jinxiaojie commited on
Commit
12e14c0
·
1 Parent(s): 4b61a73
ckpt_model/global_step5000/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:73638967263b3d44d1b8c8dbb6c95f1a5be715528b57e597bb43eac88ce5a99d
3
- size 563591248
 
 
 
 
ckpt_model/global_step5000/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:7087ecbd4125ce82e01b3b21507639ea8ccd7bca5fcaacaf5c01374be8335dfd
3
- size 563615632
 
 
 
 
ckpt_model/global_step5000/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:582a7a9e52e1f719db75e6351fcbe2ab9b4d8d022d5973e3ec41f110799d2ce2
3
- size 563591120
 
 
 
 
ckpt_model/global_step5000/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:4ac4c86227f7af49e160b5f5072d2ac4db94c87e81975ac336129ee5fe245d73
3
- size 563590800
 
 
 
 
ckpt_model/global_step5000/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:41dd218b5bc51182008528e159ae34d5197395afb301e6d9b64bd9911c43c982
3
- size 563590800
 
 
 
 
ckpt_model/global_step5000/mp_rank_00_model_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:e692f56db1de9ea8787217a302c43a05997f9f7168c108d1a0af2bad99f527fc
3
- size 27879812246
 
 
 
 
ckpt_model/latest DELETED
@@ -1 +0,0 @@
1
- global_step5000
 
 
ckpt_model/zero_to_fp32.py DELETED
@@ -1,587 +0,0 @@
1
- #!/usr/bin/env python
2
-
3
- # Copyright (c) Microsoft Corporation.
4
- # SPDX-License-Identifier: Apache-2.0
5
-
6
- # DeepSpeed Team
7
-
8
- # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
- # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
- # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
- # application.
12
- #
13
- # example: python zero_to_fp32.py . pytorch_model.bin
14
-
15
- import argparse
16
- import torch
17
- import glob
18
- import math
19
- import os
20
- import re
21
- from collections import OrderedDict
22
- from dataclasses import dataclass
23
-
24
- # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
- # DeepSpeed data structures it has to be available in the current python environment.
26
- from deepspeed.utils import logger
27
- from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
- FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
- FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
-
31
-
32
- @dataclass
33
- class zero_model_state:
34
- buffers: dict()
35
- param_shapes: dict()
36
- shared_params: list
37
- ds_version: int
38
- frozen_param_shapes: dict()
39
- frozen_param_fragments: dict()
40
-
41
-
42
- debug = 0
43
-
44
- # load to cpu
45
- device = torch.device('cpu')
46
-
47
-
48
- def atoi(text):
49
- return int(text) if text.isdigit() else text
50
-
51
-
52
- def natural_keys(text):
53
- '''
54
- alist.sort(key=natural_keys) sorts in human order
55
- http://nedbatchelder.com/blog/200712/human_sorting.html
56
- (See Toothy's implementation in the comments)
57
- '''
58
- return [atoi(c) for c in re.split(r'(\d+)', text)]
59
-
60
-
61
- def get_model_state_file(checkpoint_dir, zero_stage):
62
- if not os.path.isdir(checkpoint_dir):
63
- raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
-
65
- # there should be only one file
66
- if zero_stage <= 2:
67
- file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
- elif zero_stage == 3:
69
- file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
-
71
- if not os.path.exists(file):
72
- raise FileNotFoundError(f"can't find model states file at '{file}'")
73
-
74
- return file
75
-
76
-
77
- def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
- # XXX: need to test that this simple glob rule works for multi-node setup too
79
- ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
-
81
- if len(ckpt_files) == 0:
82
- raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
-
84
- return ckpt_files
85
-
86
-
87
- def get_optim_files(checkpoint_dir):
88
- return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
-
90
-
91
- def get_model_state_files(checkpoint_dir):
92
- return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
-
94
-
95
- def parse_model_states(files):
96
- zero_model_states = []
97
- for file in files:
98
- state_dict = torch.load(file, map_location=device)
99
-
100
- if BUFFER_NAMES not in state_dict:
101
- raise ValueError(f"{file} is not a model state checkpoint")
102
- buffer_names = state_dict[BUFFER_NAMES]
103
- if debug:
104
- print("Found buffers:", buffer_names)
105
-
106
- # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
- buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
- param_shapes = state_dict[PARAM_SHAPES]
109
-
110
- # collect parameters that are included in param_shapes
111
- param_names = []
112
- for s in param_shapes:
113
- for name in s.keys():
114
- param_names.append(name)
115
-
116
- # update with frozen parameters
117
- frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
- if frozen_param_shapes is not None:
119
- if debug:
120
- print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
- param_names += list(frozen_param_shapes.keys())
122
-
123
- # handle shared params
124
- shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
-
126
- ds_version = state_dict.get(DS_VERSION, None)
127
-
128
- frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
-
130
- z_model_state = zero_model_state(buffers=buffers,
131
- param_shapes=param_shapes,
132
- shared_params=shared_params,
133
- ds_version=ds_version,
134
- frozen_param_shapes=frozen_param_shapes,
135
- frozen_param_fragments=frozen_param_fragments)
136
- zero_model_states.append(z_model_state)
137
-
138
- return zero_model_states
139
-
140
-
141
- def parse_optim_states(files, ds_checkpoint_dir):
142
-
143
- total_files = len(files)
144
- state_dicts = []
145
- for f in files:
146
- state_dict = torch.load(f, map_location=device)
147
- # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
- # and also handle the case where it was already removed by another helper script
149
- state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
- state_dicts.append(state_dict)
151
-
152
- if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
- raise ValueError(f"{files[0]} is not a zero checkpoint")
154
- zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
- world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
-
157
- # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
- # parameters can be different from data parallelism for non-expert parameters. So we can just
159
- # use the max of the partition_count to get the dp world_size.
160
-
161
- if type(world_size) is list:
162
- world_size = max(world_size)
163
-
164
- if world_size != total_files:
165
- raise ValueError(
166
- f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
- "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
- )
169
-
170
- # the groups are named differently in each stage
171
- if zero_stage <= 2:
172
- fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
- elif zero_stage == 3:
174
- fp32_groups_key = FP32_FLAT_GROUPS
175
- else:
176
- raise ValueError(f"unknown zero stage {zero_stage}")
177
-
178
- if zero_stage <= 2:
179
- fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
- elif zero_stage == 3:
181
- # if there is more than one param group, there will be multiple flattened tensors - one
182
- # flattened tensor per group - for simplicity merge them into a single tensor
183
- #
184
- # XXX: could make the script more memory efficient for when there are multiple groups - it
185
- # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
-
187
- fp32_flat_groups = [
188
- torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
- ]
190
-
191
- return zero_stage, world_size, fp32_flat_groups
192
-
193
-
194
- def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
- """
196
- Returns fp32 state_dict reconstructed from ds checkpoint
197
-
198
- Args:
199
- - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
-
201
- """
202
- print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
-
204
- optim_files = get_optim_files(ds_checkpoint_dir)
205
- zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
- print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
-
208
- model_files = get_model_state_files(ds_checkpoint_dir)
209
-
210
- zero_model_states = parse_model_states(model_files)
211
- print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
-
213
- if zero_stage <= 2:
214
- return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
- elif zero_stage == 3:
216
- return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
-
218
-
219
- def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
- if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
- return
222
-
223
- frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
- frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
-
226
- if debug:
227
- num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
- print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
-
230
- wanted_params = len(frozen_param_shapes)
231
- wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
- avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
- print(f'Frozen params: Have {avail_numel} numels to process.')
