matiasmolinolo
commited on
Commit
•
0952d3d
1
Parent(s):
e8c41e8
Upload TransformerClassifier
Browse files- README.md +199 -0
- config.json +18 -0
- model.safetensors +3 -0
- transformer.py +174 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"TransformerClassifier"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "transformer.TransformerClassifierConfig",
|
7 |
+
"AutoModel": "transformer.TransformerClassifier"
|
8 |
+
},
|
9 |
+
"d_model": 128,
|
10 |
+
"ff_dim": 512,
|
11 |
+
"in_dim": 42,
|
12 |
+
"model_type": "transformer-checker",
|
13 |
+
"n_classes": 2,
|
14 |
+
"n_heads": 8,
|
15 |
+
"n_layers": 6,
|
16 |
+
"torch_dtype": "float32",
|
17 |
+
"transformers_version": "4.40.1"
|
18 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1aca2eeb41e38f5807e6c7d0be481f42aba8ba5ef4785cf040221fed515fd183
|
3 |
+
size 4790520
|
transformer.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from transformer_lens.HookedTransformer import HookedTransformer
|
6 |
+
from transformer_lens.HookedTransformerConfig import HookedTransformerConfig
|
7 |
+
from transformer_lens.train import HookedTransformerTrainConfig, train
|
8 |
+
from transformers import PretrainedConfig, PreTrainedModel
|
9 |
+
|
10 |
+
|
11 |
+
def generate_config(
|
12 |
+
n_ctx,
|
13 |
+
d_model,
|
14 |
+
d_head,
|
15 |
+
n_heads,
|
16 |
+
d_mlp,
|
17 |
+
n_layers,
|
18 |
+
attention_dir,
|
19 |
+
act_fn,
|
20 |
+
d_vocab,
|
21 |
+
d_vocab_out,
|
22 |
+
use_attn_result,
|
23 |
+
device,
|
24 |
+
use_hook_tokens,
|
25 |
+
):
|
26 |
+
return HookedTransformerConfig(
|
27 |
+
n_ctx=n_ctx,
|
28 |
+
d_model=d_model,
|
29 |
+
d_head=d_head,
|
30 |
+
n_heads=n_heads,
|
31 |
+
d_mlp=d_mlp,
|
32 |
+
n_layers=n_layers,
|
33 |
+
attention_dir=attention_dir,
|
34 |
+
act_fn=act_fn,
|
35 |
+
d_vocab=d_vocab,
|
36 |
+
d_vocab_out=d_vocab_out,
|
37 |
+
use_attn_result=use_attn_result,
|
38 |
+
device=device,
|
39 |
+
use_hook_tokens=use_hook_tokens,
|
40 |
+
)
|
41 |
+
|
42 |
+
|
43 |
+
def generate_model(config):
|
44 |
+
return HookedTransformer(config)
|
45 |
+
|
46 |
+
|
47 |
+
def train_model(model, n_epochs, batch_size, lr, dataset):
|
48 |
+
train_cfg = HookedTransformerTrainConfig(
|
49 |
+
num_epochs=n_epochs, batch_size=128, lr=0.001, device="cuda:0"
|
50 |
+
)
|
51 |
+
|
52 |
+
return train(model, train_cfg, dataset)
|
53 |
+
|
54 |
+
|
55 |
+
class ScaledDotProductAttention(nn.Module):
|
56 |
+
def __init__(self, scale):
|
57 |
+
super().__init__()
|
58 |
+
self.scale = scale
|
59 |
+
|
60 |
+
def forward(self, q, k, v, mask=None):
|
61 |
+
attn = torch.matmul(q, k.transpose(-2, -1)) * 1 / self.scale
|
62 |
+
if mask is not None:
|
63 |
+
attn = attn.masked_fill(mask == 0, float("-inf"))
|
64 |
+
|
65 |
+
attn = torch.softmax(attn, dim=-1)
|
66 |
+
|
67 |
+
out = torch.matmul(attn, v)
|
68 |
+
return out, attn
|
69 |
+
|
70 |
+
|
71 |
+
class MultiHeadAttention(nn.Module):
|
72 |
+
def __init__(self, n_heads, d_model):
|
73 |
+
super().__init__()
|
74 |
+
assert d_model % n_heads == 0, "d_model should be divisible by n_heads"
|
75 |
+
|
76 |
+
self.d_model = d_model
|
77 |
+
self.n_heads = n_heads
|
78 |
+
