mav23 commited on
Commit
1175c8f
·
verified ·
1 Parent(s): 56b5ab2

Upload folder using huggingface_hub

Browse files
Files changed (3) hide show
  1. .gitattributes +1 -0
  2. README.md +255 -0
  3. wizardcoder-33b-v1.1.Q4_0.gguf +3 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ wizardcoder-33b-v1.1.Q4_0.gguf filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,255 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ metrics:
3
+ - code_eval
4
+ library_name: transformers
5
+ tags:
6
+ - code
7
+ model-index:
8
+ - name: WizardCoder
9
+ results:
10
+ - task:
11
+ type: text-generation
12
+ dataset:
13
+ type: openai_humaneval
14
+ name: HumanEval
15
+ metrics:
16
+ - name: pass@1
17
+ type: pass@1
18
+ value: 0.799
19
+ verified: false
20
+ ---
21
+
22
+ ## WizardCoder: Empowering Code Large Language Models with Evol-Instruct
23
+
24
+ <p style="font-size:28px;" align="center">
25
+ 🏠 <a href="https://wizardlm.github.io/" target="_blank">Home Page</a> </p>
26
+ <p align="center">
27
+ <p align="center">
28
+ 🤗 <a href="https://huggingface.co/WizardLM" target="_blank">HF Repo</a> •🐱 <a href="https://github.com/nlpxucan/WizardLM" target="_blank">Github Repo</a> • 🐦 <a href="https://twitter.com/WizardLM_AI" target="_blank">Twitter</a> </p>
29
+ <p align="center">
30
+ 📃 <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a> • 📃 <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> • 📃 <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a> <br>
31
+ </p>
32
+ <p align="center">
33
+ 👋 Join our <a href="https://discord.gg/VZjjHtWrKs" target="_blank">Discord</a>
34
+ </p>
35
+
36
+ ## News
37
+
38
+ [2024/01/04] 🔥 We released **WizardCoder-33B-V1.1** trained from deepseek-coder-33b-base, the **SOTA OSS Code LLM** on [EvalPlus Leaderboard](https://evalplus.github.io/leaderboard.html), achieves **79.9 pass@1** on HumanEval, **73.2 pass@1** on HumanEval-Plus, **78.9 pass@1** on MBPP, and **66.9 pass@1** on MBPP-Plus.
39
+
40
+ [2024/01/04] 🔥 **WizardCoder-33B-V1.1** outperforms **ChatGPT 3.5**, **Gemini Pro**, and **DeepSeek-Coder-33B-instruct** on HumanEval and HumanEval-Plus pass@1.
41
+
42
+ [2024/01/04] 🔥 **WizardCoder-33B-V1.1** is comparable with **ChatGPT 3.5**, and surpasses **Gemini Pro** on MBPP and MBPP-Plus pass@1.
43
+
44
+ | Model | Checkpoint | Paper | HumanEval | HumanEval+ | MBPP | MBPP+ | License |
45
+ | ----- |------| ---- |------|-------| ----- | ----- |----- |
46
+ | GPT-4-Turbo (Nov 2023) | - | - | 85.4 | 81.7 | 83.0 | 70.7 |-|
47
+ | GPT-4 (May 2023) | - | - | 88.4 | 76.8 | - | - |-|
48
+ | GPT-3.5-Turbo (Nov 2023) | - | - | 72.6 | 65.9 | 81.7 | 69.4 |-|
49
+ | Gemini Pro | - | - | 63.4 | 55.5 | 72.9 | 57.9 |-|
50
+ | DeepSeek-Coder-33B-instruct | - | - | 78.7 | 72.6 | 78.7 | 66.7 |-|
51
+ | **WizardCoder-33B-V1.1** | 🤗 <a href="https://huggingface.co/WizardLM/WizardCoder-33B-V1.1" target="_blank">HF Link</a> | 📃 <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 79.9 | 73.2 | 78.9 | 66.9 | <a href="https://huggingface.co/WizardLM/WizardMath-7B-V1.1/resolve/main/LICENSE" target="_blank">MSFTResearch</a> |
52
+ | WizardCoder-Python-34B-V1.0 | 🤗 <a href="https://huggingface.co/WizardLM/WizardCoder-Python-34B-V1.0" target="_blank">HF Link</a> | 📃 <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 73.2 | 64.6 | 73.2 | 59.9 | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama2</a> |
53
+ | WizardCoder-15B-V1.0 | 🤗 <a href="https://huggingface.co/WizardLM/WizardCoder-15B-V1.0" target="_blank">HF Link</a> | 📃 <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 59.8 | 52.4 | -- | -- | <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a> |
54
+ | WizardCoder-Python-13B-V1.0 | 🤗 <a href="https://huggingface.co/WizardLM/WizardCoder-Python-13B-V1.0" target="_blank">HF Link</a> | 📃 <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 64.0 | -- | -- | -- | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama2</a> |
55
+ | WizardCoder-Python-7B-V1.0 | 🤗 <a href="https://huggingface.co/WizardLM/WizardCoder-Python-7B-V1.0" target="_blank">HF Link</a> | 📃 <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 55.5 | -- | -- | -- | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama2</a> |
56
+ | WizardCoder-3B-V1.0 | 🤗 <a href="https://huggingface.co/WizardLM/WizardCoder-3B-V1.0" target="_blank">HF Link</a> | 📃 <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 34.8 | -- | -- | -- | <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a> |
57
+ | WizardCoder-1B-V1.0 | 🤗 <a href="https://huggingface.co/WizardLM/WizardCoder-1B-V1.0" target="_blank">HF Link</a> | 📃 <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 23.8 | -- | -- | -- | <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a> |
58
+
59
+ ## How to Make the Training Data?