234
- print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
-
236
- total_params = 0
237
- total_numel = 0
238
- for name, shape in frozen_param_shapes.items():
239
- total_params += 1
240
- unpartitioned_numel = shape.numel()
241
- total_numel += unpartitioned_numel
242
-
243
- state_dict[name] = frozen_param_fragments[name]
244
-
245
- if debug:
246
- print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
-
248
- print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
-
250
-
251
- def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
252
- param_shapes = zero_model_states[0].param_shapes
253
-
254
- # Reconstruction protocol:
255
- #
256
- # XXX: document this
257
-
258
- if debug:
259
- for i in range(world_size):
260
- for j in range(len(fp32_flat_groups[0])):
261
- print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
262
-
263
- # XXX: memory usage doubles here (zero2)
264
- num_param_groups = len(fp32_flat_groups[0])
265
- merged_single_partition_of_fp32_groups = []
266
- for i in range(num_param_groups):
267
- merged_partitions = [sd[i] for sd in fp32_flat_groups]
268
- full_single_fp32_vector = torch.cat(merged_partitions, 0)
269
- merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
270
- avail_numel = sum(
271
- [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
272
-
273
- if debug:
274
- wanted_params = sum([len(shapes) for shapes in param_shapes])
275
- wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
276
- # not asserting if there is a mismatch due to possible padding
277
- print(f"Have {avail_numel} numels to process.")
278
- print(f"Need {wanted_numel} numels in {wanted_params} params.")
279
-
280
- # params
281
- # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
282
- # out-of-core computing solution
283
- total_numel = 0
284
- total_params = 0
285
- for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
286
- offset = 0
287
- avail_numel = full_single_fp32_vector.numel()
288
- for name, shape in shapes.items():
289
-
290
- unpartitioned_numel = shape.numel()
291
- total_numel += unpartitioned_numel
292
- total_params += 1
293
-
294
- if debug:
295
- print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
296
- state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
297
- offset += unpartitioned_numel
298
-
299
- # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
300
- # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
301
- # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
302
- # live optimizer object, so we are checking that the numbers are within the right range
303
- align_to = 2 * world_size
304
-
305
- def zero2_align(x):
306
- return align_to * math.ceil(x / align_to)
307
-
308
- if debug:
309
- print(f"original offset={offset}, avail_numel={avail_numel}")
310
-
311
- offset = zero2_align(offset)
312
- avail_numel = zero2_align(avail_numel)
313
-
314
- if debug:
315
- print(f"aligned offset={offset}, avail_numel={avail_numel}")
316
-
317
- # Sanity check
318
- if offset != avail_numel:
319
- raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
320
-
321
- print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
322
-
323
-
324
- def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
325
- state_dict = OrderedDict()
326
-
327
- # buffers
328
- buffers = zero_model_states[0].buffers
329
- state_dict.update(buffers)
330
- if debug:
331
- print(f"added {len(buffers)} buffers")
332
-
333
- _zero2_merge_frozen_params(state_dict, zero_model_states)
334
-
335
- _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
336
-
337
- # recover shared parameters
338
- for pair in zero_model_states[0].shared_params:
339
- if pair[1] in state_dict:
340
- state_dict[pair[0]] = state_dict[pair[1]]
341
-
342
- return state_dict
343
-
344
-
345
- def zero3_partitioned_param_info(unpartitioned_numel, world_size):
346
- remainder = unpartitioned_numel % world_size
347
- padding_numel = (world_size - remainder) if remainder else 0
348
- partitioned_numel = math.ceil(unpartitioned_numel / world_size)
349
- return partitioned_numel, padding_numel
350
-
351
-
352
- def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
353
- if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
354
- return
355
-
356
- if debug:
357
- for i in range(world_size):
358
- num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
359
- print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
360
-
361
- frozen_param_shapes = zero_model_states[0].frozen_param_shapes
362
- wanted_params = len(frozen_param_shapes)
363
- wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
364
- avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
365
- print(f'Frozen params: Have {avail_numel} numels to process.')
366
- print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
367
-
368
- total_params = 0
369
- total_numel = 0
370
- for name, shape in zero_model_states[0].frozen_param_shapes.items():
371
- total_params += 1
372
- unpartitioned_numel = shape.numel()
373
- total_numel += unpartitioned_numel
374
-
375
- param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
376
- state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
377
-
378
- partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
379
-
380
- if debug:
381
- print(
382
- f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
383
- )
384
-
385
- print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
386
-
387
-
388
- def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
389
- param_shapes = zero_model_states[0].param_shapes
390
- avail_numel = fp32_flat_groups[0].numel() * world_size
391
- # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
392
- # param, re-consolidating each param, while dealing with padding if any
393
-
394
- # merge list of dicts, preserving order
395
- param_shapes = {k: v for d in param_shapes for k, v in d.items()}
396
-
397
- if debug:
398
- for i in range(world_size):
399
- print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
400
-
401
- wanted_params = len(param_shapes)
402
- wanted_numel = sum(shape.numel() for shape in param_shapes.values())
403
- # not asserting if there is a mismatch due to possible padding
404
- avail_numel = fp32_flat_groups[0].numel() * world_size
405
- print(f"Trainable params: Have {avail_numel} numels to process.")
406
- print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
407
-
408
- # params
409
- # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
410
- # out-of-core computing solution
411
- offset = 0
412
- total_numel = 0
413
- total_params = 0
414
- for name, shape in param_shapes.items():
415
-
416
- unpartitioned_numel = shape.numel()
417
- total_numel += unpartitioned_numel
418
- total_params += 1
419
-
420
- partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
421
-
422
- if debug:
423
- print(
424
- f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
425
- )
426
-
427
- # XXX: memory usage doubles here
428
- state_dict[name] = torch.cat(
429
- tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
430
- 0).narrow(0, 0, unpartitioned_numel).view(shape)
431
- offset += partitioned_numel
432
-
433
- offset *= world_size
434
-
435
- # Sanity check
436
- if offset != avail_numel:
437
- raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
438
-
439
- print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
440
-
441
-
442
- def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
443
- state_dict = OrderedDict()
444
-
445
- # buffers
446
- buffers = zero_model_states[0].buffers
447
- state_dict.update(buffers)
448
- if debug:
449
- print(f"added {len(buffers)} buffers")
450
-
451
- _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
452
-
453
- _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
454
-
455
- # recover shared parameters
456
- for pair in zero_model_states[0].shared_params:
457
- if pair[1] in state_dict:
458
- state_dict[pair[0]] = state_dict[pair[1]]
459
-
460
- return state_dict
461
-
462
-
463
- def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
464
- """
465
- Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
466
- ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
467
- via a model hub.
