matiasmolinolo commited on
Commit
0952d3d
1 Parent(s): e8c41e8

Upload TransformerClassifier

Browse files
Files changed (4) hide show
  1. README.md +199 -0
  2. config.json +18 -0
  3. model.safetensors +3 -0
  4. transformer.py +174 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "TransformerClassifier"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "transformer.TransformerClassifierConfig",
7
+ "AutoModel": "transformer.TransformerClassifier"
8
+ },
9
+ "d_model": 128,
10
+ "ff_dim": 512,
11
+ "in_dim": 42,
12
+ "model_type": "transformer-checker",
13
+ "n_classes": 2,
14
+ "n_heads": 8,
15
+ "n_layers": 6,
16
+ "torch_dtype": "float32",
17
+ "transformers_version": "4.40.1"
18
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1aca2eeb41e38f5807e6c7d0be481f42aba8ba5ef4785cf040221fed515fd183
3
+ size 4790520
transformer.py ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+ from transformer_lens.HookedTransformer import HookedTransformer
6
+ from transformer_lens.HookedTransformerConfig import HookedTransformerConfig
7
+ from transformer_lens.train import HookedTransformerTrainConfig, train
8
+ from transformers import PretrainedConfig, PreTrainedModel
9
+
10
+
11
+ def generate_config(
12
+ n_ctx,
13
+ d_model,
14
+ d_head,
15
+ n_heads,
16
+ d_mlp,
17
+ n_layers,
18
+ attention_dir,
19
+ act_fn,
20
+ d_vocab,
21
+ d_vocab_out,
22
+ use_attn_result,
23
+ device,
24
+ use_hook_tokens,
25
+ ):
26
+ return HookedTransformerConfig(
27
+ n_ctx=n_ctx,
28
+ d_model=d_model,
29
+ d_head=d_head,
30
+ n_heads=n_heads,
31
+ d_mlp=d_mlp,
32
+ n_layers=n_layers,
33
+ attention_dir=attention_dir,
34
+ act_fn=act_fn,
35
+ d_vocab=d_vocab,
36
+ d_vocab_out=d_vocab_out,
37
+ use_attn_result=use_attn_result,
38
+ device=device,
39
+ use_hook_tokens=use_hook_tokens,
40
+ )
41
+
42
+
43
+ def generate_model(config):
44
+ return HookedTransformer(config)
45
+
46
+
47
+ def train_model(model, n_epochs, batch_size, lr, dataset):
48
+ train_cfg = HookedTransformerTrainConfig(
49
+ num_epochs=n_epochs, batch_size=128, lr=0.001, device="cuda:0"
50
+ )
51
+
52
+ return train(model, train_cfg, dataset)
53
+
54
+
55
+ class ScaledDotProductAttention(nn.Module):
56
+ def __init__(self, scale):
57
+ super().__init__()
58
+ self.scale = scale
59
+
60
+ def forward(self, q, k, v, mask=None):
61
+ attn = torch.matmul(q, k.transpose(-2, -1)) * 1 / self.scale
62
+ if mask is not None:
63
+ attn = attn.masked_fill(mask == 0, float("-inf"))
64
+
65
+ attn = torch.softmax(attn, dim=-1)
66
+
67
+ out = torch.matmul(attn, v)
68
+ return out, attn
69
+
70
+
71
+ class MultiHeadAttention(nn.Module):
72
+ def __init__(self, n_heads, d_model):
73
+ super().__init__()
74
+ assert d_model % n_heads == 0, "d_model should be divisible by n_heads"
75
+
76
+ self.d_model = d_model
77
+ self.n_heads = n_heads
78
+ self.depth = d_model // n_heads
79
+
80
+ self.wq = nn.Linear(d_model, d_model)
81
+ self.wk = nn.Linear(d_model, d_model)
82
+ self.wv = nn.Linear(d_model, d_model)
83
+
84
+ self.dense = nn.Linear(d_model, d_model)
85
+
86
+ self.attn = ScaledDotProductAttention(scale=math.sqrt(self.depth))
87
+
88
+ def forward(self, q, k, v, mask=None):
89
+ batch_size = q.size(0)
90
+
91
+ q = self.wq(q).view(batch_size, -1, self.n_heads, self.depth).transpose(1, 2)
92
+ k = self.wk(k).view(batch_size, -1, self.n_heads, self.depth).transpose(1, 2)
93
+ v = self.wv(v).view(batch_size, -1, self.n_heads, self.depth).transpose(1, 2)
94
+
95
+ attn_out, _ = self.attn(q, k, v, mask=mask)
96
+ attn_out = (
97
+ attn_out.transpose(1, 2).contiguous().view(batch_size, -1, self.d_model)
98
+ )
99
+
100
+ out = self.dense(attn_out)
101
+
102
+ return out
103
+
104
+
105
+ class TransformerEncoderLayer(nn.Module):
106
+ def __init__(self, d_model, n_heads, ff_dim, dropout=0.1):
107
+ super().__init__()
108
+ self.attn = MultiHeadAttention(n_heads, d_model)
109
+ self.ff = nn.Sequential(
110
+ nn.Linear(d_model, ff_dim),
111
+ nn.ReLU(),
112
+ nn.Linear(ff_dim, d_model),
113
+ )
114
+
115
+ self.ln1 = nn.LayerNorm(d_model)
116
+ self.ln2 = nn.LayerNorm(d_model)
117
+
118
+ self.dropout = nn.Dropout(dropout)
119
+
120
+ def forward(self, x, mask=None):
121
+ attn_out = self.attn(x, x, x, mask=mask)
122
+ x = self.ln1(x + self.dropout(attn_out))
123
+
124
+ ff_out = self.ff(x)
125
+ x = self.ln2(x + self.dropout(ff_out))
126
+
127
+ return x
128
+
129
+
130
+ class TransformerClassifierConfig(PretrainedConfig):
131
+ model_type = "transformer-checker"
132
+
133
+ def __init__(
134
+ self,
135
+ in_dim=512,
136
+ d_model=256,
137
+ n_heads=8,
138
+ ff_dim=2048,
139
+ n_layers=6,
140
+ n_classes=2,
141
+ **kwargs,
142
+ ):
143
+ self.in_dim = in_dim
144
+ self.d_model = d_model
145
+ self.n_heads = n_heads
146
+ self.ff_dim = ff_dim
147
+ self.n_layers = n_layers
148
+ self.n_classes = n_classes
149
+
150
+ super().__init__(**kwargs)
151
+
152
+
153
+ class TransformerClassifier(PreTrainedModel):
154
+ config_class = TransformerClassifierConfig
155
+
156
+ def __init__(self, config: TransformerClassifierConfig):
157
+ super().__init__(config)
158
+ self.embedding = nn.Linear(config.in_dim, config.d_model)
159
+ self.encoders = nn.ModuleList(
160
+ [
161
+ TransformerEncoderLayer(config.d_model, config.n_heads, config.ff_dim)
162
+ for _ in range(config.n_layers)
163
+ ]
164
+ )
165
+ self.classifier = nn.Linear(config.d_model, config.n_classes)
166
+
167
+ def forward(self, x, mask=None):
168
+ x = self.embedding(x)
169
+ for encoder in self.encoders:
170
+ x = encoder(x, mask=mask)
171
+
172
+ x = self.classifier(x[:, 0])
173
+
174
+ return x