60
+
61
+ Apply our [Code Evol-Instruct](https://wizardlm.github.io/WizardCoder/) on [Code-Aplaca data](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k).
62
+
63
+
64
+ ## ❗ Data Contamination Check:
65
+
66
+ Before model training, we carefully and rigorously checked all the training data, and used multiple deduplication methods to verify and prevent data leakage on HumanEval and MBPP test set.
67
+
68
+ 🔥
69
+ ❗<b>Note for model system prompts usage:</b>
70
+
71
+ Please use **the same systems prompts strictly** with us, and we do not guarantee the accuracy of the **quantified versions**.
72
+
73
+ **Default version:**
74
+
75
+ ```
76
+ "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:"
77
+ ```
78
+
79
+
80
+ ## How to Reproduce the Performance of WizardCoder-33B-V1.1
81
+
82
+ We provide all codes [here](https://github.com/nlpxucan/WizardLM/tree/main/WizardCoder/src).
83
+
84
+ We also provide all generated [results](https://github.com/nlpxucan/WizardLM/blob/main/WizardCoder/data/humaneval_mbpp_wizardcoder33b_v1.1_results.zip).
85
+
86
+ ```
87
+ transformers==4.36.2
88
+ vllm==0.2.5
89
+ ```
90
+
91
+ (1) HumanEval and HumanEval-Plus
92
+
93
+ - Step 1
94
+
95
+ Code Generation (w/o accelerate)
96
+ ```bash
97
+ model="WizardLM/WizardCoder-33B-V1.1"
98
+ temp=0.0
99
+ max_len=2048
100
+ pred_num=1
101
+ num_seqs_per_iter=1
102
+
103
+ output_path=preds/T${temp}_N${pred_num}_WizardCoder-33B-V1.1_Greedy_Decode
104
+
105
+ mkdir -p ${output_path}
106
+ echo 'Output path: '$output_path
107
+ echo 'Model to eval: '$model
108
+
109
+ # 164 problems, 21 per GPU if GPU=8
110
+ index=0
111
+ gpu_num=8
112
+ for ((i = 0; i < $gpu_num; i++)); do
113
+ start_index=$((i * 21))
114
+ end_index=$(((i + 1) * 21))
115
+
116
+ gpu=$((i))
117
+ echo 'Running process #' ${i} 'from' $start_index 'to' $end_index 'on GPU' ${gpu}
118
+ ((index++))
119
+ (
120
+ CUDA_VISIBLE_DEVICES=$gpu python humaneval_gen.py --model ${model} \
121
+ --start_index ${start_index} --end_index ${end_index} --temperature ${temp} \
122
+ --num_seqs_per_iter ${num_seqs_per_iter} --N ${pred_num} --max_len ${max_len} --output_path ${output_path} --greedy_decode
123
+ ) &
124
+ if (($index % $gpu_num == 0)); then wait; fi
125
+ done
126
+ ```
127
+
128
+ Code Generation (w/ vllm accelerate)
129
+ ```bash
130
+ model="WizardLM/WizardCoder-33B-V1.1"
131
+ temp=0.0
132
+ max_len=2048
133
+ pred_num=1
134
+ num_seqs_per_iter=1
135
+
136
+ output_path=preds/T${temp}_N${pred_num}_WizardCoder-33B-V1.1_Greedy_Decode_vllm
137
+
138
+ mkdir -p ${output_path}
139
+ echo 'Output path: '$output_path
140
+ echo 'Model to eval: '$model
141
+
142
+ CUDA_VISIBLE_DEVICES=0,1,2,3 python humaneval_gen_vllm.py --model ${model} \
143
+ --start_index 0 --end_index 164 --temperature ${temp} \
144
+ --num_seqs_per_iter ${num_seqs_per_iter} --N ${pred_num} --max_len ${max_len} --output_path ${output_path} --num_gpus 4 --overwrite
145
+ ```
146
+
147
+ - Step 2: Get the score
148
+
149
+ Install [Eval-Plus](https://github.com/evalplus/evalplus) benchmark.
150
+ ```bash
151
+ git clone https://github.com/evalplus/evalplus.git
152
+ cd evalplus
153
+ export PYTHONPATH=$PYTHONPATH:$(pwd)
154
+ pip install -r requirements.txt
155
+ ```
156
+ Get HumanEval and HumanEval-Plus scores.
