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
318 |
+
loss_cls=dict(
|
319 |
+
type='FocalLoss',
|
320 |
+
use_sigmoid=True,
|
321 |
+
gamma=2.0,
|
322 |
+
alpha=0.25,
|
323 |
+
loss_weight=12.0),
|
324 |
+
loss_bbox=dict(type='GIoULoss', loss_weight=24.0),
|
325 |
+
loss_centerness=dict(
|
326 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=12.0))
|
327 |
+
],
|
328 |
+
train_cfg=[
|
329 |
+
dict(
|
330 |
+
assigner=dict(
|
331 |
+
type='HungarianAssigner',
|
332 |
+
cls_cost=dict(type='FocalLossCost', weight=2.0),
|
333 |
+
reg_cost=dict(
|
334 |
+
type='BBoxL1Cost', weight=5.0, box_format='xywh'),
|
335 |
+
iou_cost=dict(type='IoUCost', iou_mode='giou', weight=2.0))),
|
336 |
+
dict(
|
337 |
+
rpn=dict(
|
338 |
+
assigner=dict(
|
339 |
+
type='MaxIoUAssigner',
|
340 |
+
pos_iou_thr=0.7,
|
341 |
+
neg_iou_thr=0.3,
|
342 |
+
min_pos_iou=0.3,
|
343 |
+
match_low_quality=True,
|
344 |
+
ignore_iof_thr=-1),
|
345 |
+
sampler=dict(
|
346 |
+
type='RandomSampler',
|
347 |
+
num=256,
|
348 |
+
pos_fraction=0.5,
|
349 |
+
neg_pos_ub=-1,
|
350 |
+
add_gt_as_proposals=False),
|
351 |
+
allowed_border=-1,
|
352 |
+
pos_weight=-1,
|
353 |
+
debug=False),
|
354 |
+
rpn_proposal=dict(
|
355 |
+
nms_pre=4000,
|
356 |
+
max_per_img=1000,
|
357 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
358 |
+
min_bbox_size=0),
|
359 |
+
rcnn=dict(
|
360 |
+
assigner=dict(
|
361 |
+
type='MaxIoUAssigner',
|
362 |
+
pos_iou_thr=0.5,
|
363 |
+
neg_iou_thr=0.5,
|
364 |
+
min_pos_iou=0.5,
|
365 |
+
match_low_quality=False,
|
366 |
+
ignore_iof_thr=-1),
|
367 |
+
sampler=dict(
|
368 |
+
type='RandomSampler',
|
369 |
+
num=512,
|
370 |
+
pos_fraction=0.25,
|
371 |
+
neg_pos_ub=-1,
|
372 |
+
add_gt_as_proposals=True),
|
373 |
+
pos_weight=-1,
|
374 |
+
debug=False)),
|
375 |
+
dict(
|
376 |
+
assigner=dict(type='ATSSAssigner', topk=9),
|
377 |
+
allowed_border=-1,
|
378 |
+
pos_weight=-1,
|
379 |
+
debug=False)
|
380 |
+
],
|
381 |
+
test_cfg=[
|
382 |
+
dict(max_per_img=300, nms=dict(type='soft_nms', iou_threshold=0.8)),
|
383 |
+
dict(
|
384 |
+
rpn=dict(
|
385 |
+
nms_pre=1000,
|
386 |
+
max_per_img=1000,
|
387 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
388 |
+
min_bbox_size=0),
|
389 |
+
rcnn=dict(
|
390 |
+
score_thr=0.0,
|
391 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
392 |
+
max_per_img=100)),
|
393 |
+
dict(
|
394 |
+
nms_pre=1000,
|
395 |
+
min_bbox_size=0,
|
396 |
+
score_thr=0.0,
|
397 |
+
nms=dict(type='nms', iou_threshold=0.6),
|
398 |
+
max_per_img=100)
|
399 |
+
])
|
400 |
+
optimizer = dict(
|
401 |
+
type='AdamW',
|
402 |
+
lr=0.0002,
|
403 |
+
weight_decay=0.0001,
|
404 |
+
paramwise_cfg=dict(custom_keys=dict(backbone=dict(lr_mult=0.1))))
|
405 |
+
optimizer_config = dict(grad_clip=dict(max_norm=0.1, norm_type=2))
|
406 |
+
lr_config = dict(policy='step', step=[11])
|
407 |
+
runner = dict(type='EpochBasedRunner', max_epochs=200)
|
408 |
+
pretrained = './ckpt/co_dino_5scale_r50_1x_coco.pth'
|
409 |
+
work_dir = 'work_dirs/co_dino_5scale_r50_1x_ct'
|
410 |
+
auto_resume = False
|
411 |
+
gpu_ids = range(0, 8)
|
co_dino_5scale_r50_1x_ct/epoch_50.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f743702df7c27116b9cc6ad7492b54e0f8c6a2f7392de8600fcc6cf8481c7789
|
3 |
+
size 772477915
|