468
-
469
- Args:
470
- - ``checkpoint_dir``: path to the desired checkpoint folder
471
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
472
-
473
- Returns:
474
- - pytorch ``state_dict``
475
-
476
- Note: this approach may not work if your application doesn't have sufficient free CPU memory and
477
- you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
478
- the checkpoint.
479
-
480
- A typical usage might be ::
481
-
482
- from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
483
- # do the training and checkpoint saving
484
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
485
- model = model.cpu() # move to cpu
486
- model.load_state_dict(state_dict)
487
- # submit to model hub or save the model to share with others
488
-
489
- In this example the ``model`` will no longer be usable in the deepspeed context of the same
490
- application. i.e. you will need to re-initialize the deepspeed engine, since
491
- ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
492
-
493
- If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
494
-
495
- """
496
- if tag is None:
497
- latest_path = os.path.join(checkpoint_dir, 'latest')
498
- if os.path.isfile(latest_path):
499
- with open(latest_path, 'r') as fd:
500
- tag = fd.read().strip()
501
- else:
502
- raise ValueError(f"Unable to find 'latest' file at {latest_path}")
503
-
504
- ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
505
-
506
- if not os.path.isdir(ds_checkpoint_dir):
507
- raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
508
-
509
- return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
510
-
511
-
512
- def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
513
- """
514
- Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
515
- loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
516
-
517
- Args:
518
- - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
519
- - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
520
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
521
- """
522
-
523
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
524
- print(f"Saving fp32 state dict to {output_file}")
525
- torch.save(state_dict, output_file)
526
-
527
-
528
- def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
529
- """
530
- 1. Put the provided model to cpu
531
- 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
532
- 3. Load it into the provided model
533
-
534
- Args:
535
- - ``model``: the model object to update
536
- - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
537
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
538
-
539
- Returns:
540
- - ``model`: modified model
541
-
542
- Make sure you have plenty of CPU memory available before you call this function. If you don't
543
- have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
544
- conveniently placed for you in the checkpoint folder.
545
-
546
- A typical usage might be ::
547
-
548
- from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
549
- model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
550
- # submit to model hub or save the model to share with others
551
-
552
- Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
553
- of the same application. i.e. you will need to re-initialize the deepspeed engine, since
554
- ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
555
-
556
- """
557
- logger.info(f"Extracting fp32 weights")
558
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
559
-
560
- logger.info(f"Overwriting model with fp32 weights")
561
- model = model.cpu()
562
- model.load_state_dict(state_dict, strict=False)
563
-
564
- return model
565
-
566
-
567
- if __name__ == "__main__":
568
-
569
- parser = argparse.ArgumentParser()
570
- parser.add_argument("checkpoint_dir",
571
- type=str,
572
- help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
573
- parser.add_argument(
574
- "output_file",
575
- type=str,
576
- help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
577
- parser.add_argument("-t",
578
- "--tag",
579
- type=str,
580
- default=None,
581
- help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
582
- parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
583
- args = parser.parse_args()
584
-
585
- debug = args.debug
586
-
587
- convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
hf_model/added_tokens.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<im_end>": 32002,
3
+ "<im_patch>": 32000,
4
+ "<im_start>": 32001,
5
+ "[SEG0]": 32003,
6
+ "[SEG1]": 32004,
7
+ "[SEG2]": 32005,
8
+ "[SEG3]": 32006,
9
+ "[SEG4]": 32007,
10
+ "[SEG5]": 32008
11
+ }
hf_model/config.json ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./ckpt/Llava-7B-V1-1/",
3
+ "architectures": [
4
+ "PixelLMForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "freeze_mm_mlp_adapter": true,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "image_aspect_ratio": "square",
12
+ "image_feature_scale_num": 2,
13
+ "image_grid_pinpoints": null,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 11008,
16
+ "max_position_embeddings": 2048,
17
+ "max_sequence_length": 2048,
18
+ "mm_hidden_size": 1024,
19
+ "mm_hidden_size_config_from_config": 1280,
20
+ "mm_projector_hidden_dim": 2,
21
+ "mm_projector_out_dim": 1,
22
+ "mm_use_im_patch_token": false,
23
+ "mm_use_im_start_end": true,
24
+ "mm_vision_select_feature": "patch",
25
+ "mm_vision_select_layer": -2,
26
+ "mm_vision_tower": "openai/clip-vit-large-patch14-336",
27
+ "mm_vision_tower_config": "/mnt/bn/panxuran/LISA/configs/vit_huge_p16.json",
28
+ "model_type": "llava",
29
+ "num_attention_heads": 32,
30
+ "num_hidden_layers": 32,
31
+ "num_key_value_heads": 32,
32
+ "out_dim": 256,
33
+ "pad_token_id": 0,
34
+ "pad_train_clip_images": true,
35
+ "pretrain_mm_mlp_adapter": null,
36
+ "pretraining_tp": 1,
37
+ "resize_vision_tower": true,
38
+ "resize_vision_tower_size": 448,
39
+ "rms_norm_eps": 1e-06,
40
+ "rope_scaling": null,
41
+ "separate_mm_projector": true,
42
+ "tie_word_embeddings": false,
43
+ "torch_dtype": "bfloat16",
44
+ "train_mask_decoder": true,
45
+ "transformers_version": "4.31.0",
46
+ "tune_mm_mlp_adapter": false,
47
+ "use_cache": false,
48
+ "use_mm_proj": true,
49
+ "vision_tower": "openai/clip-vit-large-patch14-336",
50
+ "vision_tower_for_mask": true,
51
+ "vocab_size": 32009
52
+ }
hf_model/generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "eos_token_id": 1,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.31.0"
7
+ }
ckpt_model/global_step5000/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt → hf_model/pytorch_model-00001-of-00002.bin RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:252541ca9a4d07c9d08ff1a391b22e177078504247dcee2772532111074b6d31
3
- size 563590800
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99a76b478a32ccc9d33415d1ef55496f9725d40379effee2bb7383f7cd2e56bd
3
+ size 9976708773
ckpt_model/global_step5000/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt → hf_model/pytorch_model-00002-of-00002.bin RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:455f2857330fdc0e791e3d84db1b3186982f9330ca6c0bff088d727a9c1e868a
3
- size 563604624
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72a03e8007d4633c6923b34a707ddbe996c272f8989d675b89e308cd5656e93f
3
+ size 3776490367
hf_model/pytorch_model.bin.index.json ADDED
@@ -0,0 +1,571 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 13753001152
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00002-of-00002.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00002.bin",
8
+ "model.image_feature_neck.0.weight": "pytorch_model-00002-of-00002.bin",
9
+ "model.image_feature_neck.1.bias": "pytorch_model-00002-of-00002.bin",
10
+ "model.image_feature_neck.1.weight": "pytorch_model-00002-of-00002.bin",
11
+ "model.image_feature_neck.2.weight": "pytorch_model-00002-of-00002.bin",
12
+ "model.image_feature_neck.3.bias": "pytorch_model-00002-of-00002.bin",
13
+ "model.image_feature_neck.3.weight": "pytorch_model-00002-of-00002.bin",
14
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
15
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
16
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
17
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
18
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
19
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
20
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
21
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
22
+ "model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
23
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
24
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
25
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
26
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
27
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
28
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
