|
experiment_name = "unet_global_padding_nov_4" |
|
base_dir = "/exports/csce/eddie/eng/groups/DunnGroup/matthew/models_gelgenie" |
|
|
|
[processing] |
|
base_hardware = "EDDIE" |
|
device = "GPU" |
|
pe = 1 |
|
memory = 64 |
|
|
|
[data] |
|
n_channels = 1 |
|
batch_size = 2 |
|
num_workers = 1 |
|
val_percent = 10 |
|
dir_train_mask = [ "/exports/csce/eddie/eng/groups/DunnGroup/matthew/gel_data/lsdb_gels/masks", "/exports/csce/eddie/eng/groups/DunnGroup/matthew/gel_data/nathan_gels/masks", "/exports/csce/eddie/eng/groups/DunnGroup/matthew/gel_data/matthew_gels/masks", "/exports/csce/eddie/eng/groups/DunnGroup/matthew/gel_data/matthew_gels_2/masks", "/exports/csce/eddie/eng/groups/DunnGroup/matthew/gel_data/neb_ladders/masks",] |
|
dir_train_img = [ "/exports/csce/eddie/eng/groups/DunnGroup/matthew/gel_data/lsdb_gels/images", "/exports/csce/eddie/eng/groups/DunnGroup/matthew/gel_data/nathan_gels/images", "/exports/csce/eddie/eng/groups/DunnGroup/matthew/gel_data/matthew_gels/images", "/exports/csce/eddie/eng/groups/DunnGroup/matthew/gel_data/matthew_gels_2/images", "/exports/csce/eddie/eng/groups/DunnGroup/matthew/gel_data/neb_ladders/images",] |
|
dir_val_img = [ "/exports/csce/eddie/eng/groups/DunnGroup/matthew/gel_data/lsdb_gels/val_images", "/exports/csce/eddie/eng/groups/DunnGroup/matthew/gel_data/nathan_gels/val_images", "/exports/csce/eddie/eng/groups/DunnGroup/matthew/gel_data/matthew_gels/val_images", "/exports/csce/eddie/eng/groups/DunnGroup/matthew/gel_data/matthew_gels_2/val_images", "/exports/csce/eddie/eng/groups/DunnGroup/matthew/gel_data/neb_ladders/val_images",] |
|
dir_val_mask = [ "/exports/csce/eddie/eng/groups/DunnGroup/matthew/gel_data/lsdb_gels/val_masks", "/exports/csce/eddie/eng/groups/DunnGroup/matthew/gel_data/nathan_gels/val_masks", "/exports/csce/eddie/eng/groups/DunnGroup/matthew/gel_data/matthew_gels/val_masks", "/exports/csce/eddie/eng/groups/DunnGroup/matthew/gel_data/matthew_gels_2/val_masks", "/exports/csce/eddie/eng/groups/DunnGroup/matthew/gel_data/neb_ladders/val_masks",] |
|
split_training_dataset = false |
|
apply_augmentations = true |
|
padding = true |
|
individual_padding = false |
|
weak_augmentations = false |
|
|
|
[model] |
|
model_name = "smp_unet" |
|
classes = 2 |
|
in_channels = 1 |
|
encoder_name = "resnet18" |
|
|
|
[training] |
|
loss = [ "dice", "crossentropy",] |
|
loss_component_weighting = [ 1, 1,] |
|
class_loss_weighting = false |
|
class_loss_weight_damper = [ 1.0, 1.0,] |
|
lr = 0.0001 |
|
epochs = 600 |
|
grad_scaler = true |
|
load_checkpoint = false |
|
optimizer_type = "adam" |
|
scheduler_type = "CosineAnnealingWarmRestarts" |
|
save_checkpoint = true |
|
checkpoint_frequency = 1 |
|
wandb_track = true |
|
model_cleanup_frequency = 20 |
|
wandb_id = "2ogdvood" |
|
|
|
[training.scheduler_specs] |
|
restart_period = 100 |
|
|