157
+ ```bash
158
+ output_path=preds/T0.0_N1_WizardCoder-33B-V1.1_Greedy_Decode
159
+
160
+ echo 'Output path: '$output_path
161
+ python process_humaneval.py --path ${output_path} --out_path ${output_path}.jsonl --add_prompt
162
+
163
+ evalplus.evaluate --dataset humaneval --samples ${output_path}.jsonl
164
+ ```
165
+
166
+ (2) MBPP and MBPP-Plus
167
+
168
+ The preprocessed questions are provided in [mbppplus.json](https://github.com/nlpxucan/WizardLM/blob/main/WizardCoder/data/mbppplus.json).
169
+
170
+ - Step 1
171
+
172
+ Code Generation (w/o accelerate)
173
+ ```bash
174
+ model="WizardLM/WizardCoder-33B-V1.1"
175
+ temp=0.0
176
+ max_len=2048
177
+ pred_num=1
178
+ num_seqs_per_iter=1
179
+
180
+ output_path=preds/MBPP_T${temp}_N${pred_num}_WizardCoder-33B-V1.1_Greedy_Decode
181
+
182
+ mkdir -p ${output_path}
183
+ echo 'Output path: '$output_path
184
+ echo 'Model to eval: '$model
185
+
186
+ # 399 problems, 50 per GPU if GPU=8
187
+ index=0
188
+ gpu_num=8
189
+ for ((i = 0; i < $gpu_num; i++)); do
190
+ start_index=$((i * 50))
191
+ end_index=$(((i + 1) * 50))
192
+
193
+ gpu=$((i))
194
+ echo 'Running process #' ${i} 'from' $start_index 'to' $end_index 'on GPU' ${gpu}
195
+ ((index++))
196
+ (
197
+ CUDA_VISIBLE_DEVICES=$gpu python mbppplus_gen.py --model ${model} \
198
+ --start_index ${start_index} --end_index ${end_index} --temperature ${temp} \
199
+ --num_seqs_per_iter ${num_seqs_per_iter} --N ${pred_num} --max_len ${max_len} --output_path ${output_path} --mbpp_path "mbppplus.json" --greedy_decode
200
+ ) &
201
+ if (($index % $gpu_num == 0)); then wait; fi
202
+ done
203
+ ```
204
+
205
+ Code Generation (w/ vllm accelerate)
206
+ ```bash
207
+ model="WizardLM/WizardCoder-33B-V1.1"
208
+ temp=0.0
209
+ max_len=2048
210
+ pred_num=1
211
+ num_seqs_per_iter=1
212
+
213
+ output_path=preds/MBPP_T${temp}_N${pred_num}_WizardCoder-33B-V1.1_Greedy_Decode_vllm
214
+
215
+ mkdir -p ${output_path}
216
+ echo 'Output path: '$output_path
217
+ echo 'Model to eval: '$model
218
+
219
+ CUDA_VISIBLE_DEVICES=0,1,2,3 python mbppplus_gen_vllm.py --model ${model} \
220
+ --start_index ${start_index} --end_index ${end_index} --temperature ${temp} \
221
+ --num_seqs_per_iter ${num_seqs_per_iter} --N ${pred_num} --max_len ${max_len} --output_path ${output_path} --mbpp_path "mbppplus.json" --num_gpus 4
222
+ ```
223
+
224
+ - Step 2: Get the score
225
+
226
+ Install [Eval-Plus](https://github.com/evalplus/evalplus) benchmark.
227
+ ```bash
228
+ git clone https://github.com/evalplus/evalplus.git
229
+ cd evalplus
230
+ export PYTHONPATH=$PYTHONPATH:$(pwd)
231
+ pip install -r requirements.txt
232
+ ```
233
+ Get HumanEval and HumanEval-Plus scores.
234
+ ```bash
235
+ output_path=preds/MBPP_T0.0_N1_WizardCoder-33B-V1.1_Greedy_Decode
236
+
237
+ echo 'Output path: '$output_path
238
+ python mbppplus_process_preds.py --path ${output_path} --out_path ${output_path}.jsonl --add_prompt
239
+
240
+ evalplus.evaluate --dataset mbpp --samples ${output_path}.jsonl
241
+ ```
242
+
243
+
244
+ ## Citation
245
+
246
+ Please cite the repo if you use the data, method or code in this repo.
247
+
248
+ ```
249
+ @article{luo2023wizardcoder,
250
+ title={WizardCoder: Empowering Code Large Language Models with Evol-Instruct},
251
+ author={Luo, Ziyang and Xu, Can and Zhao, Pu and Sun, Qingfeng and Geng, Xiubo and Hu, Wenxiang and Tao, Chongyang and Ma, Jing and Lin, Qingwei and Jiang, Daxin},
252
+ journal={arXiv preprint arXiv:2306.08568},
253
+ year={2023}
254
+ }
255
+ ```
wizardcoder-33b-v1.1.Q4_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ee796650e160f7b1fdacb67c2f105f00483fda61754371d776f45139fbcee09
3
+ size 18819311552