29
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
30
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
31
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
32
+ "model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
33
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
34
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
35
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
36
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
37
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
38
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
39
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
40
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
41
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
42
+ "model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
43
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
44
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
45
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
46
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
47
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
48
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
49
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
50
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
51
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
52
+ "model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
53
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
54
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
55
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
56
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
57
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
58
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
59
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
60
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
61
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
62
+ "model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
63
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
64
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
65
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
66
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
67
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
68
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
69
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
70
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
71
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
72
+ "model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
73
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
74
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
75
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
76
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
77
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
78
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
79
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
80
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
81
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
82
+ "model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
83
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
84
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
85
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
86
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
87
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
88
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
89
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
90
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
91
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
92
+ "model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
93
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
94
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
95
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
96
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
97
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
98
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
99
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
100
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
101
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
102
+ "model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
103
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
104
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
105
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
106
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
107
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
108
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
109
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
110
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
111
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
112
+ "model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
113
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
114
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
115
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
116
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
117
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
118
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
119
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
120
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
121
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
122
+ "model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
123
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
124
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
125
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
126
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
127
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
128
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
129
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
130
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
131
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
132
+ "model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
133
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
134
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
135
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
136
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
137
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
138
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
139
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
140
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
141
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
142
+ "model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
143
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
144
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
145
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
146
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
147
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
148
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
149
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
150
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
151
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
152
+ "model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
153
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
154
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
155
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
156
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
157
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
158
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
159
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
160
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
161
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
162
+ "model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
163
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
164
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
165
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
166
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
167
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
168
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
169
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
170
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
171
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
172
+ "model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
173
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
174
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
175
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
176
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
177
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
178
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
179
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
180
