matchaoneshot commited on
Commit
b771b6e
1 Parent(s): 662fafa

create README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - multi-label-classification
4
+ - multi-intent-detection
5
+ - huggingface
6
+ - deberta-v3
7
+ - transformers
8
+ library_name: transformers
9
+ task:
10
+ - text-classification
11
+ license: apache-2.0
12
+ ---
13
+
14
+ # Multi-Intent Detection (MID) Model
15
+
16
+ This model was fine-tuned for the task of **Multi-Intent Detection (MID)**, a type of multi-label classification where each input can have multiple labels assigned. The dataset used for fine-tuning is specifically designed to simplify the MID task, with the number of labels limited to two per instance.
17
+
18
+ ## Model Details
19
+
20
+ - **Base Model:** DeBERTa-v3-base
21
+ - **Task:** Multi-label classification
22
+ - **Number of Labels:** 2
23
+ - **Fine-tuning Framework:** Hugging Face Transformers
24
+
25
+
26
+ ## Training Configuration
27
+
28
+ - **Training Arguments:**
29
+ - **Learning Rate:** 2e-5
30
+ - **Batch Size (Train):** 16
31
+ - **Batch Size (Eval):** 16
32
+ - **Gradient Accumulation Steps:** 2
33
+ - **Number of Epochs:** 5
34
+ - **Weight Decay:** 0.01
35
+ - **Warmup Ratio:** 10%
36
+ - **Learning Rate Scheduler Type:** Cosine
37
+ - **Mixed Precision Training:** Enabled (FP16)
38
+ - **Scheduler**: Cosine annealing
39
+ - **Logging Steps:** 50
40
+
41
+ ## Performance Metrics
42
+
43
+ The following table shows the model's performance at each epoch during the training:
44
+
45
+ | Epoch | Training Loss | Validation Loss | Precision | Recall | F1 Score | Accuracy |
46
+ |-------|---------------|-----------------|----------|---------|----------|----------|
47
+ | 0 | 0.052800 | 0.051748 | 0.692308 | 0.011897 | 0.023392 | 0.002644 |
48
+ | 2 | 0.004800 | 0.006419 | 0.983743 | 0.939855 | 0.961298 | 0.881031 |
49
+ | 4 | 0.003000 | 0.005456 | 0.979877 | 0.949438 | 0.964418 | 0.900198 |
50
+
51
+ ### Final Evaluation Metrics (Epoch 5):
52
+
53
+ After 5 epochs of training, the model achieved the following performance on the evaluation set:
54
+
55
+ - **Evaluation Loss**: 0.005456
56
+ - **Precision**: 0.979877
57
+ - **Recall**: 0.949438
58
+ - **F1 Score**: 0.964418
59
+ - **Accuracy**: 0.900198
60
+
61
+ ### Training Output
62
+
63
+ - **Global Steps**: 4500
64
+ - **Training Loss**: 0.041661
65
+ - **Training Runtime**: 5399.55 seconds
66
+ - **Training Samples per Second**: 26.68
67
+ - **Training Steps per Second**: 0.83
68
+
69
+
70
+ ## Limitations
71
+
72
+ - **Simplified Multi-Label Setting:** This model assumes a fixed number of two labels per instance, which may not generalize to datasets with more complex multi-label settings.
73
+ - **Performance on Unseen Data:** The model's performance may degrade if applied to data distributions significantly different from the training dataset.