self.depth = d_model // n_heads
|
79 |
+
|
80 |
+
self.wq = nn.Linear(d_model, d_model)
|
81 |
+
self.wk = nn.Linear(d_model, d_model)
|
82 |
+
self.wv = nn.Linear(d_model, d_model)
|
83 |
+
|
84 |
+
self.dense = nn.Linear(d_model, d_model)
|
85 |
+
|
86 |
+
self.attn = ScaledDotProductAttention(scale=math.sqrt(self.depth))
|
87 |
+
|
88 |
+
def forward(self, q, k, v, mask=None):
|
89 |
+
batch_size = q.size(0)
|
90 |
+
|
91 |
+
q = self.wq(q).view(batch_size, -1, self.n_heads, self.depth).transpose(1, 2)
|
92 |
+
k = self.wk(k).view(batch_size, -1, self.n_heads, self.depth).transpose(1, 2)
|
93 |
+
v = self.wv(v).view(batch_size, -1, self.n_heads, self.depth).transpose(1, 2)
|
94 |
+
|
95 |
+
attn_out, _ = self.attn(q, k, v, mask=mask)
|
96 |
+
attn_out = (
|
97 |
+
attn_out.transpose(1, 2).contiguous().view(batch_size, -1, self.d_model)
|
98 |
+
)
|
99 |
+
|
100 |
+
out = self.dense(attn_out)
|
101 |
+
|
102 |
+
return out
|
103 |
+
|
104 |
+
|
105 |
+
class TransformerEncoderLayer(nn.Module):
|
106 |
+
def __init__(self, d_model, n_heads, ff_dim, dropout=0.1):
|
107 |
+
super().__init__()
|
108 |
+
self.attn = MultiHeadAttention(n_heads, d_model)
|
109 |
+
self.ff = nn.Sequential(
|
110 |
+
nn.Linear(d_model, ff_dim),
|
111 |
+
nn.ReLU(),
|
112 |
+
nn.Linear(ff_dim, d_model),
|
113 |
+
)
|
114 |
+
|
115 |
+
self.ln1 = nn.LayerNorm(d_model)
|
116 |
+
self.ln2 = nn.LayerNorm(d_model)
|
117 |
+
|
118 |
+
self.dropout = nn.Dropout(dropout)
|
119 |
+
|
120 |
+
def forward(self, x, mask=None):
|
121 |
+
attn_out = self.attn(x, x, x, mask=mask)
|
122 |
+
x = self.ln1(x + self.dropout(attn_out))
|
123 |
+
|
124 |
+
ff_out = self.ff(x)
|
125 |
+
x = self.ln2(x + self.dropout(ff_out))
|
126 |
+
|
127 |
+
return x
|
128 |
+
|
129 |
+
|
130 |
+
class TransformerClassifierConfig(PretrainedConfig):
|
131 |
+
model_type = "transformer-checker"
|
132 |
+
|
133 |
+
def __init__(
|
134 |
+
self,
|
135 |
+
in_dim=512,
|
136 |
+
d_model=256,
|
137 |
+
n_heads=8,
|
138 |
+
ff_dim=2048,
|
139 |
+
n_layers=6,
|
140 |
+
n_classes=2,
|
141 |
+
**kwargs,
|
142 |
+
):
|
143 |
+
self.in_dim = in_dim
|
144 |
+
self.d_model = d_model
|
145 |
+
self.n_heads = n_heads
|
146 |
+
self.ff_dim = ff_dim
|
147 |
+
self.n_layers = n_layers
|
148 |
+
self.n_classes = n_classes
|
149 |
+
|
150 |
+
super().__init__(**kwargs)
|
151 |
+
|
152 |
+
|
153 |
+
class TransformerClassifier(PreTrainedModel):
|
154 |
+
config_class = TransformerClassifierConfig
|
155 |
+
|
156 |
+
def __init__(self, config: TransformerClassifierConfig):
|
157 |
+
super().__init__(config)
|
158 |
+
self.embedding = nn.Linear(config.in_dim, config.d_model)
|
159 |
+
self.encoders = nn.ModuleList(
|
160 |
+
[
|
161 |
+
TransformerEncoderLayer(config.d_model, config.n_heads, config.ff_dim)
|
162 |
+
for _ in range(config.n_layers)
|
163 |
+
]
|
164 |
+
)
|
165 |
+
self.classifier = nn.Linear(config.d_model, config.n_classes)
|
166 |
+
|
167 |
+
def forward(self, x, mask=None):
|
168 |
+
x = self.embedding(x)
|
169 |
+
for encoder in self.encoders:
|
170 |
+
x = encoder(x, mask=mask)
|
171 |
+
|
172 |
+
x = self.classifier(x[:, 0])
|
173 |
+
|
174 |
+
return x
|