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
181
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
182
+ "model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
183
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
184
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
185
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
186
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
187
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
188
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
189
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
190
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
191
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
192
+ "model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
193
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
194
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
195
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
196
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
197
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
198
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
199
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
200
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
201
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
202
+ "model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
203
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
204
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
205
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
206
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
207
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
208
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
209
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
210
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
211
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
212
+ "model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
213
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
214
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
215
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
216
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
217
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
218
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
219
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
220
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
221
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
222
+ "model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
223
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
224
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
225
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
226
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
227
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
228
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
229
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
230
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
231
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
232
+ "model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
233
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
234
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
235
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
236
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
237
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
238
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
239
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
240
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
241
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
242
+ "model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
243
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
244
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
245
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
246
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
247
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
248
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
249
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
250
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
251
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
252
+ "model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
253
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
254
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
255
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
256
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
257
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
258
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
259
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
260
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
261
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
262
+ "model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
263
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
264
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
265
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
266
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
267
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
268
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
269
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
270
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
271
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
272
+ "model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
273
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
274
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
275
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
276
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
277
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
278
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
279
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
280
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
281
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
282
+ "model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
283
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
284
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
285
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
286
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
287
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
288
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
289
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
290
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
291
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
292
+ "model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
293
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
294
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
295
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
296
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
297
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
298
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
299
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
300
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
301
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
302
+ "model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
303
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
304
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
305
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
306
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
307
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
308
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
309
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
310
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
311
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
312
+ "model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
313
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
314
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
315
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
316
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
317
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
318
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
319
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
320
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
321
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
322
+ "model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
323
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
324
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
325
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
326
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
327
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
328
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
329
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
330
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
331
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
332
+ "model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
333
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
334
+ "model.mask_decoder.iou_prediction_head.layers.0.bias": "pytorch_model-00002-of-00002.bin",
335
+ "model.mask_decoder.iou_prediction_head.layers.0.weight": "pytorch_model-00002-of-00002.bin",
336
+ "model.mask_decoder.iou_prediction_head.layers.1.bias": "pytorch_model-00002-of-00002.bin",
337
+ "model.mask_decoder.iou_prediction_head.layers.1.weight": "pytorch_model-00002-of-00002.bin",
338
+ "model.mask_decoder.iou_prediction_head.layers.2.bias": "pytorch_model-00002-of-00002.bin",
339
+ "model.mask_decoder.iou_prediction_head.layers.2.weight": "pytorch_model-00002-of-00002.bin",
340
+ "model.mask_decoder.iou_token.weight": "pytorch_model-00002-of-00002.bin",
341
+ "model.mask_decoder.level_embed.weight": "pytorch_model-00002-of-00002.bin",
342
+ "model.mask_decoder.mask_tokens.weight": "pytorch_model-00002-of-00002.bin",
343
+ "model.mask_decoder.output_hypernetworks_mlps.0.layers.0.bias": "pytorch_model-00002-of-00002.bin",
344
+ "model.mask_decoder.output_hypernetworks_mlps.0.layers.0.weight": "pytorch_model-00002-of-00002.bin",
345
+ "model.mask_decoder.output_hypernetworks_mlps.0.layers.1.bias": "pytorch_model-00002-of-00002.bin",
346
+ "model.mask_decoder.output_hypernetworks_mlps.0.layers.1.weight": "pytorch_model-00002-of-00002.bin",
347
+ "model.mask_decoder.output_hypernetworks_mlps.0.layers.2.bias": "pytorch_model-00002-of-00002.bin",
348
+ "model.mask_decoder.output_hypernetworks_mlps.0.layers.2.weight": "pytorch_model-00002-of-00002.bin",
349
+ "model.mask_decoder.output_hypernetworks_mlps.1.layers.0.bias": "pytorch_model-00002-of-00002.bin",
350
+ "model.mask_decoder.output_hypernetworks_mlps.1.layers.0.weight": "pytorch_model-00002-of-00002.bin",
351
+ "model.mask_decoder.output_hypernetworks_mlps.1.layers.1.bias": "pytorch_model-00002-of-00002.bin",
352
+ "model.mask_decoder.output_hypernetworks_mlps.1.layers.1.weight": "pytorch_model-00002-of-00002.bin",
353
+ "model.mask_decoder.output_hypernetworks_mlps.1.layers.2.bias": "pytorch_model-00002-of-00002.bin",
354
+ "model.mask_decoder.output_hypernetworks_mlps.1.layers.2.weight": "pytorch_model-00002-of-00002.bin",
355
+ "model.mask_decoder.output_hypernetworks_mlps.2.layers.0.bias": "pytorch_model-00002-of-00002.bin",
356
+ "model.mask_decoder.output_hypernetworks_mlps.2.layers.0.weight": "pytorch_model-00002-of-00002.bin",
357
+ "model.mask_decoder.output_hypernetworks_mlps.2.layers.1.bias": "pytorch_model-00002-of-00002.bin",
358
+ "model.mask_decoder.output_hypernetworks_mlps.2.layers.1.weight": "pytorch_model-00002-of-00002.bin",
359
+ "model.mask_decoder.output_hypernetworks_mlps.2.layers.2.bias": "pytorch_model-00002-of-00002.bin",
360
+ "model.mask_decoder.output_hypernetworks_mlps.2.layers.2.weight": "pytorch_model-00002-of-00002.bin",
361
+ "model.mask_decoder.output_hypernetworks_mlps.3.layers.0.bias": "pytorch_model-00002-of-00002.bin",
362
+ "model.mask_decoder.output_hypernetworks_mlps.3.layers.0.weight": "pytorch_model-00002-of-00002.bin",
363
+ "model.mask_decoder.output_hypernetworks_mlps.3.layers.1.bias": "pytorch_model-00002-of-00002.bin",
364
+ "model.mask_decoder.output_hypernetworks_mlps.3.layers.1.weight": "pytorch_model-00002-of-00002.bin",
365
+ "model.mask_decoder.output_hypernetworks_mlps.3.layers.2.bias": "pytorch_model-00002-of-00002.bin",
366
+ "model.mask_decoder.output_hypernetworks_mlps.3.layers.2.weight": "pytorch_model-00002-of-00002.bin",
367
+ "model.mask_decoder.output_upscaling.0.bias": "pytorch_model-00002-of-00002.bin",
368
+ "model.mask_decoder.output_upscaling.0.weight": "pytorch_model-00002-of-00002.bin",
369
+ "model.mask_decoder.output_upscaling.1.bias": "pytorch_model-00002-of-00002.bin",
370
+ "model.mask_decoder.output_upscaling.1.weight": "pytorch_model-00002-of-00002.bin",
371
+ "model.mask_decoder.pe1.positional_encoding_gaussian_matrix": "pytorch_model-00002-of-00002.bin",
372
+ "model.mask_decoder.transformer.0.final_attn_token_to_image.k_proj.bias": "pytorch_model-00002-of-00002.bin",
373
+ "model.mask_decoder.transformer.0.final_attn_token_to_image.k_proj.weight": "pytorch_model-00002-of-00002.bin",
374
+ "model.mask_decoder.transformer.0.final_attn_token_to_image.out_proj.bias": "pytorch_model-00002-of-00002.bin",
375
+ "model.mask_decoder.transformer.0.final_attn_token_to_image.out_proj.weight": "pytorch_model-00002-of-00002.bin",
376
+ "model.mask_decoder.transformer.0.final_attn_token_to_image.q_proj.bias": "pytorch_model-00002-of-00002.bin",
377
+ "model.mask_decoder.transformer.0.final_attn_token_to_image.q_proj.weight": "pytorch_model-00002-of-00002.bin",
378
+ "model.mask_decoder.transformer.0.final_attn_token_to_image.v_proj.bias": "pytorch_model-00002-of-00002.bin",
379
+ "model.mask_decoder.transformer.0.final_attn_token_to_image.v_proj.weight": "pytorch_model-00002-of-00002.bin",
380
+ "model.mask_decoder.transformer.0.layers.0.cross_attn_image_to_token.k_proj.bias": "pytorch_model-00002-of-00002.bin",
381
+ "model.mask_decoder.transformer.0.layers.0.cross_attn_image_to_token.k_proj.weight": "pytorch_model-00002-of-00002.bin",
382
+ "model.mask_decoder.transformer.0.layers.0.cross_attn_image_to_token.out_proj.bias": "pytorch_model-00002-of-00002.bin",
383
+ "model.mask_decoder.transformer.0.layers.0.cross_attn_image_to_token.out_proj.weight": "pytorch_model-00002-of-00002.bin",
384
+ "model.mask_decoder.transformer.0.layers.0.cross_attn_image_to_token.q_proj.bias": "pytorch_model-00002-of-00002.bin",
385
+ "model.mask_decoder.transformer.0.layers.0.cross_attn_image_to_token.q_proj.weight": "pytorch_model-00002-of-00002.bin",
386
+ "model.mask_decoder.transformer.0.layers.0.cross_attn_image_to_token.v_proj.bias": "pytorch_model-00002-of-00002.bin",
387
+ "model.mask_decoder.transformer.0.layers.0.cross_attn_image_to_token.v_proj.weight": "pytorch_model-00002-of-00002.bin",
388
+ "model.mask_decoder.transformer.0.layers.0.cross_attn_token_to_image.k_proj.bias": "pytorch_model-00002-of-00002.bin",
389
+ "model.mask_decoder.transformer.0.layers.0.cross_attn_token_to_image.k_proj.weight": "pytorch_model-00002-of-00002.bin",
390
+ "model.mask_decoder.transformer.0.layers.0.cross_attn_token_to_image.out_proj.bias": "pytorch_model-00002-of-00002.bin",
391
+ "model.mask_decoder.transformer.0.layers.0.cross_attn_token_to_image.out_proj.weight": "pytorch_model-00002-of-00002.bin",
392
+ "model.mask_decoder.transformer.0.layers.0.cross_attn_token_to_image.q_proj.bias": "pytorch_model-00002-of-00002.bin",
393
+ "model.mask_decoder.transformer.0.layers.0.cross_attn_token_to_image.q_proj.weight": "pytorch_model-00002-of-00002.bin",
394
+ "model.mask_decoder.transformer.0.layers.0.cross_attn_token_to_image.v_proj.bias": "pytorch_model-00002-of-00002.bin",
395
+ "model.mask_decoder.transformer.0.layers.0.cross_attn_token_to_image.v_proj.weight": "pytorch_model-00002-of-00002.bin",
396
+ "model.mask_decoder.transformer.0.layers.0.mlp.lin1.bias": "pytorch_model-00002-of-00002.bin",
397
+ "model.mask_decoder.transformer.0.layers.0.mlp.lin1.weight": "pytorch_model-00002-of-00002.bin",
398
+ "model.mask_decoder.transformer.0.layers.0.mlp.lin2.bias": "pytorch_model-00002-of-00002.bin",
399
+ "model.mask_decoder.transformer.0.layers.0.mlp.lin2.weight": "pytorch_model-00002-of-00002.bin",
400
+ "model.mask_decoder.transformer.0.layers.0.norm1.bias": "pytorch_model-00002-of-00002.bin",
401
+ "model.mask_decoder.transformer.0.layers.0.norm1.weight": "pytorch_model-00002-of-00002.bin",
402
+ "model.mask_decoder.transformer.0.layers.0.norm2.bias": "pytorch_model-00002-of-00002.bin",
403
+ "model.mask_decoder.transformer.0.layers.0.norm2.weight": "pytorch_model-00002-of-00002.bin",
404
+ "model.mask_decoder.transformer.0.layers.0.norm3.bias": "pytorch_model-00002-of-00002.bin",
405
+ "model.mask_decoder.transformer.0.layers.0.norm3.weight": "pytorch_model-00002-of-00002.bin",
406
+ "model.mask_decoder.transformer.0.layers.0.norm4.bias": "pytorch_model-00002-of-00002.bin",
407
+ "model.mask_decoder.transformer.0.layers.0.norm4.weight": "pytorch_model-00002-of-00002.bin",
408
+ "model.mask_decoder.transformer.0.layers.0.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
409
+ "model.mask_decoder.transformer.0.layers.0.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
410
+ "model.mask_decoder.transformer.0.layers.0.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
411
+ "model.mask_decoder.transformer.0.layers.0.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
412
+ "model.mask_decoder.transformer.0.layers.0.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
413
+ "model.mask_decoder.transformer.0.layers.0.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
414
+ "model.mask_decoder.transformer.0.layers.0.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
415
+ "model.mask_decoder.transformer.0.layers.0.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
416
+ "model.mask_decoder.transformer.0.layers.1.cross_attn_image_to_token.k_proj.bias": "pytorch_model-00002-of-00002.bin",
417
+ "model.mask_decoder.transformer.0.layers.1.cross_attn_image_to_token.k_proj.weight": "pytorch_model-00002-of-00002.bin",
418
+ "model.mask_decoder.transformer.0.layers.1.cross_attn_image_to_token.out_proj.bias": "pytorch_model-00002-of-00002.bin",
419
+ "model.mask_decoder.transformer.0.layers.1.cross_attn_image_to_token.out_proj.weight": "pytorch_model-00002-of-00002.bin",
420
+ "model.mask_decoder.transformer.0.layers.1.cross_attn_image_to_token.q_proj.bias": "pytorch_model-00002-of-00002.bin",
421
+ "model.mask_decoder.transformer.0.layers.1.cross_attn_image_to_token.q_proj.weight": "pytorch_model-00002-of-00002.bin",
422
+ "model.mask_decoder.transformer.0.layers.1.cross_attn_image_to_token.v_proj.bias": "pytorch_model-00002-of-00002.bin",
423
+ "model.mask_decoder.transformer.0.layers.1.cross_attn_image_to_token.v_proj.weight": "pytorch_model-00002-of-00002.bin",
424
+ "model.mask_decoder.transformer.0.layers.1.cross_attn_token_to_image.k_proj.bias": "pytorch_model-00002-of-00002.bin",
425
+ "model.mask_decoder.transformer.0.layers.1.cross_attn_token_to_image.k_proj.weight": "pytorch_model-00002-of-00002.bin",
426
+ "model.mask_decoder.transformer.0.layers.1.cross_attn_token_to_image.out_proj.bias": "pytorch_model-00002-of-00002.bin",
427
+ "model.mask_decoder.transformer.0.layers.1.cross_attn_token_to_image.out_proj.weight": "pytorch_model-00002-of-00002.bin",
428
+ "model.mask_decoder.transformer.0.layers.1.cross_attn_token_to_image.q_proj.bias": "pytorch_model-00002-of-00002.bin",
429
+ "model.mask_decoder.transformer.0.layers.1.cross_attn_token_to_image.q_proj.weight": "pytorch_model-00002-of-00002.bin",
430
+ "model.mask_decoder.transformer.0.layers.1.cross_attn_token_to_image.v_proj.bias": "pytorch_model-00002-of-00002.bin",
431
+ "model.mask_decoder.transformer.0.layers.1.cross_attn_token_to_image.v_proj.weight": "pytorch_model-00002-of-00002.bin",
432
+ "model.mask_decoder.transformer.0.layers.1.mlp.lin1.bias": "pytorch_model-00002-of-00002.bin",
433
+ "model.mask_decoder.transformer.0.layers.1.mlp.lin1.weight": "pytorch_model-00002-of-00002.bin",
434
+ "model.mask_decoder.transformer.0.layers.1.mlp.lin2.bias": "pytorch_model-00002-of-00002.bin",
435
+ "model.mask_decoder.transformer.0.layers.1.mlp.lin2.weight": "pytorch_model-00002-of-00002.bin",
436
+ "model.mask_decoder.transformer.0.layers.1.norm1.bias": "pytorch_model-00002-of-00002.bin",
437
+ "model.mask_decoder.transformer.0.layers.1.norm1.weight": "pytorch_model-00002-of-00002.bin",
438
+ "model.mask_decoder.transformer.0.layers.1.norm2.bias": "pytorch_model-00002-of-00002.bin",
439
+ "model.mask_decoder.transformer.0.layers.1.norm2.weight": "pytorch_model-00002-of-00002.bin",
440
+ "model.mask_decoder.transformer.0.layers.1.norm3.bias": "pytorch_model-00002-of-00002.bin",
441
+ "model.mask_decoder.transformer.0.layers.1.norm3.weight": "pytorch_model-00002-of-00002.bin",
442
+ "model.mask_decoder.transformer.0.layers.1.norm4.bias": "pytorch_model-00002-of-00002.bin",
443
+ "model.mask_decoder.transformer.0.layers.1.norm4.weight": "pytorch_model-00002-of-00002.bin",
444
+ "model.mask_decoder.transformer.0.layers.1.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
445
+ "model.mask_decoder.transformer.0.layers.1.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
446
+ "model.mask_decoder.transformer.0.layers.1.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
447
+ "model.mask_decoder.transformer.0.layers.1.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
448
+ "model.mask_decoder.transformer.0.layers.1.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
449
+ "model.mask_decoder.transformer.0.layers.1.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
450
+ "model.mask_decoder.transformer.0.layers.1.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
451
+ "model.mask_decoder.transformer.0.layers.1.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
452
+ "model.mask_decoder.transformer.0.norm_final_attn.bias": "pytorch_model-00002-of-00002.bin",
453
+ "model.mask_decoder.transformer.0.norm_final_attn.weight": "pytorch_model-00002-of-00002.bin",
454
+ "model.mask_decoder.transformer.1.final_attn_token_to_image.k_proj.bias": "pytorch_model-00002-of-00002.bin",
455
+ "model.mask_decoder.transformer.1.final_attn_token_to_image.k_proj.weight": "pytorch_model-00002-of-00002.bin",
456
+ "model.mask_decoder.transformer.1.final_attn_token_to_image.out_proj.bias": "pytorch_model-00002-of-00002.bin",
457
+ "model.mask_decoder.transformer.1.final_attn_token_to_image.out_proj.weight": "pytorch_model-00002-of-00002.bin",
458
+ "model.mask_decoder.transformer.1.final_attn_token_to_image.q_proj.bias": "pytorch_model-00002-of-00002.bin",
459
+ "model.mask_decoder.transformer.1.final_attn_token_to_image.q_proj.weight": "pytorch_model-00002-of-00002.bin",
460
+ "model.mask_decoder.transformer.1.final_attn_token_to_image.v_proj.bias": "pytorch_model-00002-of-00002.bin",
461
+ "model.mask_decoder.transformer.1.final_attn_token_to_image.v_proj.weight": "pytorch_model-00002-of-00002.bin",
462
+ "model.mask_decoder.transformer.1.layers.0.cross_attn_image_to_token.k_proj.bias": "pytorch_model-00002-of-00002.bin",
463
+ "model.mask_decoder.transformer.1.layers.0.cross_attn_image_to_token.k_proj.weight": "pytorch_model-00002-of-00002.bin",
464
+ "model.mask_decoder.transformer.1.layers.0.cross_attn_image_to_token.out_proj.bias": "pytorch_model-00002-of-00002.bin",
465
+ "model.mask_decoder.transformer.1.layers.0.cross_attn_image_to_token.out_proj.weight": "pytorch_model-00002-of-00002.bin",
466
+ "model.mask_decoder.transformer.1.layers.0.cross_attn_image_to_token.q_proj.bias": "pytorch_model-00002-of-00002.bin",
467
+ "model.mask_decoder.transformer.1.layers.0.cross_attn_image_to_token.q_proj.weight": "pytorch_model-00002-of-00002.bin",
468
+ "model.mask_decoder.transformer.1.layers.0.cross_attn_image_to_token.v_proj.bias": "pytorch_model-00002-of-00002.bin",
469
+ "model.mask_decoder.transformer.1.layers.0.cross_attn_image_to_token.v_proj.weight": "pytorch_model-00002-of-00002.bin",
470
+ "model.mask_decoder.transformer.1.layers.0.cross_attn_token_to_image.k_proj.bias": "pytorch_model-00002-of-00002.bin",
471
+ "model.mask_decoder.transformer.1.layers.0.cross_attn_token_to_image.k_proj.weight": "pytorch_model-00002-of-00002.bin",
472
+ "model.mask_decoder.transformer.1.layers.0.cross_attn_token_to_image.out_proj.bias": "pytorch_model-00002-of-00002.bin",
473
+ "model.mask_decoder.transformer.1.layers.0.cross_attn_token_to_image.out_proj.weight": "pytorch_model-00002-of-00002.bin",
474
+ "model.mask_decoder.transformer.1.layers.0.cross_attn_token_to_image.q_proj.bias": "pytorch_model-00002-of-00002.bin",
475
+ "model.mask_decoder.transformer.1.layers.0.cross_attn_token_to_image.q_proj.weight": "pytorch_model-00002-of-00002.bin",
476
+ "model.mask_decoder.transformer.1.layers.0.cross_attn_token_to_image.v_proj.bias": "pytorch_model-00002-of-00002.bin",
477
+ "model.mask_decoder.transformer.1.layers.0.cross_attn_token_to_image.v_proj.weight": "pytorch_model-00002-of-00002.bin",
478
+ "model.mask_decoder.transformer.1.layers.0.mlp.lin1.bias": "pytorch_model-00002-of-00002.bin",
479
+ "model.mask_decoder.transformer.1.layers.0.mlp.lin1.weight": "pytorch_model-00002-of-00002.bin",
480
+ "model.mask_decoder.transformer.1.layers.0.mlp.lin2.bias": "pytorch_model-00002-of-00002.bin",
481
+ "model.mask_decoder.transformer.1.layers.0.mlp.lin2.weight": "pytorch_model-00002-of-00002.bin",
482
+ "model.mask_decoder.transformer.1.layers.0.norm1.bias": "pytorch_model-00002-of-00002.bin",
483
+ "model.mask_decoder.transformer.1.layers.0.norm1.weight": "pytorch_model-00002-of-00002.bin",
484
+ "model.mask_decoder.transformer.1.layers.0.norm2.bias": "pytorch_model-00002-of-00002.bin",
485
+ "model.mask_decoder.transformer.1.layers.0.norm2.weight": "pytorch_model-00002-of-00002.bin",
486
+ "model.mask_decoder.transformer.1.layers.0.norm3.bias": "pytorch_model-00002-of-00002.bin",
487
+ "model.mask_decoder.transformer.1.layers.0.norm3.weight": "pytorch_model-00002-of-00002.bin",
488
+ "model.mask_decoder.transformer.1.layers.0.norm4.bias": "pytorch_model-00002-of-00002.bin",
489
+ "model.mask_decoder.transformer.1.layers.0.norm4.weight": "pytorch_model-00002-of-00002.bin",
490
+ "model.mask_decoder.transformer.1.layers.0.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
491
+ "model.mask_decoder.transformer.1.layers.0.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
492
+ "model.mask_decoder.transformer.1.layers.0.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
493
+ "model.mask_decoder.transformer.1.layers.0.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
494
+ "model.mask_decoder.transformer.1.layers.0.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
495
+ "model.mask_decoder.transformer.1.layers.0.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
496
+ "model.mask_decoder.transformer.1.layers.0.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
497
+ "model.mask_decoder.transformer.1.layers.0.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
498
+ "model.mask_decoder.transformer.1.layers.1.cross_attn_image_to_token.k_proj.bias": "pytorch_model-00002-of-00002.bin",
499
+ "model.mask_decoder.transformer.1.layers.1.cross_attn_image_to_token.k_proj.weight": "pytorch_model-00002-of-00002.bin",
500
+ "model.mask_decoder.transformer.1.layers.1.cross_attn_image_to_token.out_proj.bias": "pytorch_model-00002-of-00002.bin",
501
+ "model.mask_decoder.transformer.1.layers.1.cross_attn_image_to_token.out_proj.weight": "pytorch_model-00002-of-00002.bin",
502
+ "model.mask_decoder.transformer.1.layers.1.cross_attn_image_to_token.q_proj.bias": "pytorch_model-00002-of-00002.bin",
503
+ "model.mask_decoder.transformer.1.layers.1.cross_attn_image_to_token.q_proj.weight": "pytorch_model-00002-of-00002.bin",
504
+ "model.mask_decoder.transformer.1.layers.1.cross_attn_image_to_token.v_proj.bias": "pytorch_model-00002-of-00002.bin",
505
+ "model.mask_decoder.transformer.1.layers.1.cross_attn_image_to_token.v_proj.weight": "pytorch_model-00002-of-00002.bin",
506
+ "model.mask_decoder.transformer.1.layers.1.cross_attn_token_to_image.k_proj.bias": "pytorch_model-00002-of-00002.bin",
507
+ "model.mask_decoder.transformer.1.layers.1.cross_attn_token_to_image.k_proj.weight": "pytorch_model-00002-of-00002.bin",
508
+ "model.mask_decoder.transformer.1.layers.1.cross_attn_token_to_image.out_proj.bias": "pytorch_model-00002-of-00002.bin",
509
+ "model.mask_decoder.transformer.1.layers.1.cross_attn_token_to_image.out_proj.weight": "pytorch_model-00002-of-00002.bin",
510
+ "model.mask_decoder.transformer.1.layers.1.cross_attn_token_to_image.q_proj.bias": "pytorch_model-00002-of-00002.bin",
511
+ "model.mask_decoder.transformer.1.layers.1.cross_attn_token_to_image.q_proj.weight": "pytorch_model-00002-of-00002.bin",
512
+ "model.mask_decoder.transformer.1.layers.1.cross_attn_token_to_image.v_proj.bias": "pytorch_model-00002-of-00002.bin",
513
+ "model.mask_decoder.transformer.1.layers.1.cross_attn_token_to_image.v_proj.weight": "pytorch_model-00002-of-00002.bin",
514
+ "model.mask_decoder.transformer.1.layers.1.mlp.lin1.bias": "pytorch_model-00002-of-00002.bin",
515
+ "model.mask_decoder.transformer.1.layers.1.mlp.lin1.weight": "pytorch_model-00002-of-00002.bin",
516
+ "model.mask_decoder.transformer.1.layers.1.mlp.lin2.bias": "pytorch_model-00002-of-00002.bin",
517
+ "model.mask_decoder.transformer.1.layers.1.mlp.lin2.weight": "pytorch_model-00002-of-00002.bin",
518
+ "model.mask_decoder.transformer.1.layers.1.norm1.bias": "pytorch_model-00002-of-00002.bin",
519
+ "model.mask_decoder.transformer.1.layers.1.norm1.weight": "pytorch_model-00002-of-00002.bin",
520
+ "model.mask_decoder.transformer.1.layers.1.norm2.bias": "pytorch_model-00002-of-00002.bin",
521
+ "model.mask_decoder.transformer.1.layers.1.norm2.weight": "pytorch_model-00002-of-00002.bin",
522
+ "model.mask_decoder.transformer.1.layers.1.norm3.bias": "pytorch_model-00002-of-00002.bin",
523
+ "model.mask_decoder.transformer.1.layers.1.norm3.weight": "pytorch_model-00002-of-00002.bin",
524
+ "model.mask_decoder.transformer.1.layers.1.norm4.bias": "pytorch_model-00002-of-00002.bin",
525
+ "model.mask_decoder.transformer.1.layers.1.norm4.weight": "pytorch_model-00002-of-00002.bin",
526
+ "model.mask_decoder.transformer.1.layers.1.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
527
+ "model.mask_decoder.transformer.1.layers.1.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
528
+ "model.mask_decoder.transformer.1.layers.1.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
529
+ "model.mask_decoder.transformer.1.layers.1.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
530
+ "model.mask_decoder.transformer.1.layers.1.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
531
+ "model.mask_decoder.transformer.1.layers.1.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
532
+ "model.mask_decoder.transformer.1.layers.1.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
533
+ "model.mask_decoder.transformer.1.layers.1.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
534
+ "model.mask_decoder.transformer.1.norm_final_attn.bias": "pytorch_model-00002-of-00002.bin",
535
+ "model.mask_decoder.transformer.1.norm_final_attn.weight": "pytorch_model-00002-of-00002.bin",
536
+ "model.mask_decoder.upsample_2x.0.bias": "pytorch_model-00002-of-00002.bin",
537
+ "model.mask_decoder.upsample_2x.0.weight": "pytorch_model-00002-of-00002.bin",
538
+ "model.mask_decoder.upsample_2x.1.bias": "pytorch_model-00002-of-00002.bin",
539
+ "model.mask_decoder.upsample_2x.1.weight": "pytorch_model-00002-of-00002.bin",
540
+ "model.mm_projector.0.bias": "pytorch_model-00002-of-00002.bin",
541
+ "model.mm_projector.0.weight": "pytorch_model-00002-of-00002.bin",
542
+ "model.mm_projector.2.bias": "pytorch_model-00002-of-00002.bin",
543
+ "model.mm_projector.2.weight": "pytorch_model-00002-of-00002.bin",
544
+ "model.norm.weight": "pytorch_model-00002-of-00002.bin",
545
+ "model.out_mm_projector.0.bias": "pytorch_model-00002-of-00002.bin",
546
+ "model.out_mm_projector.0.weight": "pytorch_model-00002-of-00002.bin",
547
+ "model.out_mm_projector.2.bias": "pytorch_model-00002-of-00002.bin",
548
+ "model.out_mm_projector.2.weight": "pytorch_model-00002-of-00002.bin",
549
+ "model.prompt_encoder.mask_downscaling.0.bias": "pytorch_model-00002-of-00002.bin",
550
+ "model.prompt_encoder.mask_downscaling.0.weight": "pytorch_model-00002-of-00002.bin",
551
+ "model.prompt_encoder.mask_downscaling.1.bias": "pytorch_model-00002-of-00002.bin",
552
+ "model.prompt_encoder.mask_downscaling.1.weight": "pytorch_model-00002-of-00002.bin",
553
+ "model.prompt_encoder.mask_downscaling.3.bias": "pytorch_model-00002-of-00002.bin",
554
+ "model.prompt_encoder.mask_downscaling.3.weight": "pytorch_model-00002-of-00002.bin",
555
+ "model.prompt_encoder.mask_downscaling.4.bias": "pytorch_model-00002-of-00002.bin",
556
+ "model.prompt_encoder.mask_downscaling.4.weight": "pytorch_model-00002-of-00002.bin",
557
+ "model.prompt_encoder.mask_downscaling.6.bias": "pytorch_model-00002-of-00002.bin",
558
+ "model.prompt_encoder.mask_downscaling.6.weight": "pytorch_model-00002-of-00002.bin",
559
+ "model.prompt_encoder.no_mask_embed.weight": "pytorch_model-00002-of-00002.bin",
560
+ "model.prompt_encoder.not_a_point_embed.weight": "pytorch_model-00002-of-00002.bin",
561
+ "model.prompt_encoder.pe_layer.positional_encoding_gaussian_matrix": "pytorch_model-00002-of-00002.bin",
562
+ "model.prompt_encoder.point_embeddings.0.weight": "pytorch_model-00002-of-00002.bin",
563
+ "model.prompt_encoder.point_embeddings.1.weight": "pytorch_model-00002-of-00002.bin",
564
+ "model.prompt_encoder.point_embeddings.2.weight": "pytorch_model-00002-of-00002.bin",
565
+ "model.prompt_encoder.point_embeddings.3.weight": "pytorch_model-00002-of-00002.bin",
566
+ "model.text_hidden_fcs.0.0.bias": "pytorch_model-00002-of-00002.bin",
567
+ "model.text_hidden_fcs.0.0.weight": "pytorch_model-00002-of-00002.bin",
568
+ "model.text_hidden_fcs.0.2.bias": "pytorch_model-00002-of-00002.bin",
569
+ "model.text_hidden_fcs.0.2.weight": "pytorch_model-00002-of-00002.bin"
570
+ }
571
+ }
hf_model/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<unk>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": true,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
ckpt_model/global_step5000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt → hf_model/tokenizer.model RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f8766ae7a2bc72f0cd368f677accead63a774d6f40572d53ad589d57cd6325b6
3
- size 563590800
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
hf_model/tokenizer_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "<s>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "clean_up_tokenization_spaces": false,
13
+ "eos_token": {
14
+ "__type": "AddedToken",
15
+ "content": "</s>",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "legacy": true,
22
+ "model_max_length": 512,
23
+ "pad_token": null,
24
+ "padding_side": "right",
25
+ "sp_model_kwargs": {},
26
+ "tokenizer_class": "LlamaTokenizer",
27
+ "unk_token": {
28
+ "__type": "AddedToken",
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false
34
+ }
35
+ }